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Abstract

The global spread of Zika virus (ZIKV), which caused a pandemic associated with Congeni-

tal Zika Syndrome and neuropathology in newborns and adults, prompted the pursuit of a

safe and effective vaccine. Here, three kinds of recombinant rabies virus (RABV) encoding

the prM-E protein of ZIKV were constructed: ZI-D (prM-E), ZI-E (transmembrane domain

(TM) of prM-E replaced with RABV G) and ZI-F (signal peptide and TM domain of prM-E

replaced with the region of RABV G). When the TM of prM-E was replaced with the region of

RABV G (termed ZI-E), it promoted ZIKV E protein localization on the cell membrane and

assembly on recombinant viruses. In addition, the change in the signal peptide with RABV G

(termed ZI-F) was not conducive to foreign protein expression. The immunogenicity of

recombinant viruses mixed with a complex adjuvant of ISA 201 VG and poly(I:C) was tested

in BALB/c mice. After immunization with ZI-E, the anti-ZIKV IgG antibody lasted for at least

10 weeks. The titers of neutralizing antibodies (NAbs) against ZIKV and RABV at week 6

were all greater than the protective titers. Moreover, ZI-E stimulated the proliferation of

splenic lymphocytes and promoted the secretion of cytokines. It also promoted the produc-

tion of central memory T cells (TCMs) among CD4+/CD8+ T cells and stimulated B cell acti-

vation and maturation. These results indicate that ZI-E could induce ZIKV-specific humoral

and cellular immune responses, which have the potential to be developed into a promising

vaccine for protection against both ZIKV and RABV infections.

Author summary

There is no approved vaccine for Zika virus (ZIKV) disease. Many research efforts are

ongoing, e.g., inactivated, DNA, or viral vector vaccines. However, due to the complexity

of the pathogenesis and immunology of ZIKV, new ideas about vaccine development still

need to be considered. Rabies virus (RABV) vectored vaccines have been developed for
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many viruses, such as against Lassa virus, canine distemper virus, Middle East respiratory

syndrome coronavirus, and filovirus, based on the advantages of the vector. In this study,

three recombinant RABVs expressing ZIKV prM-E, named ZI-D, ZI-E and ZI-F, are

described. Since ZI-D and ZI-E could express foreign proteins successfully, the author

evaluated the immunogenicity of ZI-D and ZI-E mixed with a complex adjuvant of ISA

201 VG and poly(I:C) in BALB/c mice. The study demonstrates that ZI-E induced mice to

produce NAbs against both RABV and ZIKV and elicited specific cellular immune

responses. The authors believe that the ZI-E vaccine based on the RABV vector has the

potential to prevent ZIKV and RABV infections. It has the potential to be used in ZIKV-

RABV binary vaccines in areas where both ZIKV and RABV are threats.

Introduction

Zika virus (ZIKV), which belongs to the family Flaviviridae and the genus Flavivirus, is an

arbovirus and was first isolated from a febrile rhesus macaque in Uganda in 1947 [1]. In May

2015, a large-scale outbreak of ZIKV disease occurred in Brazil, showing a trend of spread and

cross-border transmission. According to a World Health Organization (WHO) report, as of

July 2019, a total of 87 countries and territories had cases of infection [2]. Fever, rash, arthral-

gia and conjunctivitis are the main clinical symptoms, and the disease rarely causes death in

adults, but it can cause a high risk of Congenital Zika Syndrome (CZS, a combination of severe

neurological anomalies) in newborn babies after infection of pregnant women [3,4].

Currently, there is no approved vaccine or effective treatment for ZIKV disease. However,

intensive research efforts in this field have been ongoing. Using other viruses as vectors to

express the main structural proteins of ZIKV is a strategy to develop ZIKV vaccines, includ-

ing the recombinant replication-deficient adenovirus [5], the rhesus adenovirus serotype 52

vectored vaccine [6], the attenuated poxvirus vectored vaccine [7], and the attenuated

recombinant vesicular stomatitis virus vectored vaccine [8]. However, due to the complexity

of the pathogenesis and immunology of ZIKV, there are many uncertainties associated with

the development of vaccines [9,10]. New ideas and methods still need to be further consid-

ered [11]. Several important characteristics recommend rabies virus (RABV) vectors as vac-

cine delivery platforms. First, RABV can be replicated and transcribed with high efficiency

in target cells to produce abundant virus-specific proteins that favor the packaging of the

recombinant virus. Furthermore, since few people possess serum antibodies against RABV,

preexisting RABV seropositivity is negligible [12]. Using reverse genetic manipulation tech-

niques, novel RABV vectored vaccines have been developed for many viruses based on the

advantages of the vector [12], such as against Lassa virus (LASV) [13], canine distemper

virus (CDV) [14], Middle East respiratory syndrome coronavirus (MERS-CoV) [15] and filo-

virus [16].

The E protein, a structural protein, is the only envelope glycoprotein of ZIKV and plays

important roles in the molecular recognition, pathogenesis and immune process of the virus. E

protein containing neutralizing epitopes has been targeted in ZIKV vaccine research [17–20].

