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Neuropathic pain is a frequent chronic presentation in autoimmune diseases of the nervous system, such as multiple sclerosis (MS)
and Guillain-Barre syndrome (GBS), causing significant individual disablement and suffering. Animal models of experimental
autoimmune encephalomyelitis (EAE) and experimental autoimmune neuritis (EAN) mimic many aspects of MS and GBS,
respectively, and are well suited to study the pathophysiology of these autoimmune diseases. However, while much attention has
been devoted to curative options, research into neuropathic painmechanisms and relief has been somewhat lacking. Recent studies
have demonstrated a variety of sensory abnormalities in different EAE and EANmodels, which enable investigations of behavioural
changes, underlyingmechanisms, and potential pharmacotherapies for neuropathic pain associatedwith these diseases.This review
examines the symptoms,mechanisms, and clinical therapeutic options in these conditions and highlights the value of EAE and EAN
animal models for the study of neuropathic pain in MS and GBS.

1. Introduction

Neuropathic pain is caused by a lesion or disease of the
somatosensory nervous system either at the peripheral or
central level and is a frequent presentation in a myriad
of medical conditions [1]. It is characterised by abnormal
sensations or hypersensitivity in the affected area, which
is often combined with, or is adjacent to, areas of sensory
deficit [2]. Symptoms include tactile or thermal hypoaesthe-
sia (reduced sensation to nonpainful stimuli), hypoalgesia
(reduced sensation to painful stimuli), loss of sensation,
paraesthesia (abnormal sensations such as skin crawling or
tingling), paroxysmal pain (e.g., shooting, electric shock-
like sensations), spontaneous ongoing pain (not induced
by stimulus e.g., burning sensation), and evoked pain (i.e.,
stimulus-induced pain), the last of which includes hyperal-
gesia (increased sensitivity to painful stimuli) and allodynia
(perception of innocuous/non-painful stimuli as painful) [2].
In particular, neuropathic pain is common in autoimmune
demyelinating diseases of the nervous system, such as multi-
ple sclerosis (MS) and Guillain-Barre syndrome (GBS), and
adversely affects millions of sufferers worldwide [3, 4].

Thus far, several animal models have been established
to mimic features of MS and GBS, so as to better enable

researchers to understand the underlying pathophysiology
and immune mechanisms and to investigate better ther-
apeutic options. For example, experimental autoimmune
encephalomyelitis (EAE) serves as the classic animal model
of multiple sclerosis, whereas experimental autoimmune
neuritis (EAN) mimics acute inflammatory demyelinating
polyneuropathy, the most common subtype of GBS [5–7].
These two models are the most widely used and accepted
analogues of MS and GBS and provide many immunological
parallels. In this review, we discuss the symptoms, mech-
anisms, and potential therapeutic strategies in neuropathic
pain associated with EAE and EAN.

2. Multiple Sclerosis and Experimental
Autoimmune Encephalomyelitis

Multiple sclerosis is a chronic, T-cell mediated autoimmune
inflammatory disease of the central nervous system (CNS)
that predominantly affects the myelin sheath. It is the most
common cause of acquired disability in young adults in the
western world [8–10]. Among themany sensory disturbances
present in MS, pain—nociceptive, neuropathic, or mixed—is
a highly prevalent symptom, reported by 25 to 90%of patients

http://dx.doi.org/10.1155/2013/298326


2 Mediators of Inflammation

[3, 11–17]. It negatively impacts on general health, energy and
vitality, mental health, and social functioning [17, 18], as well
as impinges on daily life [12, 14, 19]. Despite its prevalence,
the specific underlying mechanisms of MS pain are still not
well understood [20], although elucidation has been sought
through recent studies in animal models [21–23].

Experimental autoimmune encephalomyelitis has fre-
quently served as an animal model of MS. EAE is commonly
induced in genetically susceptible animal strains by immu-
nisation with a self-antigenic epitope of myelin, which causes
characteristic breakdown of the blood-brain barrier andmul-
tifocal infiltration of activated immune cells that attack the
myelin sheath [8]. The ensuing immunologic response leads
to chronic neuroinflammation, demyelination, and neuronal
damage in the CNS. The species-specific disease course
exhibits close clinical and histopathological similarities to
various forms of MS [24–26], thereby presenting EAE as a
suitable model to study multiple sclerosis [27, 28].

