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In daily life, we perform a variety of sequential tasks while making cognitive decisions to
achieve behavioral goals. If transcranial direct current electrical stimulation (tDCS) can be
used to modulate cognitive functions involved in motor execution, it may provide a new
rehabilitation method. In the present study, we constructed a new task in which cognitive
decisions are reflected in motor actions and investigated whether the performance of the
task can be improved by tDCS of the left dorsolateral prefrontal cortex (DLPFC). Forty
healthy participants were randomly assigned to a real or sham tDCS group. The anode
electrode was placed at F3 (left DLPFC), and the cathode electrode was positioned in
the contralateral supraorbital area. Participants underwent one session of tDCS (1.5 mA,
20 min) and a sequential non-dominant hand task was performed for nine trials before
and after tDCS. The task consisted of S1 (a manual dexterity task) and S2 (a manual
dexterity task requiring a decision). The results showed the S2 trajectory length was
significantly shorter after real tDCS than after sham tDCS (p = 0.017), though the
S1 trajectory length was not significant. These results suggest that a single tDCS session
of the left DLPFC can improve the performance of cognitive tasks complementary to
motor execution, but not on dexterity tasks. By elucidating the modulating effect of tDCS
on cognitive functions related to motor execution, these results may be used to improve
the performance of rehabilitation patients in the future.

Keywords: sequential task, dorsolateral prefrontal cortex, transcranial direct current stimulation, Stroop task,
supervisory attention system

INTRODUCTION

Tasks in daily life typically involve a series of actions performed to achieve a goal. Sequential tasks
require decision-making, such as selecting the next action based on the perception of the situation
and deciding how to execute that action. Executive function involves multiple brain functions and
regions (Salehinejad et al., 2021a). The frontal lobe, particularly the prefrontal cortex (PFC) is
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activated during cognitive and decision-making processes (Miller
and Cohen, 2001). Specifically, the PFC is associated with
most sensory systems, cortical areas, and subcortical structures
involved in behavior, motor responses, memory, and emotion
(Miller and Cohen, 2001). The lateral PFC is involved in logical
top-down cognitive processes (Chan et al., 2008) and functions
in an emotionally neutral context (Zelazo and Carlson, 2012).
Moreover, the dorsolateral prefrontal cortex (DLPFC) is involved
in working memory, attention, executive function, dual tasks,
and other related areas (Adleman et al., 2002; Badre andWagner,
2004; Harty et al., 2014; Huang et al., 2017; Brzezicka et al., 2019;
Jamali et al., 2019; Panikratova et al., 2020). Imaging studies using
functional magnetic resonance imaging have also implicated the
DLPFC in bimanual coordination tasks (Beets et al., 2015) and
explicit sequence learning (Schendan et al., 2003; Meehan et al.,
2011). These studies indicate that the DLPFC is not only involved
in cognitive function, but also in complex motor tasks and motor
learning.

Transcranial direct current stimulation (tDCS) noninvasively
modulates cortical activity using an electric current delivered
from the scalp surface (Polania et al., 2018). Previous research
has demonstrated that anodal tDCS (atDCS) activates, whereas
cathodal tDCS inhibits the cortical activity (Nitsche and Paulus,
2000, 2001). The effect of atDCS on the DLPFC on reaction time
in healthy participants has been reported to significantly decrease
reaction time during cognitive tasks (Dedoncker et al., 2016).
Furthermore, a meta-analysis of atDCS on executive function
found that a tDCS on the DLPFC improved performance
on an update task (Imburgio and Orr, 2018). Studies with
anodal stimulation on the left DLPFC have reported faster
reaction times on the Stroop task (Loftus et al., 2015) and
improved performance on the emotional working memory task
(Vanderhasselt et al., 2013). These previous studies indicate
that atDCS on the left DLPFC can radically improve cognitive
function.