PrM-E can be cleaved into the prM and E proteins by host cell signal peptidase [21], and prM

plays a critical role in folding the E protein [18]. In this study, a recombinant RABV expressing

ZIKV prM-E protein was constructed based on a RABV reverse genetic operating system [22].

Humoral and cellular immune responses were stimulated after intramuscular immunization

in mice.
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Materials and methods

Ethics statement

All of the mice were treated in accordance with the Chinese ethical guidelines for the welfare of

laboratory animals (GB 14925–2001). The study was approved by the Animal Welfare and Ethics

Committee of the Institute of Veterinary Medicine of the Military Academy of Sciences (Labora-

tory Animal Care and Use Committee Authorization permit number JSY-DW-2018-02).

Viruses, cells and antibodies

The recombinant viruses were grown in suspended baby hamster kidney (BHK-21) cells that

were maintained in CD BHK-21 Production Medium (Thermo Fisher Scientific, Waltham,

MA, USA) with 1% fetal bovine serum (FBS, Gibco, Grand Island, NY, USA) at 37˚C and 120

rpm. The ZIKV ZKC2 2016 strain was cultivated in C6/36 cells (10% MEM with 10% FBS) at

27˚C. BSR cells, which are a cloned cell line derived from BHK-21 cells, were maintained in

Dulbecco’s modified Eagle’s medium (DMEM, Gibco, Grand Island, NY, USA) that contained

5% FBS. NA cells were maintained in DMEM that contained 10% FBS.

A fluorescein isothiocyanate (FITC)-conjugated monoclonal antibody (mAb) against

RABV N protein (800–092) was purchased from Fujirebio (Melvin, PA, USA). An anti-RABV

G mAb (MAB8727) was purchased from Millipore (Billerica, MA, USA). A rabbit anti-ZIKV E

polyclonal antibody (GTX133314) was purchased from GeneTex (Alton PkwyIrvine, CA,

USA). TRITC-conjugated goat anti-mouse IgG (T5393) was purchased from Sigma (St. Louis,

MO, USA). FITC-conjugated goat anti-rabbit IgG (ab6717), horseradish peroxidase (HRP)-

conjugated goat anti-mouse IgG (ab6789), HRP-conjugated goat anti-rabbit IgG (ab6721),

donkey anti-mouse IgG H&L (ab39593, 10 nm gold) and donkey anti-rabbit IgG H&L

(ab105296, 18 nm gold) were purchased from Abcam (Cambridge, MA, USA).

cDNA construction of vaccine vectors

The reverse genetic operating system of the vaccine vector RABV SRV9 has been described

previously [22]. In this vector, an exogenous gene expression component “PE-PS-BsiW I-Pme
I” was introduced, and foreign proteins could be expressed through the two restriction sites

“BsiW I-Pme I”. Full-length ZIKV prM-E cDNA was retrieved from GenBank (Accession:

KX601168.1). The TM or signal sequence region of ZIKV prM-E was replaced by the corre-

sponding regions of the RABV SRV9 strain (Accession: KX601168.1). Foreign genes were opti-

mized for mammalian cells and synthesized by Sangon Biotech (Shanghai, China), and genes

were introduced into the vector RABV SRV9 using BsiW I and Pme I restriction digestion

sites. Three kinds of full-length viral cDNA containing ZIKV prM-E were constructed, namely

ZI-D (full-length prM-E), ZI-E (full-length prM-E with TM region replaced by the corre-

sponding region of SRV9) and ZI-F (full-length prM-E with the signal sequence and TM

replaced by SRV9).

The recombinant viruses were recovered as described previously [22]. Briefly, Lipofecta-

mine 3000 Transfection Reagent (Invitrogen, Carlsbad, CA, USA) was used to cotransfect the

full-length viral cDNA along with the helper plasmids (encoding the RABV N, P, G and L pro-

teins, respectively) into BSR cells. Seven days later, the supernatants were harvested and ana-

lyzed by immunostaining for RABV N.

Immunofluorescence analysis (IFA)

For detection or titration of RABV, NA cells were seeded in 96-well plates and infected with

tenfold serial dilutions of viruses (50 μl/well). Each dilution was performed in quadruplicate.
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Forty-eight hours later, the cells were fixed with 80% cold acetone, and a FITC-conjugated

anti-RABV N mAb (1:200) served as the detection signal for RABV. Fluorescence was

observed under a fluorescence microscope (Olympus, Tokyo, Japan). The titer of RABV was

calculated according to the Reed-Muench method.

For confocal microscopy analysis, NA cells were seeded on confocal dishes and infected at

an MOI of 1 with the different viruses. Forty-eight hours later, the cells were fixed with 4%

paraformaldehyde (PFA) and permeabilized with 0.2% Triton X-100 or nonpermeabilized.

After blocking with 1% BSA, the cells were incubated with an anti-RABV G mAb (1:100) and

an anti-ZIKV E polyclonal antibody (1:100). Then, a TRITC-conjugated anti-mouse antibody

(1:500) and a FITC-conjugated anti-rabbit antibody (1:300) were added to the corresponding

primary antibodies. The cells were stained with 4,6-diamidino-2-phenylindole (DAPI) and

imaged with a confocal microscope.