3. Symptoms of Neuropathic Pain in
MS and EAE

MS patients often experience a wide range of neuropathic
pain symptoms. This includes ongoing extremity pain (char-
acterised by constant pain in the legs and feet), trigeminal
neuralgia (characterised by paroxysmal attacks of electric-
shock-like sensations in specific facial or intraoral areas),
Lhermitte’s phenomenon (characterised by a transient elec-
trical sensation that runs down the back and is related to neck
movement), and thermal and mechanical sensory abnormal-
ities [18, 29]. As behavioural models of ongoing extremity
pain and paroxysmal pain in animals are currently unavail-
able, most animal studies have focused on thermal and
mechanical abnormalities (Table 1). EAE has thus far served
as the basis for preclinical research into the mechanisms of
these abnormalities. Genetic, clinical, and histopathological
heterogeneities of EAEmodels produce different sensory and
pathological changes, allowing for robust representation of
the various forms of pain in MS [30].

3.1. HeatDisturbances. Inmultiple sclerosis, neuroinflamma-
tory lesions in the CNS produce significant somatosensory
deficits, particularly for temperature discrimination, such as
paradoxical heat sensations and altered heat/cold thresholds
[38–40]. Up to 58% of MS patients have reported suffering
from heat sensitivities, which is a significant cause of fatigue,
concentration problems, and pain [41]. Such abnormalities
have been paralleled in several EAE studies.

In an early study, Duckers and associates noted 23%–
58% prolongation of reaction time to noxious heat at 10
and 18 weeks following EAE induction in Lewis rats, sug-
gestive of chronic hypoalgesia [31]. More recently, Aicher
and colleagues observed a dynamic thermal response in a
chronic relapsing-remitting form of EAE induced by amyelin
proteolipid protein (PLP). In both male and female SJL mice,
initial thermal hypoalgesia occurred concurrent with onset
of clinical symptoms, later manifesting as chronic thermal
hyperalgesia of the tail. Hyperalgesia was more sustained

in female mice [21], reflecting a sex-linked disease profile
[42]. While the magnitude and duration of tail hyperalgesia
were seen to be related to the severity of motor symptoms,
thus potentially cofounding the results, it was noted that the
onset of hypoalgesic nociceptive responses preceded motor
dysfunctions by several days [21].

Similar studies in chronic EAE induced in C57BL/6
mice with myelin oligodendrocyte glycoprotein (MOG) also
reported heat hypoalgesia in the hindpaws, developing sub-
sequent to symptomatic onset of disease, although this was
also theorised by the investigators to be affected by concur-
rent gross locomotor disabilities [22]. In contrast, thermal
hyperalgesia in the hindpaws developed during the chronic
disease phase in SJL and C57BL/6 mice immunised with PLP
or MOG, respectively [30]. In a study of both acute and
chronic EAE induced by myelin basic protein (MBP) in rats,
comparable tail heat allodynia was reported, with the onset of
thermal abnormalities appearing prior to the development of
clinical signs [23].

These findings show differential thermal responses and
concur with case reports of heat hypoalgesia [43], as well as
thermal hyperalgesia [18, 44, 45] in MS patients.

3.2. Cold Disturbances. Cold allodynia, a reported sensory
disturbance in MS patients [18], has been observed in several
EAE models. In particular, cold allodynia in response to
application of acetone to the hindpaws has been demon-
strated in mice with a MOG-induced chronic-relapsing
EAE prior to and during onset of motor disturbances [22].
Similarly, cold sensitivity at the level of the hindpaws was
noted in EAE rats that were tested on a cold plate, starting
before and lasting during and after clinical signs [23]. In the
latter investigation, cold hyperalgesia at the level of the tail
was also observed, although this was only present prior to
clinical onset of EAE. Thibault and colleagues also detected
no significant differences in cold allodynia and hyperalgesia
between both acute and chronic EAEmodels, suggesting that
abnormalities to cold sensitivities are independent of EAE
phenotype [23]. The early onset of cold allodynia parallels
the observation that neuropathic pain in MS patients often
precedes or is present at clinical onset [11].