The effects of atDCS on motor function and learning have
been reported to differ depending on the site of electrode
placement. The effect of a tDCS on motor function has been
reported to increase maximal voluntary muscle contraction and
endurance (Lattari et al., 2018), and improve motor function in
stroke patients using electrodes on M1 (Hummel and Cohen,
2005). Conversely, atDCS with electrodes placed on the left
DLPFC does not affect the performance of bimanual coordinated
movements (Vancleef et al., 2016). Moreover, the effect of
atDCS on motor learning, which is more complex than motor
function and involves multiple brain regions, has been found to
improvements in the learning performance of a serial task when
electrodes are placed on M1 during a serial reaction time task
(SRRT; Hashemirad et al., 2016); however, atDCS stimulation on
the left DLPFC improved neither SRTT performance (Nitsche
et al., 2003) nor memory learnings (Hammer et al., 2011). These
reports suggest that atDCS on the left DLPFC lacks a modulation
effect on motor function and learning.

Previous studies have shown that atDCS on the left DLPFC
improved cognitive function but not motor function or learning;
however, the effects of modulation using atDCS by performing a
single motor task or a motor learning task have been evaluated.

Few studies have performed cognitive and motor tasks as a series
of movements or as dual tasks performed simultaneously, rather
than as a single task. In a previous study, a cognitive and manual
dual task was performed during tDCS with an anode on the left
DLPFC. The results showed that the number of subtractions in
the Serial Seven Subtraction Test significantly increased during
tDCS stimulation compared to that before tDCS stimulation
(Ljubisavljevic et al., 2019). This study suggests that atDCS to
the left DLPFC modulates cognitive rather than motor function
in a dual task setting. The Serial Seven Subtraction Test used
in this study was a cognitive task that was both inhibitory and
competitive with movement; however, in daily life, we routinely
adjust our movements because of cognitive decisions. Thus, the
relationship between cognition andmovement is complementary
rather than competitive. Currently, the modulation effect of
atDCS on the left DLPFC in tasks in which cognition and
movement are complementary remains unclear.

The current study aimed to investigate whether atDCS on
the left DLPFC improves performance in a cognitive task
complementary to motor execution. We hypothesized that since
atDCS on the left DLPFC improves cognitive function in a
task in which motor and cognitive functions are competitive
(Ljubisavljevic et al., 2019), tDCS will similarly improve task
performance in a cognitive task complementary to the motor
execution.

MATERIALS AND METHODS

Participants
Thirty-six males and four females (mean age: 25.6 years; range:
18–44 years) participated in the current study. The sample
size was calculated using G*Power 3.1.9.7 for Windows (Faul
et al., 2007, 2009). There were 20 participants in each group
(input parameters were as follows: effect size = 0.33, α error
probability = 0.05, and power = 0.8).

None of the participants had a history of neurological
or psychiatric disease, or any condition associated with
somatosensory abnormalities, as determined by a non-structured
interview. All participants understood the instructions for the
experimental tasks and provided written informed consent to
participate. The present study was performed in accordance with
the principles of the Declaration of Helsinki. The study protocol
was approved by the Ethics Committee of the Ibaraki Prefectural
University of Health Sciences (approval no. 960).

Experimental Design and Procedure
The participants underwent one tDCS session (anodal or sham).
These self-paced tasks were performed by the participant for
20 min during the tDCS session. The evaluation of learning
enhancement by tDCS on the tasks was conducted in nine trials
of the same tasks before and after tDCS. A trained male examiner
conducted all experiments. Each session lasted approximately
1 h. The Edinburgh Handedness Inventory was used to evaluate
the participants’ handedness (Oldfield, 1971). The time of day
when the tDCS session was conducted was recorded as taking
place in the morning or afternoon.
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tDCS
We conducted a double-blind, randomized controlled study of
anodal or sham tDCS. Participants were randomly assigned
to the real or sham tDCS groups and were not informed
which group they were allocated to. To blind the experimenter
to the experimental conditions, another researcher randomly
selected a 5-digit experimental code from the list and determined
the experimental conditions for the participants. The tDCS
was delivered by a pair of saline-soaked sponge (35 cm2:
7 × 5 cm) surface electrodes (neuroConn, IImenau, Germany)
for 20 min at 1.5 mA current intensity. Active stimulation was
performed with an anodal electrode placed on the participant’s
left DLPFC, represented by the F3 electrodeposition on the
scalp, according to the 10/20 EEG system (Santos Ferreira et al.,
2019). The cathodal electrode was placed on the contralateral
supraorbital area as in previous studies (Heeren et al., 2015).
For the sham condition, stimulation was applied for only the
first 30 s to prevent the participant from determining their
group. After the experiment, the experimenter verbally asked the
participants whether they thought the experimental conditions
were real or sham. Their responses were recorded in the
experiment notebook.