Electron microscopy analysis

Recombinant RABVs were negatively stained with uranyl acetate and then examined under an

electron microscope. For immunoelectron microscopy, after attachment to copper mesh, the

samples were double stained with an anti-RABV G mAb (1:50) and a rabbit anti-ZIKV E poly-

clonal antibody (1:50). After they were washed with PBS, the samples were labeled with donkey

anti-rabbit IgG (18 nm gold, 1:20) and donkey anti-mouse IgG (10 nm gold, 1:20). The stained

samples were examined under an electron microscope.

One-step growth curves

BHK-21 suspension cells in 30-ml volumes were infected with the recombinant viruses and

RABV SRV9 at MOIs of 0.1, 0.5 and 1, and samples of 200 μl were harvested every 24 h. The

samples harvested from 1–4 days post infection (dpi) were titrated in NA cells as described

above.

Virus purification

Recombinant RABV was inoculated into BHK-21 suspension cells at an MOI of 0.5 for large-

scale purification. The supernatant was collected on the 2nd and 4th days and replaced with

fresh medium. After centrifugation at 3000 rpm for 30 min, the viruses in the supernatants

were precipitated with zinc acetate. After resuspension, the viruses were purified by ultracen-

trifugation through a 10-20-30-40-55% sucrose gradient for 1.5 h at 50,200 g. The viruses that

remained in 30–40% sucrose were resuspended in STE (0.15 M NaCl, 0.001 M EDTA, 0.01 M

Tris-base, pH = 7.4) and inactivated using beta-propiolactone (BPL) (Serva Electrophoresis

GmbH, Heidelberg, Germany) at a 1:3000 dilution. After incubation at 4˚C for 24 h, BPL was

hydrolyzed at 37˚C for 2 h. The protein concentrations of the inactivated viruses were mea-

sured using a BCA Protein Assay Kit (Pierce, Rockford, IL, USA) according to the manufactur-

er’s instructions.

Sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis (PAGE)

and western blot (WB)

Purified viruses were denatured in loading buffer at 100˚C for 5 min. 30 μg of denatured pro-

teins were separated by 10% SDS-PAGE. For total protein analysis, the gels were stained with

Coomassie brilliant blue. For WB, the proteins separated by SDS-PAGE were transferred from

the gels to nitrocellulose (NC) membranes (GE Healthcare, Little Chalfont, Buckinghamshire,

UK) for immunoblot analysis. Polyclonal rabbit anti-ZIKV E antibodies (1:700) were used as
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the primary antibodies, and HRP-conjugated goat anti-rabbit IgG (1:5000) was used as the sec-

ondary antibody. Electrochemiluminescence (ECL) Western Blotting Substrate (Pierce, IL,

USA) was added, and the bands were captured using a Tanon-5200 Chemiluminescent Imag-

ing System (Tanon, Shanghai, China).

Immunizations in mice

Female BALB/c mice (6–8 weeks) were randomly divided into 3 groups (n = 9/group) and vac-

cinated intramuscularly (IM) with ZI-D or ZI-E mixed with a complex adjuvant of ISA 201

VG (containing special mineral oil, Seppic, Paris, France) and poly(I:C) (Sigma, St. Louis, MO,

USA). To ensure the immune effect, we chose twice the dose of references [15,16,23], i.e.,

20 μg as the immune dose. Each milliliter of vaccine contains 55% volume ratio of ISA 201 VG

and 200 μg of poly(I:C). Mice that received PBS were used as the controls. Nine mice from

each group were boosted twice at 2-week intervals. The sera were collected at 0-, 2-, 5-, and

8-weeks post immunization (wpi) and heat inactivated at 56˚C for 30 min.

ELISA

Indirect ELISA was performed to detect the IgG titer or the ratio of IgG2a/IgG1 in serum.

Purified ZIKV E protein from insect cells (MyBioSource, San Diego, CA, USA) was diluted in

coating buffer (50 mM Na2CO3, pH 9.6) at a concentration of 0.5 μg/ml and then plated in

96-well microtiter plates (Corning-Costar, Corning, NY, USA) at a volume of 100 μl/well. The

plates were incubated at 4˚C overnight. After blocking with 5% nonfat milk, the plates were

incubated with twofold serial dilutions of sera in blocking buffer. Next, HRP-conjugated goat

anti-mouse IgG (H+L) (1:2000, BioWorld, St. Louis, MO, USA), IgG1, or IgG2a (1:2000,

Southern Biotech, Birmingham, AL, USA) was added. Then, tetramethylbenzidine (TMB,

Sigma, St. Louis, MO, USA) was added as an acidic buffer, and 2 M H2SO4 was used to stop

color development. The absorbance was read at 450 nm using a microplate reader (Thermo

Fisher Scientific, Waltham, MA, USA).

Neutralization titer assay

A virus neutralization assay (VNA) for ZIKV was performed as previously described [11].