3.3. Mechanical Disturbances. In addition to thermal abnor-
malities, MS patients often experience tactile allodynia [11,
18, 46]. For example, both tactile hypoesthesia (reduced
sensation to touch) and allodynia have been reported in
relapsing remitting forms of MS [45, 47, 48]. A recent study
reported high prevalence of hypoesthesia and hyperesthesia
(61% and 34%) in patients with MS and central neuropathic
pain, although this was similar to a control group of MS
patients with painless sensory symptoms [40].

In chronic relapsing EAE models (using MOG
35–55 in

mice), robust mechanical allodynia became apparent prior
to clinical signs [22], although the response times to tactile
stimuli increased during disease peak (hypoalgesia), and
reduced following partial amelioration of motor dysfunction.
Again, this suggests confounding influence of mechanical
paralysis. Similar studies using the same encephalitogenic
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antigen (MOG
35–55) elicited comparable results of hyper-

nociception [33, 36], although without hypoalgesia at disease
peak. A recent study has demonstrated that the development
of mechanical sensitivity is dependent upon the EAE model
used; whereas SJL mice immunised with MOG developed
markedmechanical allodynia during the chronic phase of the
disease, C57BL/6 mice immunised with PLP developed only
minor mechanical allodynia during disease onset and peak
phases [30].

The robust nociceptive changes were similarly observed
in a study using a rat model of MOG-induced EAE, showing
periods of both decreased sensitivity to touch prior to the
onset of hindlimb paralysis and increased sensitivity to touch
(mechanical allodynia) during symptomatic remission [35].
Interestingly, a study using 2 doses ofMOG in rats established
that a 12.5% reduction in the dosage of the encephalitogenic
peptidewas sufficient to significantly amelioratemotor deficit
profiles but did not significantly alter the robust pain states,
thereby highlighting the partial independence of evoked pain
presentations to motor dysfunctions [37]. This is a concept
previously established through a novel study, whereby the
investigator observed the absence of vocalised pain response
despite noxious mechanical stimulation of the paralysed tail
[32]. As vocalisation reflex can occur unhindered by tail
paralysis, it can be surmised thatmotor paralysis (in this case,
of the tail) is not the sole cause of diminished pain behaviours.

4. Potential Mechanisms of Neuropathic Pain
in MS and EAE

As the importance of pain as a functional disability of
multiple sclerosis has only recently been recognised, a clear
understanding of its pathogenesis is still absent. Several
theories exist to explain its mechanism, including lesions
of CNS areas that process pain information, generation of
enhanced response to painful stimuli due to loss of descend-
ing inhibitory nociceptive pathways, damage to somatosen-
sory nerves, and inflammation of the spinal cord [10, 21, 29,
49].

Some of the proposedmechanisms of neuropathic pain in
MS patients include thalamic or cortical deafferentation due
to multiple lesions along the spinothalamocortical pathways
generating ongoing extremity pain, high-frequency ectopic
discharges due to demyelination of the trigeminal afferents
producing symptoms of trigeminal neuralgia, and high-
frequency ectopic discharges due to demyelination of the
dorsal column primary afferents causing Lhermitte’s phe-
nomenon [10]. While these mechanisms have not yet been
validated through animal studies, preclinical studies suggest
that inflammation and gliosis are keymediators in changes in
sensory functions (such as cold and tactile allodynia) seen in
EAE.

It is well accepted that inflammatory cells and immune-
like glial cells and their mediators facilitate central sensiti-
sation and contribute to neuropathic pain symptoms [50].
Indeed, a recent study has shown that animals with EAE did
not have altered expression of sensory neuropeptides but had
a significant influx of CD3+ T cells and increased astrocyte

andmicroglia/macrophage reactivity in the superficial dorsal
horn of the spinal cord, an area associated with pain process-
ing [22]. Furthermore, a significant increase in the level of
tumour necrosis factor 𝛼 (TNF) expression in the dorsal root
ganglia (DRG) of EAE animals was found at disease peak [51].
A later study confirmed a correlation between the increase
in TNF gene and protein expression in the DRG and spinal
cord with the onset of neuropathic pain in rats with EAE
[52]. Similar increases in the gene expression of cytokines
interleukin (IL)-1𝛽 and IL-6 in the spinal cords of EAE
mice coincided with increased nociceptive sensitivity and
deficits in object recognition [53]. Gene therapy with anti-
inflammatory IL-10 in animals with EAE improved motor
and sensory function, prevented allodynia, and reduced glial
activation in the lumbar spinal cord [35].

