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Integrated analysis reveals prognostic correlation and immune 
characteristics of a tumor-associated macrophage-based risk 
signature in triple-negative breast cancer
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Background: Tumor-associated macrophages play a critical role in the progression and immune response 
of triple-negative breast cancer (TNBC). Our study aimed to explore the characteristics of tumor-associated 
macrophages (TAMs) in TNBC, construct a risk signature associated with TAM clusters, and verify its 
relationship with prognosis and immune-related characteristics.
Methods: Firstly, we identified four TAM clusters and determined prognosis-related clusters in TNBC 
based on the single-cell RNA sequencing (scRNA-seq) data. Subsequently, the TAM-related prognostic 
genes were obtained by the univariate Cox regression analysis and an 8-gene risk signature was then 
constructed by least absolute shrinkage and selection operator (LASSO) regression based on these TAM-
related prognostic genes. Analyses of immune characteristics showed a significant association between the 
signature with stromal and immune scores, as well as some immune cells. 
Results: Multivariate analysis revealed that the risk signature was an independent prognostic factor for 
TNBC, and its value in predicting immunotherapeutic outcomes was also confirmed. A novel nomogram 
integrating the stage and TAM-based risk signature was constructed, which exhibited favorable predictability 
and reliability in the prognosis prediction of TNBC. Finally, the increasing expression of GPR34 which 
is one of the eight hub genes was explored in TNBC by experiments including reverse-transcriptase 
polymerase chain reaction, western blot, and immunohistochemistry. 
Conclusions: Our study may provide unique insights into obtaining independent prognostic factors, 
improving immunotherapeutic strategies, and identifying effective therapeutic targets for TNBC.
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Introduction

Breast cancer is the most prevalent malignancy and the 
leading cause of cancer-related death among women 
worldwide. In 2020, it was estimated that there were  
2.3 million new cases and over 685,000 deaths attributed 
to breast cancer (1). Among the different subtypes, triple-
negative breast cancer (TNBC) represents approximately 
20% of cases and is known for its aggressive nature, high 
recurrence rates, and mortality (2,3). The absence of the 
estrogen receptor (ER) and progesterone receptor (PR) and 
lack of human epidermal growth factor receptor 2 (HER2) 
amplification preclude TNBC patients from benefiting 
from molecularly targeted therapies such as endocrine 
therapy and anti-HER2 therapy (1,3). In addition, only 
5–10% of TNBC patients showed a response to standard 
chemotherapy (4). Thus, advances in therapeutic options 
and the search for more effective therapeutic targets for 
TNBC are urgently needed.

Recent progression in cancer immunotherapy has 
revolutionized cancer treatment paradigms (5). Characterized 
by higher immunogenicity compared with other breast cancer 
subtypes suggests immunotherapy is a viable strategy for 
TNBC (6). In contrast to other cancer types, the effectiveness 
of immunotherapy in breast cancer, including TNBC, has 
been relatively limited (7). Although immune checkpoint 
inhibitors (ICIs) have been utilized as a treatment option, the 
prognosis for advanced TNBC remains poor, especially for a 
small subset of TNBC patients with programmed cell death 
ligand-1 (PD-L1) expression, with a median overall survival 
(OS) of less than 2 years (6,7). Therefore, it is necessary to 

find new immunotherapy strategies for TNBC.
Tumor-associated macrophagesare crucial drivers of 

the immunosuppressive microenvironment and mediate 
tumor progression and resistance to immunotherapies (8,9).  
Modifying the properties and function of TAMs in 
malignancies can enhance tumor immune surveillance 
and suppress immunological evasion (8). TAMs have been 
proven to boost TNBC progression (10). It is illustrated 
that TAMs promote tumor-derived colony stimulating 
factor 1 (CSF-1) and macrophage-derived epidermal growth 
factor (EGF) release in TNBC (9). However, the specific 
features of TAMs and their relationship with the prognosis 
and immune-related characteristics of TNBC have not been 
thoroughly studied.