Briefly, twofold serial dilutions of heat-inactivated serum were mixed with equal volumes of

ZIKV (500 PFU/ml). After incubation for 1 h at 37˚C, 200 μl of the mixture was transferred to

monolayer BHK cells in 12-well plates, and the cells were incubated for another 1 h. Then, the

inoculum was removed and replaced with semisolid agarose medium. After incubation for

four days, the cells were fixed and stained with crystal violet. The titers were determined by a

standard 50% plaque reduction neutralization test (PRNT50).

A VNA for RABV was conducted using a fluorescent antibody virus neutralization (FAVN)

test. Briefly, 100 μl volumes of threefold serial dilutions of serum were mixed with 100 TCID50

of CVS-11 stain in 96-well plates, and the mixtures were incubated for 1 h at 37˚C. Then, NA

cells were added and incubated for 48 h at 37˚C. The cells were fixed with cold 80% acetone

and stained with FITC-conjugated anti-RABV N antibodies (1:200). The positive/negative

wells were determined under a fluorescence microscope, and the titers of RABV NAbs are

expressed in IU/ml by comparison with a standard serum sample (0.5 IU/ml).

Splenocyte proliferation assay

One week after the last immunization, three mice from each group were euthanized. Mouse

spleens were collected and disrupted with the plunger of a syringe. The splenocyte suspensions
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were strained through a 100 μm mesh, and red blood cells were lysed by erythrocyte lysis

buffer (Solarbio, Beijing, China). Then, 2.5×105 splenocytes (suspended in complete RPMI

1640), along with purified ZIKV E antigen (10 μg/ml), were plated in 96-well plates for culture.

After 44 h, 10 μl of commercial TransDetect Cell Counting Kit-8 (CCK-8) reagent (KeyGEN

Biotech, Nanjing, China) was added to the cells, and the cells were cultivated for another 4 h.

Then, the absorbance was measured at 450 nm using a microplate reader (Thermo Fisher

Scientific, Waltham, MA, USA). The proliferation index (PI) was calculated as follows:

(OD stimulated cultures–ODunstimulated cultures)/(ODunstimulated cultures−ODcontrol cultures).

Ex vivo IFN-γ and IL-4 ELISpot assay

A total of 5×105 splenocytes (treated as in the splenocyte proliferation assay), along with puri-

fied ZIKV E antigen (10 μg/ml), were plated in 96-well ELISpot plates (MABTECH, Nacka,

Sweden). After 24 h, the cells were incubated with a biotinylated IFN-γ or IL-4 antibody

(1:1000) and later labeled with streptavidin-conjugated HRP (1:1000). TMB was used to

develop spots, and SFCs were acquired using an ELISpot reader (Multispotreader Spectrum,

AID, Strasberg, Germany).

Measurement of cytokine levels in splenocyte culture supernatants

A total of 5×105 splenocytes (treated as in the splenocyte proliferation assay) along with puri-

fied ZIKV E antigen (10 μg/ml) were plated in 96-well plates. After culture for 72 h, the super-

natant was collected for the detection of cytokines using a Meso Scale Discovery (MSD) kit,

and the data were measured with a Meso QuickPlex SQ120 (Meso Scale Diagnostics, Rockville,

MD, USA).

Cell-surface molecule staining

A total of 5×105 splenocytes (treated as in the splenocyte proliferation assay) along with puri-

fied ZIKV E antigen (10 μg/ml) were plated in 96-well plates. After culture for 72 h, the cells

were collected in PBS containing 2% FBS and 0.1% NaN3. Then, the cells were stained with

0.25 μg of FITC-conjugated anti-CD4, PE-conjugated anti-CD8, APC-conjugated anti-CD19,

PE/Cy7-conjugated anti-CD69, APC-conjugated anti-CD44 or PerCP-Cy5.5-conjugated anti-

CD62L (BD Biosciences, Franklin, CA, USA) antibodies for 30 min at 4˚C. Data were acquired

on a FACSCalibur flow cytometer (BD Biosciences, Franklin, CA, USA).

Statistical analyses

All of the experiments were repeated three times, and the results are expressed as the

mean ± SD. All statistical analyses were performed with Student’s t-test in GraphPad software,

version 8.0.2. A p value of�0.05 was considered statistically significant.

Results

Construction of recombinant virus with three different strategies

To express the prM-E proteins of ZIKV, we generated recombinant RABV based on the SRV9

strain [22] with three strategies (Fig 1). ZI-D (codon-optimized ZIKV prM-E, Fig 1A), ZI-E

(in which the transmembrane (TM) domain of prM-E (amino acids 451–504) was replaced

with the TM-cytoplasmic domain (TM-CD) of RABV, Fig 1B) and ZI-F (in which the signal

peptide and TM domain of prM-E were replaced with the signal peptide and TM-CD region

of RABV, Fig 1C) were cloned into the RABV SRV9 vector using two unique restriction sites

(BsiW I and Pme I) that flank a RABV transcription start/stop signal between the RABV P and
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M genes. All three recombinant viruses were successfully recovered. To verify the expression

of foreign proteins, NA cells were infected at a multiplicity of infection (MOI) of 1 and immu-

nostained with antibodies against RABV G and flavivirus E. The results showed that both

RABV G and ZIKV E could be detected in ZI-D and ZI-E after the cells were permeabilized.