Furthermechanisms have implicated the accumulation of
infiltrating macrophages expressing purinergic P2X

4
recep-

tors (P2X
4
R) in CNS lesions of EAE animals [54]. As

activation of these receptors by adenosine triphosphate is
implicated in the microglial response to peripheral nerve
injury and neuropathic pain symptoms, an association
between P2X

4
R and neuropathic pain in EAE is suggested

[55]. Additionally, increased phosphorylation of transcrip-
tion factor cyclic AMP response element-binding protein
(CREB) has also been observed at disease peak in EAE
lesions, particularly in the dorsal horn sensory neurons [56],
which are associated with the generation and maintenance
of neuropathic pain. Similar involvement of chemokines in
leukocyte recruitment, immune regulation, and T-cell polar-
isation is believed to significantly impact on pain regulation.
For example, CCL2, a chemokine with elevated levels in
MS patients, amplifies inflammatory responses in EAE [57,
58], while intrathecal administration of CCL2 chemokine is
sufficient to inducemechanical allodynia in näıve animals but
not in CCL2-receptor knockout mice [59–61].

Dysregulation of the glutamatergic system, caused by
reduced glutamate transporter expression in spinal cords, has
been implicated in abnormal pain sensitivity in mice with
MOG-induced EAE. For example, EAEmice showed a lack of
behavioural response to formalin stimulation, a behavioural
model of injury-induced central sensitization. This hypore-
sponsiveness was attributed to a decreased expression of
the glutamate transporters EAAT-1 and EAAT-2 in the
spinal cord [34]. Furthermore, pharmacological treatment to
upregulate the levels of EAAT-2 in mice with EAE resulted
in prevention of tactile hypersensitivity and normalisation of
performance in cognitive assays [53].

5. Clinical Applications of EAE Neuropathic
Pain Models

EAE has proven to be a successful therapeutic preclinical
model for MS. Indeed, a number of approved drugs and
current phase II and III trials for MS were first examined in
EAE models [62].

Several pharmacotherapies used to treat pain in multiple
sclerosis have shown similar efficacies in EAE. For example,
Gabapentin, a 𝛾-aminobutyric acid (GABA) analogue used
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by up to 19% of MS sufferers [63, 64], is highly effective
in ameliorating pain symptoms in MS, such as trigemi-
nal neuralgia and tonic spasms [65–68]. Moreover, using
Gabapentin, Thibault and colleagues demonstrated a signif-
icant reduction of mechanical hyperalgesia in EAE murine
models, highlighting the effectiveness of GABA analogues
and their therapeutic potentials on neuropathic pain in EAE
models [23].

There also exist several promising avenues of phar-
maceutical research. Lisi and associates have established
that prophylactic Rapamycin administration, a macrocyclic
antibiotic with immunosuppressive activity, is able to reduce
disease severity and ameliorate pain behaviour in EAE
animals [36], confirming similar rodent studies [69–71]. It
is theorised that by regulating effector T cell and regu-
latory T-cell function [72], Rapamycin is able to modu-
late cytokine release, particularly interferon (IFN)-𝛾 [73], a
potent cytokine implicated in neuropathic pain [50].

Another promising candidate for MS pain amelioration
targets glutamate transporters.MSpatients are known to have
an elevated concentration and/or altered transport of gluta-
mate in the CNS [74–78], partly due to glutamate released
by invading T cells and macrophages [79, 80]. This increases
extracellular accumulation of glutamate through the down-
regulation of glutamate transporters and impairment of glial
glutamate uptake [81]. The excess glutamate concentrations
allow for prolongation of calcium-permeable ionotropic glu-
tamate receptor activation on neural and glial cells, leading to
excitotoxicCNS tissue damage [82, 83]. Studies in EAE rodent
models have demonstrated 50% reduction in glial glutamate
transporter (GLT-1) spinal expression compared to normal
animals [37, 84]. In chronic EAE models, administration
of ceftriaxone, a third-generation cephalosporin antibiotic
which upregulates CNS glutamate transporters, has not only
shown to limit and attenuate clinical symptoms [37, 85] but
also shown to significantly reverse tactile allodynia [37] and
normalise facets of cognitive functioning [53]. Normalisation
of pain behaviour has been confirmed using other com-
pounds known to promote glutamate transporter activity in
EAE models, such as MS-153 [34].