For decades, the emergence of single-cell technologies 
has attributed to dissecting the constellation of cell states of 
immune cells in the tumor microenvironment (TME) (5). 
Our exploration primally identified 4 TAM clusters based 
on scRNA-seq data and selected TAM clusters associated 
with TNBC prognosis subsequently. Then, we established 
an 8-gene risk signature based on the differentially 
expressed genes (DEGs) associated with these prognosis-
related TAM clusters; the prognostic value and immune 
characteristics of the risk signature were further analyzed, 
and potentially effective breast cancer immunotherapy 
drugs were found based on this signature. Our study may 
provide new insight for updating the prognosis assessment 
methods and immunotherapy approaches for breast cancer. 
We present this article in accordance with the MDAR 
and TRIPOD reporting checklists (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-24-1037/rc).

Methods

Data acquisition and processing

We obtained scRNA-seq data (GSE206638) from the GEO 
database (https://www.ncbi.nlm.nih.gov/geo/), comprising 
4 tumor and 3 juxta tumor (JT) samples of TNBC (11). 
Single cells were selected based on gene expression in 
a minimum of 3 cells and each cell expressing at least  
250 genes. The bulk RNA-seq datasets which include survival 
data were collected from TCGA-BRCA and GSE58812 
databases. Additionally, The PD-(L)1 treated dataset as well 
as its clinical traits were downloaded from the IMvigor210 
cohort (12). The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013).

Highlight box

Key findings
• We constructed an 8-gene tumor-associated macrophage (TAM)-

based risk signature that effectively predicts the prognosis and 
immunotherapeutic outcomes in triple-negative breast cancer 
(TNBC) patients.

What is known and what is new?
• TAMs are known to influence the progression and immune evasion 

in cancers, including TNBC.
• This manuscript introduces a novel 8-gene risk signature based on 

TAM clusters.

What is the implication, and what should change now?
• The potential prognostic value of GPR34 deserves further study.

https://tcr.amegroups.com/article/view/10.21037/tcr-24-1037/rc
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https://www.ncbi.nlm.nih.gov/geo/
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Definition of TAM

To conduct a comprehensive analysis of TNBC scRNA-
seq data and delve into the TAM signature, we utilized the 
“Seurat” package (13). Data preprocessing steps involved 
the exclusion of cells with gene expression counts below 
250 or exceeding 6,000. Subsequently, log-normalization 
was performed on the remaining expressed genes. The 
FindIntegrationAnchors function was employed, and data 
dimensionality was reduced using UMAP algorithm. TAMs 
were identified based on four marker genes (CD68, C1QA, 
APOC1, and CD163), and subsequently re-clustered using 
FindClusters and FindNeighbors functions. We defined 
marker genes for each TAM cluster by employing the 
“FindAllMarkers” function, which compared different 
clusters using specific criteria including minpct =0.35, 
log fold change (FC) =0.5, and adjust P value <0.05. To 
analyze the copy number variation (CNV) characteristics of 
TAM clusters and differentiate them from tumor cells and 
normal cells, we utilized the “CopyKAT” package. Lastly, 
we performed Kyoto Encyclopedia of Genes and Genomes 
(KEGG) enrichment analysis on the marker genes using the 
"clusterProfiler" package (14).

Identification of hub genes of TAM

Initially, we utilized the “limma” package to identify DEGs 
between tumor and normal tissue (15). DEGs were selected 
based on a false discovery rate (FDR) of <0.05 and |log2FC| 
>1. Subsequently, we examined the correlations between 
DEGs and TAM clusters, identifying key TAM-related 
genes with P<0.001 and cor >0.4. Prognosis-related genes 
were determined using univariate Cox regression analysis 
from the “survival” package, considering P<0.05. To reduce 
the number of genes, LASSO Cox regression analysis was 
performed, followed by multivariate Cox regression analysis 
using a stepwise regression method. Finally, the predictive 
performance of the risk signature was evaluated using the 
receiver operating characteristic (ROC) curve analysis with 
the assistance of the “timeROC” package.