However, in ZI-F, only RABV-G was expressed, and ZIKV E was not detected (Fig 2A). More-

over, to detect whether ZIKV E protein could be detected on the cell surface, nonpermeabi-

lized cells were analyzed by confocal immunofluorescence. The results indicated that the

ZIKV E protein was present on the surface of ZI-E-infected cells, while there was little ZIKV E

protein present on the surface of ZI-D-infected cells (Fig 2B). No ZIKV E protein was detected

in ZI-F-infected cells.

Fig 1. Schematic diagram for cDNA construction of vaccine vectors. Based on the reverse genetic operating system of the vaccine vector RABV SRV9, which

contains the exogenous gene expression component, foreign genes were cloned between the P and M genes of full-length SRV9 using BsiW I and Pme I restriction

digestion sites. (A) ZI-D: full-length prM-E gene of ZIKV. (B) ZI-E: full-length prM-E of ZIKV with the TM domain replaced by the TM-CD of RABV. (C) ZI-F: full-

length prM-E of ZIKV with the signal sequence and TM domain replaced by the corresponding region of RABV.

https://doi.org/10.1371/journal.pntd.0009484.g001
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To detect the incorporation of foreign protein in the recombinant viruses, sucrose-purified

virions from infected BHK cells were analyzed by SDS-PAGE and western blotting (WB).

SDS-PAGE of purified ZI-D, ZI-E and ZI-F showed similar migration of proteins of the

expected size for the RABV proteins compared with the RABV SRV9 controls (Fig 2C). How-

ever, ZIKV E protein (55 kDa) comigrated with RABV N protein (57 kDa) and was difficult to

confirm. Therefore, incorporation of ZIKV E protein was detected by WB analysis. The results

(Fig 2D) indicated that ZI-D and ZI-E incorporated ZIKV E protein in recombinant viruses

with correct protein cleavage and that ZI-E was expressed at higher levels than ZI-D. There

was no target band for ZI-F.

To detect whether the presence of foreign proteins affected the structure of the virus, the

recombinant viruses were analyzed by electron microscopy. Fig 2E shows that typical-sized,

bullet-shaped RABV particles could be seen in ZI-D, ZI-E and ZI-F. Furthermore, the viruses

were analyzed by dual-label immunogold electron microscopy with anti-RABV G (10 nm gold

particles) and anti-flavivirus E (18 nm gold particles). Both ZI-D and ZI-E were found to react

with anti-RABV G and anti-flavivirus E antibodies, while ZI-F was labeled only by anti-RABV

Fig 2. Identification of recombinant viruses. (A-B) Confocal microscopy analysis (6000×). After infection with ZI-D, ZI-E, ZI-F and RABV SRV9

control for 48 h, NA cells were permeabilized (A) or nonpermeabilized (B) and immunostained with antibodies against RABV G protein (red

fluorescence) and ZIKV E protein (green fluorescence). Blue indicates DAPI-stained nuclei. Scale bars represent 10 μm. (C) Sucrose density gradient

centrifugation-purified virions were analyzed by SDS-PAGE. (D) Detection of ZIKV E protein in sucrose-purified virions by WB. (E) Electron

microscopy (EM) and dual-label immunogold electron microscopy (IEM) detection of recombinant viruses. 10 nm gold particles (blue arrow) were

used to label RABV G, and 18 nm gold particles (red arrow) were used to label flavivirus E. Scale bars represent 200 nm.

https://doi.org/10.1371/journal.pntd.0009484.g002
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G antibodies (Fig 2E). The immunogold electron microscopy results were consistent with the

fluorescence staining and WB results.

Growth kinetics of the recombinant viruses

To identify whether foreign proteins would affect RABV growth kinetics, one-step growth

curves of ZI-D and ZI-E were analyzed using BHK-21 suspension cells (Fig 3). The titers of the

recombinant viruses all reached 108 TCID50/ml, and the viral titer increased with increasing

MOI (Fig 3A and 3B). Moreover, at an MOI = 0.5, there were no significant differences in

growth abilities among recombinant viruses and RABV SRV9 (Fig 3C). The results indicated

that the growth kinetics were not affected by foreign protein expression and that the recombi-

nant viruses could be cultured in suspension, conducive to large-scale virus production.

Recombinant viruses induce ZIKV-specific IgGs and neutralizing

antibodies (NAbs)

Based on the above identification results, we chose ZI-D/ZI-E as an immunogen. BALB/c mice

were intramuscularly immunized with 20 μg of beta-propiolactone (BPL)-inactivated ZI-D or

ZI-E, following a three-inoculation vaccination schedule (Fig 4A). Serum was collected, and

the humoral immune response was analyzed periodically until week 10. Analysis of the levels

of IgG against ZIKV E by enzyme-linked immunosorbent assay (ELISA) indicated that both

inactivated ZI-D and ZI-E achieved appreciable IgG responses against ZIKV E (Fig 4B). Then,

we examined the quality of this humoral response by IgG2a and IgG1 subisotype-specific

ZIKV E ELISA at week 6 (Fig 4C). IgG2a/IgG1 ratios less than 1.0 indicated that ZI-D/ZI-E

induced a T-helper (Th)2-biased response.