As MS is a predominantly proinflammatory disease,
anti-inflammatory agents predictably demonstrate signifi-
cant therapeutic potential. Currently, several drugs exist that
effectively target the inflammatory process in MS patients
[86–89]. In EAE, lumbar intrathecal injections of a plasmid
DNA with mutated IL-10 gene, designed to stimulate an
anti-inflammatory response, reduced disease course and pre-
vented mechanical allodynia [35]. Furthermore, FTY720, a
sphingosine 1-phosphate receptormodulator, has been shown
to suppress EAE development in several rodent models [90–
93] by reducing the infiltration of CD4+T cells,macrophages,
and proinflammatory cytokines [93–96], as well as by mod-
ulating signalling pathways on glial cells [97, 98]. In addition
to confining lymphocytes to lymphoid tissue [94] and pre-
venting and reversing pathological disturbances to pre- and
postsynaptic glutamate transmission [99], FTY720 is thought
to induce endogenous repair mechanisms in the CNS, as
it preferentially localises to myelin sheath [100]. Clinically,
FTY720 has reduced MS relapse rates and lesion frequency

[101–103]. While these studies focus on disease amelioration,
Balatoni and associates have demonstrated in a chronic EAE
model that prophylactic application of FTY720 prevented
evoked potential disturbances of the somatosensory system
[104], raising the possibility of using FTY720 to modulate
neuropathic pain. In support of this, a recent study has
shown that administration of FTY720 reduces mechanical
and thermal allodynia in animals with neuropathic pain
caused by peripheral nerve injury [105].

6. Guillain-Barre Syndrome and Experimental
Autoimmune Neuritis

Guillain-Barre syndrome is the most common acute inflam-
matory demyelinating neuropathy in the peripheral nervous
system (PNS), and as such can almost be considered a
counterpart to multiple sclerosis. It affects 1-2 individuals
per 100,000, with a greater disposition towards men [106].
GBS is a common cause of neuromuscular paralysis, char-
acterised by areflexia or acute hyperreflexia, and can be
effectively treated with immunotherapies such as intravenous
immunoglobulin. However, despite immunotherapy, GBS
has a 5%mortality rate, with up to 20% of patients remaining
severely disabled [107]. Other symptoms of GBS include
sensory impairments, such as moderate to severe nociceptive
and neuropathic pain [4, 108, 109]. In fact, pain is a highly
prevalent symptom, with 55–85% of sufferers complaining of
paraesthesia/dysaesthesia, backache and sciatica, neck pain,
muscle pain, joint pain, and visceral pain [4, 109].

Experimental autoimmune neuritis is a T-cell-mediated
acute demyelinating inflammatory disease of the PNS widely
used as an animal model of the acute inflammatory demyeli-
nating polyneuropathy, the most common form of GBS
[110]. First successfully induced in rabbits by Waksman and
Adams in 1955, EAN is characterised by degeneration of
myelin sheaths, proliferation of histiocytes, breakdown of
blood-nerve barrier, and localised PNS inflammation with
infiltration of lymphocytic and mononuclear cells [6].

EAN can be induced by immunisation with neuritogenic
peripheral nerve myelin components, purified myelin pro-
teins (such as P0, P2, or PMP-22), or synthetic peptides of
myelin proteins [111, 112], or by passive transfer of T cells
sensitised to these proteins. Susceptible animals (such as rats,
mice, rabbits, and guinea pigs) induced with EAN develop
monophasic disease characterised by weight loss, ascending
progressive paralysis, and spontaneous recovery.