Immune landscape analysis

In the TCGA cohort, we evaluated the proportions of  
22 immune cel l  subtypes using the CIBERSORT 
algorithm, which provides insights into immune cell 
infiltration (16). Furthermore, we utilized the ESTIMATE 

algorithm to calculate immune and stromal scores, 
enabling a deeper exploration of the TME. To validate 
differences in immune status between subtypes, we 
performed ESTIMATION analysis and single-sample gene 
set enrichment analysis (ssGSEA) (17,18). These analyses 
allowed us to gain a better understanding of the immune 
characteristics and microenvironmental differences among 
the subtypes. 

Construction of a risk signature and nomogram

To develop a nomogram model for clinical application, 
we conducted univariate and multivariate Cox regression 
analyses on clinicopathological factors and risk signatures. 
The significant variables from the multivariate Cox model 
(P<0.05) were used to construct the nomogram using the 
“rms” package (19). Calibration curves were employed to 
assess the predictive accuracy of the model, and decision 
curve analysis (DCA) was utilized to evaluate its reliability. 
CCLs’ drug sensitivity data were obtained from the Cancer 
Therapeutics Response Portal (CTRP v.2.0, released 
October 2015, https://portals.broadinstitute.org/ctrp) and 
PRISM Repurposing dataset (19Q4, released December 
2019, https://depmap.org/portal/prism/). CTRP covers 
481 compounds across 835 CCLs, PRISM includes 1,448 
compounds across 482 CCLs. Both datasets use area 
under the dose-response curve (AUC) values to indicate 
drug sensitivity, with lower AUC values suggesting 
higher sensitivity. K-nearest neighbor (k-NN) imputation 
addressed missing AUC values, excluding compounds with 
over 20% missing data. Molecular data from CCLE, the 
source of CCLs in both datasets, were used for subsequent 
analyses.

RNA extraction and RT-PCR

Total RNA in cells (MDA-MB-231 and MCF-10A) was 
extracted according to the RNA-Quick Purification Kit 
(EScience, RN001, Shanghai, China). Complementary 
DNAs (cDNAs) were then synthesized by the HiScript III 
RT SuperMix for qPCR using 1 mg of total RNAs. Reverse-
transcriptase polymerase chain reaction (RT-PCR) was 
performed using ChamQ Universal SYBR qPCR Master 
Mix (Vazyme, Q711, Shanghai, China) on a LightCycler96 
(Roche, Shanghai, China) according to the kit instructions. 
Primer sets targeting mRNAs are listed in Table S1. We 
chose the housekeeping gene ACTB as an internal control. 

https://portals.broadinstitute.org/ctrp
https://depmap.org/portal/prism/
https://cdn.amegroups.cn/static/public/TCR-24-1037-Supplementary.pdf
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Western blot

Protein was first extracted from MDA-MB-231 and 
MCF-10A with RIPA buffer (NCM Biotech, WB3100, 
Shanghai, China) containing protease inhibitors (Epizyme 
Biomedical Technology, GRF101, Shanghai, China). 
Protein samples were separated on 10% gels (Epizyme 
Biomedical Technology), then transferred to polyvinyl 
difluoride membranes. After being blocked in 5% nonfat 
dry milk, the membranes were then incubated at 4 ℃ in 
primary antibody against GPR34 (Abnova, PAB26304, 
Shanghai, China) overnight followed by incubation in 
HRP-conjugated secondary antibody (Beyotime, A0208, 
Shanghai, China) for 1 hour at room temperature. The 
bands were visualized through ECL (NCM Biotech, 
P10300, Shanghai, China) and imaged on a Bio-Rad 
image system. The signal intensity was quantified by 
ImageJ software (National Institutes of Health).

Immunohistochemistry

The tissue microarray sections (15 TNBC tumor tissues, 
15 non-cancerous breast tissues) were deparaffinized and 
rehydrated: two changes of xylene for 5 min each; 100% 
alcohol, 95% alcohol, and 70% alcohol, each for 1 min, 
and then rinsed in distilled water, followed by Antigen 
retrieval (#S1699, Agilent Dako, Shanghai, China). After 
blocking the tissues, the primary antibody, GPR34 (Abnova, 
PAB26304), was applied at 1:200 dilution, overnight at 4 ℃. 
The secondary antibody was incubated at room temperature 
for 30 min. The antibody binding was visualized using 
diaminobenzidine (DAB), resulting in the detection of the 
target protein. The breast cancer tissue and paracancer 
tissue were taken from the department of Thyroid and 
Breast Surgery, Affiliated Hospital of Nantong University, 
Medical School of Nantong University.