To predict protection against ZIKV, the development of neutralizing antibodies (NAbs)

(Fig 4D) was quantified in the serum of mice at week 6. The results showed that most of the

immunized mice generated protective titers (>10). Moreover, the titer of ZI-E was slightly

higher than that of ZI-D, which might have been due to increased expression of the target pro-

tein of ZIKV.

In addition, RABV NAbs were evaluated using the World Organization for Animal Health

(OIE) standard, which considers values>0.5 international unit (IU)/ml to be protective

against RABV. By week 6, the concentrations in the immunized groups had all reached at least

23.38 IU/ml, much higher than 0.5 IU/ml (Fig 4C), indicating that the addition of ZIKV E to

the RABV backbone did not compromise the ability of the backbone to generate protective

RABV NAbs.

Fig 3. Growth curves of the recombinant virus. (A-B) BHK suspension cells were infected with ZI-D or ZI-E at an MOI of 0.1, 0.5 or 1. On days 1, 2, 3 and 4 after

infection, samples were obtained, and the RABV titers were determined in NA cells. (C) RABV titer comparison of the recombinant virus with RABV SRV9 at an MOI

of 0.5. The tests were repeated three times.

https://doi.org/10.1371/journal.pntd.0009484.g003
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Fig 4. Immunization evaluation. (A) Immunization strategy. BALB/c mice (n = 9) were immunized IM with ZI-D or ZI-E (20 μg) mixed with a complex adjuvant of

ISA 201 VG and poly(I:C). The mice were boosted twice at 2-week intervals. Mice that received PBS were used as controls. Blood samples (n = 6/group) were collected

on days 0, 14, 28, 42 and 70. On the 35th day, mouse spleens (n = 3/group) were collected. (B) ZIKV E-specific IgG titers were assessed by indirect ELISA with the

purified E protein and are displayed as the end-point dilution titers. (C) IgG2a/IgG1 ratios at week 6 as assessed by indirect ELISA with the purified E protein. (D)

ZIKV NAb titer at week 6 as determined by a standard PRNT50. (E) RABV NAb titer at week 6 as determined by a FAVN test.

https://doi.org/10.1371/journal.pntd.0009484.g004
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Splenocyte proliferation and cytokine secretion by ex vivo restimulation

One week after the last immunization with ZI-D or ZI-E, an ex vivo splenocyte proliferation

assay was performed to evaluate the effects of the vaccines on splenocyte proliferation

responses (Fig 5A). After stimulation with the ZIKV E protein, splenocytes from mice in the

immunized groups proliferated more efficiently than those from mice in the PBS control

group.

Moreover, the capacity of splenocytes to produce interferon (IFN)-γ and interleukin (IL)-4

in response to antigens was quantified in vitro by enzyme-linked immunosorbent spot (ELI-

Spot) assay (Fig 5B). Significantly elevated numbers of spot-forming cells (SFCs) for IFN-γ
and IL-4 responses were detected in immunized mouse splenocytes, and ZI-E induced more

robust IL-4 responses than ZI-D.

Next, we tested whether the immunized groups exhibited elevated secretion of cytokines.

The levels of cytokines were detected in the supernatant of stimulated splenocytes from all of

Fig 5. Splenocyte proliferation. One week after the last immunization, mouse spleens (n = 3/group) were collected, and splenocytes were restimulated with purified

ZIKV E protein. (A) The proliferative index was detected using a CCK-8 assay. (B) The levels of IFN-γ and IL-4 secreted by splenocytes were quantified by ELISpot

assay. (C) Cytokine levels in splenocyte culture supernatants were measured by MSD. Each sample was repeated three times. The data are expressed as the mean ± SD

for each group. �p<0.05; ��p<0.01; ���p<0.001; ����p<0.0001.

https://doi.org/10.1371/journal.pntd.0009484.g005
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the groups (Fig 5C). The results showed that the levels of Th1 cytokines (IL-2, IFN-γ and TNF-

α) and Th2 cytokines (IL-4, IL-5, IL-6 and IL-10) in the immunized groups were significantly

higher than those in the PBS control group; in addition, the levels of these cytokines produced

by ZI-E were higher than those produced by ZI-D. Moreover, the trends in the cytokines IFN-

γ and IL-4 were in accordance with the findings of the ELISpot assay. Overall, the data above

indicated that ZI-D and ZI-E could induce the secretion of a balance of Th1 and Th2

cytokines.

These data suggested that ZI-D and ZI-E evoked immune cell proliferation and elicited

potent antigen-specific cellular immune responses in mice. Moreover, ZI-E had greater poten-

tial to induce cytokine production than ZI-D.