Sequential Task
Figure 1 shows how the sequential task was conducted. The
sequential tasks from A-C include reaching and the manual
dexterity task of picking up the pegs (S1). From C-E, the tasks
include reaching and the manual dexterity task of putting in the
pegs, as well as a modified Stroop task that involves a decision
on where to put the pegs (S2). In the modified Stroop task,
instructions were given by the color or location of the arrows
presented on the monitor. Each hole was illuminated by one
of the three LED colors: red, blue, or green. On the display,
a red, blue, or green arrow was presented on the monitor on
the left, center, or right side. In addition, the monitor showed
a condition to either place it in the hole where the LED of the
same color as the arrow was illuminated (match-color condition)

or in the hole where the arrow was presented (match-place
condition).

The sequential and modified Stroop tasks were controlled
using MATLAB functions Psychophysics Toolbox Version 3
(Brainard, 1997), and a USB data acquisition device (Labjack
U3, LabJack Corporation) was used. The time required to reach
S1 and S2 was obtained by measuring the time required to press
the switch. The amount of time required to pick up and insert
a peg was measured using a photoelectric sensor (NX5-M10RB,
Panasonic Co. Ltd.).

The trajectories of infrared reflective markers attached to
the metacarpophalangeal joint of the index finger of the
non-dominant hand during the S1 and S2 movements were
measured (sampling rate: 120 Hz) using a 3D motion analysis
system (OptiTrack V120: Trio, Acuity Inc.). The zero point of
the coordinates of the system was set as the center point of the
switch, which was 15 cm in front of the peg container.

Trials were counted as failures when the participant either
failed to take three pegs, dropped a peg before placing it in the
target, or placed a peg in the wrong target.

Statistical Analysis
Statistical analysis was performed with SPSS ver. 28 (SPSS Inc.,
Chicago, IL, USA). The characteristics of each group were
compared using unpaired t-tests for age, Edinburgh Handedness
Inventory, number of trials during the tDCS session, and number
of error trials. For categorical data, such as sex, participants’
awareness of the condition, and session time of day, a chi-squared
test was used. The xy component of the trajectory of the reflective
marker was used to calculate the trajectory length and the
rectangular area, which were analyzed separately for S1 and S2.

Two-way analysis of variance (ANOVA) was performed for
trajectory length, rectangular area, reach time, and manual
dexterity task time, and multiple comparisons were performed
for time (before and after the stimulus) and stimulus (real and
sham) factors. Multiple comparisons were performed using the
Bonferroni method at a significance level of p = 0.05.

FIGURE 1 | Sequential task. The sequential task was performed as follows. (A) Press the switch with the non-dominant hand. (B) Pick up three pegs in the peg
container. (C) After pressing the switch, instructions on where to place the peg are displayed on the monitor. (D) After placing the peg, (E) press the switch to
complete one trial. The trajectory of the metacarpophalangeal joint of the index finger of the non-dominant hand is indicated by a blue line.
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RESULTS

Forty participants were randomly assigned to the real or sham
tDCS groups with 20 participants in each. One participant was
excluded due to incomplete data measurement; therefore, the
analysis was performed on 19 and 20 participants in the real
and sham groups, respectively (Figure 2). All participants in
the present study were able to undergo tDCS and pre- and
post-session measurements. There were no complaints of side
effects from tDCS, which were confirmed verbally after the
session.