Immunofuorescence (IF) 

Following fixation, permeabilization, and blocking, the 
tissues were incubated with primary antibodies, followed 
by incubation with secondary antibodies. The tissues were 
then stained with DAPI, and images were captured using a 
fluorescence microscope.

Statistical analysis

Statistical analyses were performed using R software 

(v4.1.2). Pearson or Spearman correlation was employed 
for correlation matrices, while the Wilcoxon test compared 
groups. Survival differences were assessed using Kaplan-
Meier curves and the log-rank test, considering a P value 
<0.05 as statistically significant.

Results

Screening the TAMs in scRNA-seq samples

The flow chart of this study was shown in Figure S1. This 
study utilized scRNA-seq data and initially obtained 11,535 
cells following screening. After log-normalization and 
dimensionality reduction, we identified 24 subpopulations. 
Subsequently, TAM populations were distinguished using 
four marker genes (CD68, C1QA, APOC1, and CD163) in 
Figure S2A,S2B. Further clustering and dimensionality 
reduction of TAM populations resulted in the identification 
of four TAM clusters, as shown in Figure S2C,S2D. The 
UMAP plot in Figure 1A demonstrated the distribution 
of seven samples, and ultimately, four TAM clusters were 
generated for subsequent analysis (Figure 1B). The initial 
violin plot displayed the manifestation of four markers 
within 24 clusters, while the second plot exhibited the 
expression of the same four markers in four distinct TAM 
subtypes. It was evident that the classification of TAMs 
was based on macrophages (Figure S3A,S3B). Figure 1C 
displayed the expression of the top five DEGs, acting as 
marker genes for TAM clusters. The proportion of the four 
clusters in each sample was illustrated in Figure 1D. KEGG 
analysis (Figure 1E) revealed enrichment of DEGs in various 
pathways, such as oxidative phosphorylation, Parkinson’s 
disease, and prion disease. Additionally, based on CNV 
characteristics, the four TAM clusters encompassed 1,533 
tumor and normal cells (Figure 1F).

The expression of cancer-related pathways in TAM

To investigate the association between TAM clusters 
and tumor progression, we examined ten tumor-related 
pathways within these clusters. Figure 2A showcased the 
gene set variation analysis (GSVA) scores of these pathways 
across different TAM clusters. Notably, the TAM-1 cluster 
exhibited a significantly higher ratio of malignant cells 
compared to the other clusters (Figure 2B). Moreover, 
GSVA scores of the tumor-related pathways differed 
between malignant and non-malignant cells within each 
TAM cluster (Figure 2C). Prognosis-associated ssGSEA 

https://cdn.amegroups.cn/static/public/TCR-24-1037-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1037-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1037-Supplementary.pdf
https://cdn.amegroups.cn/static/public/TCR-24-1037-Supplementary.pdf
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scores were calculated for marker genes of each TAM 
cluster using the TCGA cohort. Results indicated that 
TAM-1 and TAM-3 clusters had higher scores in tumor 
samples, while the opposite trend was observed in the 
remaining clusters (Figure 2D). By dividing TNBC samples 
into high- and low-TAM score groups, we found that the 
high-TAM score group exhibited a better prognosis in 
the TAM-1 and TAM-3 cluster, suggesting its potential 
significance in TNBC progression (Figure 2E).