Lymphocyte activation assays

CD69 is a surface antigen present after T/B cell activation; therefore, we detected the propor-

tion of CD69+ lymphocytes in the spleen by flow cytometry to analyze the activation of CD4+

and CD8+ T cells and B cells. The results showed that the proportions of CD4+CD69+ T cells

(Fig 6A and 6B), CD8+CD69+ T cells (Fig 6C and 6D) and CD19+CD69+ B cells (Fig 6E and

6F) in the ZI-E group were all significantly higher than those in the ZI-D and PBS control

groups, indicating that ZI-E with a complex adjuvant of ISA 201 VG and poly(I:C) could pro-

mote T cell and B cell activation.

Moreover, we detected the proportion of central memory T cells (TCMs, CD44+CD62L+).

As shown in Fig 7, the TCM proportion among CD4+ T cells (Fig 7A and 7B) or CD8+ T cells

(Fig 7C and 7D) in the ZI-E group was significantly different from that in the ZI-D and PBS

control groups. This result indicated that ZI-E could promote the production of TCMs by

CD4+ and CD8+ T cells.

Discussion

On November 18, 2016, the WHO announced that ZIKV was no longer a public health emer-

gency of international concern, but it is still a significant and sustained public health problem.

The WHO has emphasized that ZIKV remains a major threat to some areas and has stated that

it will fight the virus with a long-term strategy. Moreover, ZIKV disease was listed as a "Disease

X" by the WHO in the "Research and Development (R&D) Blueprint for Action to Prevent

Epidemics" [24]. In February 2018, the WHO listed ZIKV disease as one of the priority study

diseases because of the possibility of repeated outbreaks and the lack of specific drugs and vac-

cines. Therefore, research on the pathogenesis of ZIKV and the development of a safe and

effective ZIKV vaccine are still critical for disease prevention and control.

Among the structural proteins of ZIKV, the E protein can induce the host to produce NAbs

and mount protective responses. Researchers have used different strategies to construct vac-

cines, including incorporation of the whole prM-E gene, various truncation mutants of the

prM-E gene or introduction of the corresponding Japanese encephalitis virus (JEV) sequence

[19,20], which have had different effects. Larocca [20] produced ZIKV DNA vaccines and

found that the prM-E DNA vaccine elicited higher E-specific antibody titers than the DNA

vaccine with only the E gene. Therefore, in this research, prM-E of ZIKV was chosen as the tar-

get protein to construct a RABV vectored vaccine that could induce cellular and humoral

immune responses against ZIKV. Although the prM protein was not evaluated, the E protein

was detected by WB using anti-ZIKV E antibodies, and the target band of approximately 55

kDa was consistent with other reports [8,25]. This result indicated that prM-E was cleaved to

the E protein correctly.
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The RABV SRV9 strain was derived from the SAD strain by plaque purification in BHK

cells, and it is nonpathogenic to dogs, rats, guinea pigs, deer, and 3-week-old mice [22]. The

vector RABV SRV9, which can highly express foreign proteins, was constructed in our lab [22]

and has been used in vaccine development [26,27]. Therefore, we chose the SRV9 strain as the

vector to construct three recombinant viruses expressing ZIKV prM-E: ZI-D, ZI-E and ZI-F.

Compared with ZI-D, ZI-E replaced the TM region of prM-E with the region of RABV G.

Confocal immunofluorescence results showed that the localization of ZIKV E protein on the

cell membrane infected with ZI-E was more than that of ZI-D. This phenomenon was consis-

tent with the WB results, in which the ZIKV E protein of ZI-E detected was higher than that of

ZI-D. These results indicated that TM region replacement with RABV G could contribute to

foreign proteins locating on the cell membrane and being packaged on recombinant viruses.

The different immune effects might be due to the different proportions of ZIKV E protein on

the ZI-D and ZI-E viruses. In addition, compared with ZI-E, ZI-F replaced the signal peptide

Fig 6. Lymphocyte activation. One week after the last immunization, mouse splenocytes (n = 3/group) were collected and restimulated with purified ZIKV E

protein. The activation of lymphocytes, including CD4+ T cells (A-B), CD8+ T cells (C-D) and B cells (E-F), was evaluated by flow cytometry. (A, C, E)

Representative flow cytometric plots of lymphocytes from each group. (B, D, F) Percentages of the indicated lymphocytes. The data are expressed as the

mean ± SD for each group. �p<0.05; ��p<0.01; ���p<0.001.

https://doi.org/10.1371/journal.pntd.0009484.g006
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of prM-E with that of RABV G. Confocal immunofluorescence, WB and immunogold electron

microscopy results showed that no ZIKV E protein expressed. This result indicated that signal

peptide replacement might influence ZIKV E protein expression. In addition, the recombinant

viruses were obtained by suspension culture of BHK cells, and expression of the exogenous

protein did not affect the titer of RABV, making this system convenient for large-scale culture

of the virus and the production of antigens.