Table 1 shows the average values of the participants’
characteristics in the real and sham tDCS groups. In terms of age
and the Edinburgh Handedness Inventory, the chi-squared and
two-sample t-tests showed no significant differences, respectively
(χ2 = 0.079, p = 0.556; t = 0.247, p = 0.867). All participants
scored at least 50 points on the Edinburgh Handedness
Inventory, indicating right-handedness. There was also no
significant difference in sex between the groups (χ2 = 1.004,
p = 0.316). The tDCS session time of day was not different
between groups (χ2 < 0.001, p > 0.999); however, participant
awareness of their group was significantly different between
groups (χ2 = 8.313, p = 0.004). There was no significant

difference in the number of trials during the tDCS session
(t = 0.458, p = 0.729) and that of erroneous trials (t = 0.867,
p = 0.863).

The mean sequential task time for each of the nine pre-
and post-session times for each participant was as follows:
for the pre-session, the real and sham tDCS groups required
8.53± 2.11 s and 8.64± 1.98 s, respectively. For post-session, the
real and sham groups required 6.45 ± 1.20 s and 6.70 ± 0.93 s,
respectively. No significant differences were found between
groups (pre-session: t = 0.159, p = 0.874; post-session: t = 0.703,
p = 0.487).

Effects of tDCS on the Trajectory of the
Hand
Trajectory examples of the sequential task were presented to one
person in each group (Figure 3).

For the S1 trajectory length, there was a significant main effect
of time (F(1,37) = 8.763, p = 0.005, η2p = 0.191), but not stimulation
(F(1,37) = 0.974, p = 0.330, 0η2p = 0.026; Figure 4A). Moreover,
there was no significant interaction between time and stimulation
(F(1,37) = 0.068, p = 0.795, η2p = 0.002).

In the S2 trajectory length, two-way ANOVA showed
a significant interaction between time and stimulation

FIGURE 2 | Consort flow diagram.

Frontiers in Human Neuroscience | www.frontiersin.org 4 June 2022 | Volume 16 | Article 890963

https://www.frontiersin.org/journals/human-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/human-neuroscience#articles


Yamamoto et al. Motor Learning by tDCS

TABLE 1 | Average values of the participants’ characteristics in the real and sham tDCS groups.

Real (n = 19) Sham (n = 20) t (df = 37) or χ2 (df = 1) p

Age (years) 25.7 ± 6.8 25.6 ± 7.9 0.079 0.556
Edinburgh Handedness Inventory 87.4 ± 16.0 86.2 ± 16.0 0.247 0.867
Gender (M:F) 18:1 17:3 1.004 0.316
Participants’ awareness of the condition (real:sham) 10:9 2:18 8.313 0.004
Number of trials during tDCS session 111.7 ± 13.2 109.8 ± 12.5 0.458 0.729
Number of error trials 8.3 ± 5.1 6.7 ± 6.4 0.867 0.863
Session time of day (AM:PM) 6:13 6:14 <0.001 >0.999

Notes: data are represented as mean ± SD. Between-group differences are reported with a p-value for the independent samples t-test, while for nominal data, the p-value for the χ2

statistic is reported.

FIGURE 3 | Trajectory example of the real and sham groups before and after transcranial direct current electrical stimulation (tDCS). The top row shows the real
tDCS group, the bottom row shows the sham tDCS group, and the columns from left to right are before and after tDCS. The S1 and S2 trajectories are shown in
blue and red, respectively.