Identification of hub genes associated with TAM

For the construction of a risk signature, DEGs between 
tumor and normal tissues were initially identified based 
on TCGA database. As shown in Figure 3A, a total of 
2,160 DEGs were obtained, with 893 up-regulated DEGs 
and 1,267 down-regulated DEGs. Among them, 434 
genes exhibited significant correlations with prognosis-
related TAM clusters. Subsequently, univariate Cox 

Figure 1 The identification of TAM clusters based on scRNA-seq data of TNBC patients. (A) UMAP plot of the distribution of 7 samples; 
(B) UMAP plot of the distribution of four clusters; (C) dot plot of the top 5 marker gene expressions of subgroups; (D) proportion and cell 
number of 4 subgroups in cancer and adjacent tissue; (E) KEGG enrichment analysis of 4 TAM subsets; (F) UMAP of malignant and non-
malignant cells predicted by “copycat” package. TNBC, triple-negative breast cancer; TAM, tumor-associated macrophage; UMAP, uniform 
manifold approximation and projection; KEGG, Kyoto Encyclopedia of Genes and Genomes; scRNA-seq, single-cell RNA sequencing.
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Figure 2 The tumor-related pathways and prognosis associated with four TAM clusters. (A) Heatmap of 10 tumor-related pathway scores 
enriched in TAMs; (B) comparison of TAM clusters in malignant and non-malignant cells; (C) comparison of GSVA score of each pathway 
between malignant and non-malignant cells in each cluster; (D) comparison of four TAM scores in cancer (T) and normal (N) tissues; (E) 
Kaplan-Meier curves of the high and low TAM score groups in each cluster. *, P<0.05; **, P<0.01; ***, P<0.001; ****, P<0.0001; ns, not 
significant. TAM, tumor-associated macrophage; GSVA, gene set variation analysis.
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Figure 3 Identification of the hub predictive genes to construct a risk signature. (A) Volcano plot of differentially expressed genes of cancer 
and normal tissues in TCGA cohort; (B) volcano plot of prognosis-related genes identified from univariate Cox regression analysis; (C) the 
trajectory of each independent variable with lambda; (D) plots of the produced coefficient distributions for the logarithmic (lambda) series 
for parameter selection (lambda); (E) the multivariate Cox coefficients for each gene in the risk signature. Kaplan-Meier curves of risk model 
constructed by 8 genes in TCGA cohort (F), GEO cohort (G), and the meta cohort (H). ROC curves of risk model constructed by 8 genes 
in TCGA cohort (I), GEO cohort (J), and meta cohort (K). FDR, false discovery rate; GEO, Gene Expression Omnibus; TCGA, The 
Cancer Genome Atlas; ROC, receiver operating characteristic; AUC, area under the curve.
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regression analysis assessed the prognostic value of each 
gene, resulting in 234 genes with prognostic significance 
(Figure 3A,3B). LASSO Cox regression analysis further 
narrowed down the gene selection to eight candidates 
(lambda =0.052) (Figure 3C,3D). Finally, a multivariate 
Cox regression analysis  with stepwise regression 
yielded the inclusion of ADGRF5, C7, EDNRB, GPR34, 
SAMD1, SDS, STOM, and VSTM4 in the risk signature 
(Figure 3E). The formula for the 8-gene signature was 
determined, and risk scores were calculated for each sample, 
subsequently dividing them into high- and low-risk groups 
after z-mean normalization. The final 8-gene signature 
formula is as follows: RiskScore =−1.700909607 × ADGRF5 −  
0.264910514 × SAMD1 + 0.532519618 × C7 + 0.437584101 ×  
EDNRB + 1.570842883 × GPR34 + 1.656234352 × SDS + 
1.773243073 × STOM + 1.685475222 × VSTM4. Kaplan-Meier 
survival analyses indicated that high-risk patients exhibited 
poorer survival outcomes in both the TCGA and GEO 
cohorts (Figure 3F-3H). Furthermore, the AUC values for 
the model ranged from 0.58 to 0.82 in the GSE58812 cohort, 
0.62 to 0.84 in the meta cohort and 0.83 to 1 in the TCGA 
cohort, demonstrating its predictive capability (Figure 3I-3K).