7. Symptoms of Neuropathic Pain in
GBS and EAN

Neuropathic pain, primarily affecting the distal extremities,
represents a common and severe symptom in patients with
GBS and is more common and persistent than nonneuro-
pathic pain [113]. Dysaesthetic extremity pain, described as
burning, tingling, or shock-like sensations, has been reported
in up to 49% of GBS patients [109]. GBS patients also expe-
rience altered thermal sensations, with significantly higher
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warm threshold temperatures and lower cold threshold tem-
peratures as compared to age- and gender-matched controls
[114]. In support of this, a recent study has shown that GBS
patients have a significantly more severe impairment of cold
detection thresholds, heat pain thresholds, and responses
to suprathreshold heat stimuli in the foot, as compared to
patients with nonneuropathic pain or without pain [113]. In
addition, GBS patients suffer from brush-induced allodynia
[113].

The thermal and tactile sensory abnormalities evident in
GBS are reflected in EANmodels (Table 2). Behavioural tests
of pain hypersensitivity in EAN, including thermal hyper-
algesia and mechanical allodynia, have frequently served
as tools to study GBS sensory dysfunctions. For example,
Moalem-Taylor and colleagues were able to observe signifi-
cant mechanical allodynia and thermal hyperalgesia in both
hindpaws and forepaws of rats with EAN [115]. A subsequent
study confirmed the development of neuropathic pain in
EANanimals and further demonstrated thatmechanical allo-
dynia preceded the onset of neurological signs and persisted
after cessation of locomotor deficit [116].

8. Potential Mechanisms of Neuropathic Pain
in GBS and EAN

Despite its prevalence, the mechanisms of neuropathic pain
in GBS patients remain unknown. It has been suggested
that in the acute phase of GBS, neuropathic pain results
from nerve inflammation, whereas in the chronic phase
of the disease, neuropathic pain results from degeneration
of sensory nerve fibres [121]. Recently, it has been shown
that a considerable reduction in intraepidermal nerve fibre
density at the distal leg is evident early in the disease and
correlates with pain intensity in the acute phase of GBS
[122]. Furthermore, impairment of small myelinated and
unmyelinated nociceptive fibres is significantly greater in
GBS patients with neuropathic pain than in those without
neuropathic pain.The severity of such impairment during the
acute phase of GBS is predictive of chronic neuropathic pain
[113].

To date, very few research laboratories have studied the
mechanisms underlying neuropathic pain in EAN animals.
However, existing studies have implicated several inflamma-
tory mediators and cells in the initiation and maintenance
of neuropathic pain in EAN through secretion of inflam-
matory mediators that sensitise nociceptors to amplify pain
hypersensitivity. For example, greater numbers of T cells,
antigen-presenting cells, and macrophages were observed in
peripheral nerves of EAN animals [115]. These infiltrating
leukocytes in the PNS may play a role in EAN-induced
pain by releasing proinflammatory cytokines such as IL-
18 (an IFN-𝛾 inducing factor, produced by macrophages)
with significantly greater IL-18 expression observed in nerve
roots of EAN rats and significantly higher serum levels
of IL-18 detected in GBS patients as compared to control
subjects [123]. Cells immunoreactive for inducible nitric
oxide synthase andTNFhave been also observed in theDRGs
of animals with EAN [124].

Additionally, there exists accumulating evidence that
microglia become activated following PNS damage and
contribute to sensitisation of central nociceptors through
the production of proinflammatory cytokines, chemokines,
and extracellular proteases [50]. Indeed, an increase in the
number of microglial cells has been demonstrated in rats
with EAN [116, 120]. In particular, the association of the
time course of mechanical allodynia and spinal upregulation
of P2X

4
R on spinal microglia in lumbar dorsal horns in

EAN rats has been successfully observed by Zhang and
colleagues [116].This suggests that activation of P2X

4
R drives

the release of brain-derived neurotrophic factor from spinal
microglia, a cellular substrate that causes disinhibition of
pain-transmitting spinal lamina I neurons and mediates
aberrant nociceptive processing in the spinal cord [125].
The involvement of transmembrane chemokines such as
CX3CL1 (fractalkine) has also been implicated, as it plays
a key role in mediating neuron-microglia interactions in
nociceptive transmission. Elevated levels of CX3CL1 have
been recorded in GBS patients [126], while in EAN rats,
extensive upregulation of immunoreactivity for CX3CL1 and
its receptor CX3CR1 in the dorsal horn has been shown
to correlate with the establishment of mechanical allodynia
[120].