(F(1,37) = 5.191, p = 0.029, η2p = 0.123; Figure 4A). A post-
hoc comparison indicated that the S2 trajectory length after
real tDCS was significantly lower than before real tDCS

(p < 0.001). Similarly, the S2 trajectory length after sham
tDCS was significantly shorter than before sham tDCS
(p = 0.004). Moreover, the S2 trajectory length after the
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FIGURE 4 | Effects of tDCS on the trajectory, reach time, and manual dexterity task time of the real and sham groups before and after tDCS. Effects of tDCS on
trajectory length (A), rectangular area (B), reach time (C), and manipulation time (D) on S1 (left panel) and S2 (right panels). Data represent mean ± SD. *Indicates
p < 0.05.

real tDCS was significantly shorter than after the sham tDCS
(p = 0.017).

In the S1 rectangular area, there was no significant main effect
of time or stimulation (F(1,37) = 1.418, p = 0.241, η2p = 0.037;

F(1,37) = 0.232, p = 0.633, η2p = 0.006, respectively; Figure 4B).
Moreover, there was no significant interaction between time
and stimulation (F(1,37) = 1.986, p = 0.167, η2p = 0.051). In the
S2 rectangular area, there was a significant main effect of time
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(F(1,37) = 21.759, p < 0.001,η2p = 0.370), but not stimulation
(F(1,37) = 1.130, p = 0.295, η2p = 0.030; Figure 4B). Moreover,
there was no significant interaction between time and stimulation
(F(1,37) = 2.196, p = 0.147, η2p = 0.056).

Effects of tDCS on the Reach and
Manipulation Times
Two-way ANOVA showed that there was no significant
interaction between time or stimulation for ether the S1 or S2 of
the reach (F(1,37) < 0.514, p > 0.478, η2p < 0.014; Figure 4C)
or manipulation times (F(1,37) < 0.865, p > 0.358, η2p < 0.023;
Figure 4D). Moreover, there was a significant main effect of time
for both the S1 and S2 of the reach (F(1,37) > 20.514, p < 0.001,
η2p > 0.357; Figure 4C) and manipulation times (F(1,37) > 5.507,
p < 0.024, η2p > 0.130; Figure 4C), but not stimulation in the
reach (F(1,37) < 0.598, p > 0.444, η2p < 0.016; Figure 4C) or
manipulation times (F(1,37) < 1.104, p > 0.300, η2p < 0.029;
Figure 4C).

DISCUSSION

The present study investigated the effect of atDCS on the
left DLPFC on cognitive function, complementary to motor
execution. Our results demonstrated that the trajectory in
the S2 manual dexterity task requiring decision making
was significantly decreased between real and sham tDCS
conditions. A previous study reported that the supervisory
attention system (SAS) is activated in the PFC during a
sequential task that requires attention (Cooper, 2002; Niki
et al., 2019). Furthermore, the bilateral DLPFC is activated
during Stroop tasks (Adleman et al., 2002). The purpose of
the present study was to investigate the modulating effect
of atDCS on the left DLPFC on the performance of a
sequential decision-making task. Based on these reports, we
used the modified Stroop task, which requires cognitive
judgment, as the sequential task for the S2 segment. As a
result, the trajectory in the S2 segment significantly decreased.
Our present results indicate that atDCS on the left DLPFC
can facilitate the learning of the SAS component of the
sequential task.

A previous study reported that tDCS of the left DLPFC
modulates the results of a cognitive task that is competitive
with those of the manual dexterity task (Ljubisavljevic et al.,
2019). Our results are consistent with those of previous
studies, implying that atDCS on the left DLPFC improves
cognitive function in a task wherein motor and cognitive
functions are complementary, similar to a cognitive task in
competitive motor execution. In another study, atDCS to F3
(left DLPFC) improved working memory performance, while
cathodal tDCS led to decreases (Zaehle et al., 2011). These
reports indicate that atDCS on the left DLPFC improves
performance on cognitive tasks, suggesting that the significant
decrease in trajectory in our present study was due to improved
cognitive function.