Mutation and pathway analysis of the hub genes

We analyzed the SNV mutations of the risk signature’s eight 
genes and observed that ADGRF5, C7, EDNRB, GPR34, 
SAMD1, STOM, and VSTM4 had SNV (single-nucleotide 
variant) mutations in multiple samples. However, no SNV 
mutation was found in SDS (Figure 4A). We then examined 
the co-occurrence probability between these key genes and 
the 10 most mutated genes. GPR34 showed a significant 
probability of co-occurrence with TTN, MUC16, and APC 
mutations (Figure 4B). Furthermore, we investigated the 
mutation frequency in ten major oncogenic pathways and 
detected mutations in several pathways, including PI3K, 
TP53, and RTK-RAS pathways (Figure 4C). Among the 
eight genes, only a few samples exhibited gain/loss of CNV 
(Figure 4D). To evaluate the tumor mutation burden (TMB), 
we calculated the TMB of TCGA patients and analyzed 
its distribution in the two risk groups. The waterfall plot 
visualized the top ten mutated genes (Figure 4E), and a 
significant difference in TMB was observed between the 
groups, with higher TMB in the low-risk group (Figure 4F). 
Additionally, we explored the co-occurrence probability 
of the five most mutated genes and found a significant 
probability of co-occurrence between MUC16 and TTN 
(Figure 4G). Pathway analysis revealed that these eight genes 

were significantly correlated with 24 pathways, including 
base excision repair, prostate cancer, and gap junction 
(Figures 4H,4I). Moreover, immune-related pathways were 
found highly enriched in the high-risk group (Figure 4J).

Relationship between hub genes and immunity

In Figure 5A, the correlation between the immune score and 
the expression of the eight genes was presented. GPR34, 
SDS, VSTM4, ADGRF5, C7, STOM, and EDNRB showed 
significantly positive correlations with stromal score, 
immune score, and estimate score, while SAMD1 exhibited 
significantly negative correlations with these scores (Figure 
5B). When grouping based on gene expression median 
values, we compared the immune score between different 
expression groups. The high-expression group of C7, 
GPR34, SDS, and STOM genes had significantly higher 
immune scores compared to the low-expression group 
(Figure 5C). Furthermore, ADGRF5, C7, EDNRB, and 
VSTM4 were significantly positively correlated with mast 
cells resting, B cells naive, and Plasma cells (Figure 5D). 
GPR34 expression showed a positive correlation with all ten 
immune cell types (Figure 5E).

The 8-gene signature displayed a substantial correlation 
with immune-related characteristics

To assess the differences in immune status between 
subtypes, we utilized ESTIMATION and ssGSEA. Immune 
cells and stromal cells were evaluated in the two risk groups, 
and their scores were combined to obtain the estimated 
score. The low-risk group had lower scores compared to 
the high-risk group, with significant differences between 
the groups (P<0.001) (Figure 6A). The correlation analysis 
between risk scores and immune scores, stromal scores, 
and estimated scores confirmed significant associations 
(Figure 6B-6D). The ssGSEA analysis revealed significant 
differences in immune cell scores between the two risk 
groups, with higher immune cell scores in the higher risk 
group, except for type 2 T helper cells, which scored higher 
in the lower risk group (Figure 6E). Moreover, the high-risk 
group exhibited higher levels of Tumor Regression Score 
(TRS), cytolytic activity (CYT), and interferon-γ (IFN-γ), 
indicating a more immunoreactive microenvironment in 
the TCGA dataset (Figure 6F-6H). Using the CIBERSORT 
method, we assessed the immune heterogeneity between 
the two subtypes and identified 22 different immune cell 
infiltrations. Patients with higher risk scores displayed 
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Figure 4 The characteristics of the mutations and identification of pathways that the risk genes involved in. (A) Waterfall diagram of 
SNV mutations of 8 key genes; (B) colinearity and mutual exclusion analysis of key genes and the 10 most mutated genes in tumors;  
(C) mutation frequency in 10 major oncogenic pathways; (D) CNV mutations (gain, loss, none) of 8 key genes; (E) waterfall plot of the top  
10 mutated genes identified by calculating TMB; (F) TMB of two risk groups; (G) the co-occurrence probability of the 5 most mutated genes;  
(H) gene-pathway correlation heatmap; (I,J) enrichment score heatmap for key pathways. *, P<0.05; **, P<0.01; ***, P<0.001. SNV, single 
nucleotide variant; CNV, copy number variations; TMB, tumor mutational burden.
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Figure 5 The relationship between the risk genes and immune landscape. (A) The correlation between immune score and the expression 
of risk genes; (B) the correlation of the risk genes and stromal score, immune score, and estimate score; (C) comparison of high and low 
expression of key genes and immune score; (D) correlation between key genes and immune cell score predicted by CIBERSORT analysis;  
(E) the correlation between the expression of risk genes and all of the 10 immune cells. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not significant.
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higher levels of B cells naive, T cells CD8, T cells regulatory 
(Tregs), monocytes, macrophages M1, macrophages M2, 
and mast cells resting, but lower proportions of T cells 
CD4 naive and Mast cells activated (Figure 6I). Additionally, 
we examined the expression levels of immune checkpoints 
in the two groups and found elevated levels in the high-risk 
subtype. Programmed cell death protein 1 (PD-1), PD-L1, 
and cytotoxic T lymphocyte-associated antigen-4 (CTLA4) 
showed significantly higher expression levels in the high-
risk group (Figure 6J-6K). Furthermore, the results of 
Subclass Mapping (Submap) indicated that patients in 
the high-risk group were more likely to respond to ICIs 
(Figure 6L). Therefore, we can infer that the high-risk 
group belongs to the hot tumor subtype and may exhibit a 
favorable response to immunotherapy.