The adjuvant used in the immunization was ISA 201 VG + poly(I:C); these compounds are

more effective when used in combination than when used separately [28]. After immunization,

the anti-ZIKV IgG antibody lasted for at least 10 weeks. Upon detection of the NAb at week 6,

the PRNT50 value was greater than 10. There is only one serotype of ZIKV [29], and an E-spe-

cific IgG antibody log titer>2.35–3.2 and an NAb titer >10 are considered protective against

ZIKV infection [7,17,20]. The ZI-E designed here could induce the production of sufficient

antibodies to be protective against ZIKV. Moreover, the IgG2a/IgG1 ratio is usually used in

studies to assess the antibody subtype [28,30–32], and the ZIKV-antibody subtype analysis in

this study showed that the antibody was Th2 biased (IgG1 biased). The Th2-biased immune

response could be advantageous for protection against some viruses. A Th2-biased subtype

was also seen with an Ebola virus (EBOV)-RABV vaccine [33], a MERS-CoV BLP vaccine [28]

and a recombinant Rift Valley fever virus (RVFV)-RABV vaccine [26]. Flavivirus-immune

sera and mAbs have been shown to be capable of markedly increasing antibody-dependent

enhancement (ADE) of infections [34]. Using replication-deficient chimpanzee adenovirus

vector (ChAdOx1), Lopez-Camacho [35] constructed ChAdOx1 prME ΔTM vaccine (encod-

ing prM-E without TM). The results demonstrated that anti-ZIKV antibodies induced by

Fig 7. Proportion of TCMs. One week after the last immunization, mouse splenocytes (n = 3/group) were collected and restimulated with purified ZIKV E protein.

The proportions of TCMs (CD44+CD62L+) among CD4+ (A-B) and CD8+ T (C-D) cells were evaluated by flow cytometry. (A, C) Representative flow cytometric

plots of lymphocytes from each group. (B, D) Percentages of the indicated lymphocytes. The data are expressed as the mean ± SD for each group. �p<0.05; ��p<0.01.

https://doi.org/10.1371/journal.pntd.0009484.g007
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vaccines did not induce ADE to dengue virus-2 (DENV2). In this article, when ZI-E was con-

structed, the TM region of prM-E was replaced with the region of RABV-G. Whether the anti-

bodies induced by ZI-E can enhance ADE against DENV will be evaluated in future studies.

Moreover, after immunization with the RABV vaccine, humoral immunity against RABV is

dominant. The presence of VNA in serum is considered a reliable indicator, and the WHO

and OIE recommend a RABV-VNA titer of�0.5 IU/ml as adequate to prevent RABV [36,37].

This standard has been applied in many reports [38,39]. Therefore, in this article, only

RABV-VNA was detected, and RABV-T cell responses were not assessed. The titer of RABV

NAb was greater than 23.38 IU/ml 6 weeks after the first immunization, much higher than the

protective limit of 0.5 IU/ml, indicating that they had protective ability against RABV.

It has been indicated that both antibody- and cell-mediated immune responses play roles in

protecting adult mice from ZIKV infection [40]. In this study, ZI-E stimulated the prolifera-

tion of spleen lymphocytes and promoted the secretion of cytokines. IFN-γ and IL-4 secretion

was significantly induced in splenocytes from immunized mice on day 7 post immunization.

Other cytokines with adaptive immunomodulatory roles, including IL2, TNF-α, IL-5, IL-6 and

IL-10, were also observed in immunized mice, suggesting that both Th1 and Th2 responses

were elicited. The Th1/Th2 immune response is important in vaccination. Th1 cells are crucial

for cell-mediated immunity and are characterized by the production of IFN-γ, while Th2 cells

can promote humoral immunity and secrete IL-4, IL-5 and IL-6 [41]. The secreted cytokines

play important roles in the immune response. If an antigen binding to a B cell receptor is not

synergistic with the membrane molecules and cytokines expressed by Th cells, an effective

immune response cannot be induced [42]. Meanwhile, although the precise role of T cells in

ZIKV infection is not very clear, CD8+ T cells have been determined to play a key role in clear-

ing ZIKV from the central nervous system (CNS) [7], and CD4+ T cells could contribute to

protection through cytokine production and support maturation of the antibody response

[34]. One of the important purposes of vaccine immunization is to activate immune cells and

produce immunologic memory. ZI-E enhanced the activation of antigen-specific CD4+/CD8+

T cells (Fig 6A–6D), and it also promoted the production of TCMs among CD4+ and CD8+ T

cells (Fig 7). TCMs have the ability to proliferate and produce IL-2, and they play an important

role in immune protection [43]. In addition, TCMs have a strong proliferation ability and long

life cycles, so they can provide long-term protection [44]. In addition, ZI-E enhanced the acti-

vation and maturation of B cells (Fig 6E and 6F), which could further promote the secretion of

cytokines and increase antibody levels.

In one modeling study combining multiple factors, researchers determined that many

countries across Africa and the Asia-Pacific region are vulnerable to ZIKV disease [45]. Rabies

is also a threat to human health in many regions [46,47], including India and China. Therefore,

the recombinant viruses designed in this study could also potentially be used as ZIKV-RABV

binary vaccines in areas where both ZIKV and RABV are threats.
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