Our findings showed a main effect of time on trajectory
length, reach time, and manual dexterity task time in S1 and

S2, and rectangular area in S2. These results indicate that
the task used in the present study encouraged learning
progression with task repetition. Furthermore, the trajectory
length of S2 decreased more substantially in the real tDCS
group than in the sham group, indicating that tDCS had a
greater learning enhancement effect compared to baseline in the
sequential task.

Moreover, there were no significant differences between the
tDCS groups in S1. The task used in the S1 segment was a manual
dexterity task that consisted of picking up a peg, which is a
routine task and is performed by the basal ganglia and primary
motor cortex (Cooper, 2002; Niki et al., 2019). In addition, atDCS
has been found to induce modulation of the manual dexterity
task by stimulating the primary motor cortex (Parikh and Cole,
2014). These studies suggest that the trajectory length of the
S1 did not change in the present study because the stimulation
was applied to the DLPFC. In addition, we found no significant
differences between groups in the number of trials during the
tDCS session, suggesting that the amount of exercise was not a
factor in the significance of the S2 trajectory length between the
tDCS groups.

All participants in the present study were right-handed with a
score of 50 or higher on the Edinburgh Handedness Inventory,
and the task was performed with the non-dominant hand.
Previous studies have reported that ipsilateral M1 (Kim et al.,
1993), and extensive frontal and temporal regions (Grafton
et al., 2002) are activated in response to non-dominant hand
movements. Furthermore, atDCS has been reported to enhance
fine and gross motor hand function only in conditions in which
the M1 representing the non-dominant hand was stimulated
(Boggio et al., 2006). These reports may indicate that the
non-dominant hand tasks used in the present study are more
likely to produce task-induced changes in participants’ cortical
activity and modulation by the tDCS.

One of the limitations of the present study is that the
participants’ awareness of the tDCS condition was significantly
different between the tDCS groups, which may have biased the
results. For the sham tDCS group, the percentage of correct
answers reached up to 90% (18 out of 20). If participants who
felt that they were assigned to the sham group intentionally
decreased their task performance after tDCS stimulation, it
is possible that there was an increase in trajectory length,
rectangular area, reach time, and manual dexterity task time
in the sham group after stimulation compared with before
stimulation; however, the results of the present study showed
a main effect of time on trajectory length, reach time, and
manual dexterity task time in S1 and S2, and rectangular
area in S2. Therefore, it is unlikely that participants in the
sham group intentionally performed the task poorly after
recognizing that they were in the sham group. Thus, although
the participants’ awareness of the condition was significant
between the tDCS groups, it is unlikely that there was bias in
the results. In addition, the electrode arrangement of tDCS in
the present study was only the left DLPFC as the anode and
the supraorbital area as the cathode, and the reversal effect
of cathodal tDCS was not confirmed (Heeren et al., 2015).
Furthermore, we did not verify the placement of electrodes
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on M1. Hence, additional verification is necessary for future
studies. It has been reported that nicotine intake in smoking
activates nicotinic acetylcholine receptors and modulates cortical
excitability (Grundey et al., 2013). Participants in the present
study were not asked about their smoking habits, and this could
affect the results. Moreover, the session time of day was not
controlled according to participants’ preferences (Salehinejad
et al., 2021b). Therefore, the possibility of bias in our results
cannot be excluded.

In conclusion, we constructed a new task in which cognitive
decisions are reflected in motor actions and investigated whether
the performance of the task can be improved by atDCS on the
left DLPFC. We set up two components of the task: manual
dexterity task only and selection of actions based on the results
of cognitive decisions and showed that a single atDCS session
on the left DLPFC improved the performance of cognitive tasks
complementary to motor execution. In daily life, we perform a
variety of sequential tasks while making cognitive decisions to
achieve behavioral goals. By elucidating the modulating effect of
tDCS on cognitive functions related to motor execution, these
results may be used to improve the performance of rehabilitation
patients in the future. Further studies are needed to validate the
effectiveness of the stimuli used in this study for patients with
executive dysfunction.
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