Taken together, development and maintenance of neuro-
pathic pain in EAN models may result from (a) demyelina-
tion and degeneration of sensory nerve fibres, (b) autoim-
mune inflammation in the PNS, and (c) spinal glial activation
in the CNS, therefore providing a useful model for finding
novel therapeutic approaches for GBS-related pain.

9. Clinical Applications of EAN Neuropathic
Pain Models

Although the studies on pain in EAN are inadequate to date,
there are a few significant approaches thatmay be therapeutic
in relieving pain in GBS patients.

Firstly, immunotherapeutic approaches that enhance the
numbers of immunosuppressive FoxP3+ regulatory T (Treg)
cells and decrease neuroinflammation have demonstrated
potential. Recently, it has been shown that treatment with
CD28 superagonist, a Treg cell expander, resulted in a
significant amelioration of EAN severity and mechanical
allodynia, with associated reduction of neuroinflammatory
responses [119]. Treatment with Compound A, a plant-
derived ligand of glucocorticoid receptors that enhances Treg
cells in blood of EAN animals, is also able to attenuate
mechanical allodynia [118]. The same study further observed
that Compound A reduced microglial activation and IL-1𝛽
and TNF upregulation in the spinal cord, increased the num-
bers of anti-inflammatory M2 macrophages in sciatic nerves,
and modulated lymphoid cytokines to an anti-inflammatory
profile [118].

Furthermore, statins, which are used to treat hyperc-
holesterolaemia in humans, are reported to potentiate anti-
inflammatory and immunomodulatory effects, including
deviation of helper T cell Type 1 (Th1)mediated proinflamma-
tory response to Th2 mediated anti-inflammatory response,
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inhibition of Th1 and Th17 mediated autoimmune response,
inhibition of maturation and activation of antigen presenting
cells, and increasing the numbers of CD4+CD25+FoxP3+
Treg cells [127]. Recent studies have found that administra-
tion of atorvastatin reduces EAN severity through a similar
mechanism [127], while treatment with rosuvastatin and sim-
vastatin prevents the development of thermal hyperalgesia
and mechanical allodynia and significantly reduces spinal
glial activation following peripheral nerve injury [128]. This
highlights the potential for statins to manage neuropathic
pain in GBS.

In addition, the existing evidence for the role of microglia
in neuropathic pain suggests that controlling spinal glial
activation may result in pain amelioration in GBS. In par-
ticular, inhibition of microglial activation and alleviation
of mechanical allodynia has been successfully observed by
peritoneal administration of minocycline, which attenu-
ates TNF and decreases proinflammatory cytokine response
[117, 129]. Elevated levels of CX3CL1 in GBS suggest
that inhibiting CX3CL1/CX3CR1 interactions will negatively
affect microglial activation [120] and might prevent the
development of neuropathic pain.

Other possible therapeutic approaches include inhibit-
ing matrix metalloproteinases (MMPs). MMPs comprise
a large family of proteases that have been implicated in
the generation of neuroinflammation and the development
of neuropathic pain through the cleavage of extracellular
matrix proteins, cytokines, and chemokines [130]. MMP-9
and MMP-7 were found to be selectively upregulated during
EAN and expressed in nerves of GBS patients [131]. BB-1101,
a broad spectrum MMP inhibitor, has already demonstrated
potential in preventing the development of EAN [130], and
reduced expression ofMMP-9 by treatmentwithminocycline
was associated with improved EAN outcome and reduced
mechanical allodynia [117].

10. Summary

Although much has been uncovered in the past few decades
about the nervous system autoimmune disorders of MS and
GBS, the clear pathogenesis of these diseases has not been
fully elucidated. However, utilisation of animal models, in
particular EAE and EAN, has significantly advanced our
understanding and provided a platform for development and
investigation of new therapies. Recently it has become clear
that neuropathic pain is a common debilitating symptom
in MS and GBS and that some of the changes in pain
sensitivity observed in these patients can bemimicked in EAE
and EAN animals. Tables 1 and 2 summarise neuropathic
pain symptoms observed in EAE and EAN, respectively,
and the therapeutic agents tested in these animal models.
Many complex mechanisms are involved in mediating the
various sensory changes, and we are only now beginning to
understand the mechanisms underlying neuropathic pain in
MS and GBS. A recent study in humans has demonstrated
an autoimmune basis for some types of chronic idiopathic
pain highlighting the role of autoimmune antibodies and cells
in pain mediation [132]. A concerted effort is required to

elicit more information regarding the mechanisms underly-
ing neuropathic pain in MS and GBS to better enable the
development of more effective treatments.
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[40] A. Österberg and J. Boivie, “Central pain in multiple sclerosis:
sensory abnormalities,” European Journal of Pain, vol. 14, no. 1,
pp. 104–110, 2010.

[41] G. Flensner, A. C. Ek, O. Söderhamn, and A. M. Landtblom,
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Lancet Neurology, vol. 7, no. 10, pp. 939–950, 2008.

[122] L. Ruts, P. A. van Doorn, R. Lombardi et al., “Unmyelinated
andmyelinated skin nerve damage inGuillain-Barre syndrome:
correlation with pain and recovery,” Pain, vol. 153, pp. 399–409,
2012.

[123] S. Jander and G. Stoll, “Interleukin-18 is induced in acute
inflammatory demyelinating polyneuropathy,” Journal of Neu-
roimmunology, vol. 114, no. 1-2, pp. 253–258, 2001.

[124] C. L. R. De La Hoz, F. R. Castro, L. M. B. Santos, and F.
Langone, “Distribution of inducible nitric oxide synthase and
tumor necrosis factor-𝛼 in the peripheral nervous system of
lewis rats during ascending paresis and spontaneous recovery
from experimental autoimmune neuritis,” NeuroImmunoMod-
ulation, vol. 17, no. 1, pp. 56–66, 2009.

[125] T. Trang, S. Beggs, and M. W. Salter, “Brain-derived neu-
rotrophic factor from microglia: a molecular substrate for
neuropathic pain,” Neuron Glia Biology, vol. 7, pp. 99–108, 2011.

[126] S. Kastenbauer, U. Koedel, M. Wick, B. C. Kieseier, H. P.
Hartung, and H. W. Pfister, “CSF and serum levels of soluble
fractalkine (CX3CL1) in inflammatory diseases of the nervous
system,” Journal of Neuroimmunology, vol. 137, no. 1-2, pp. 210–
217, 2003.

[127] X. L. Li, Y. C. Dou, Y. Liu et al., “Atorvastatin ameliorates exper-
imental autoimmune neuritis by decreased Th1/Th17 cytokines
and up-regulated T regulatory cells,” Cellular Immunology, vol.
271, pp. 455–461, 2011.

[128] X. Q. Shi, T. K. Y. Lim, S. Lee, Y. Q. Zhao, and J. Zhang, “Statins
alleviate experimental nerve injury-induced neuropathic pain,”
Pain, vol. 152, no. 5, pp. 1033–1043, 2011.

[129] F. Giuliani, W. Hader, and V. W. Yong, “Minocycline attenuates
T cell and microglia activity to impair cytokine production in
T cell-microglia interaction,” Journal of Leukocyte Biology, vol.
78, no. 1, pp. 135–143, 2005.

[130] P.M.Hughes, G.M. A.Wells, J. M. Clements et al., “Matrixmet-
alloproteinase expression during experimental autoimmune
neuritis,” Brain, vol. 121, no. 3, pp. 481–494, 1998.

[131] B. C. Kieseier, J. M. Clements, H. B. Pischel et al., “Matrix met-
alloproteinases MMP-9 and MMP-7 are expressed in experi-
mental autoimmune neuritis and theGuillain-Barre syndrome,”
Annals of Neurology, vol. 43, no. 4, pp. 427–434, 1998.

[132] C. J. Klein, V. A. Lennon, P. A. Aston, A. McKeon, and S. J.
Pittock, “Chronic pain as amanifestation of potassium channel-
complex autoimmunity,”Neurology, vol. 79, pp. 1136–1144, 2012.