Identification of independent risk factors and potential 
therapeutic agents 

To enhance the predictive performance of the risk signature, 
we conducted univariate and multivariate Cox regression 
analysis, integrating clinicopathological characteristics and 
risk scores. The multivariate analysis revealed that the risk 
signature emerged as the most significant independent 
prognostic factor for TNBC, with a hazard ratio (HR) of 
3.683 [95% confidence interval (CI): 1.662–8.164, P=0.001]. 
Following closely was the stage, with an HR of 216.993 
(95% CI: 2.585–18,218.507, P=0.02) (Figure 7A,7B). 
Consequently, we developed a nomogram by combining the 
stage and risk score, depicted in Figure 7C. The calibration 
plot demonstrated the effective predictive capability of 
the nomogram for actual survival outcomes (Figure 7D). 

Moreover, the DCA revealed that the nomogram exhibited 
superior discriminatory ability in identifying high-risk 
patients compared to the risk score and stage alone, as 
shown in Figure 7E. Time ROC analysis illustrated that 
the AUC of the risk score and nomogram surpassed that 
of other indicators in the TCGA cohort (Figure 7F). To 
identify potential agents for high-risk TNBC patients, 
we utilized sensitivity data from the Cancer Therapeutics 
Response Portal (CTRP) and profiling relative inhibition 
simultaneously in mixtures (PRISM) datasets, encompassing 
481 compounds across 835 cancer cell lines (CCLs) 
and 1,448 compounds across 482 CCLs, respectively. 
Through this analysis, we identified 9 CTRP-derived 
agents (RITA, cytochalasin B, NVP-TAE684, GDC-0941, 
BRD-K63431240, birinapant, dasatinib, cucurbitacin I, and 
1S, 3R-RSL-3) and 21 PRISM-derived agents (semaxanib, 
P276-00, AS-703026, trametinib, AMG-232, selumetinib, 
TAK-733, BVD-523, AZD8330, idasanutlin, PD-0325901, 
PD-184352, ponatinib, dasatinib, Ro-4987655, VS-
4718, MEK162, PHA-848125, cobimetinib, tipifarnib,  
GDC-0152) (Figure 7G,7H). These agents exhibited 
estimated AUC values that were not only significantly 
negatively correlated with risk but also significantly lower in 
the high-risk group (Figure 7I,7J).

GPR34 mRNA and protein expression in TNBC

To explore GPR34 as a potential biomarker for TNBC, 
we primally investigated GPR34 mRNA and protein 
expression in MDA-MB-231 (TNBC cell line) compared 
with MCF-10A (normal breast epithelial cell line) via 
RT-PCR and western blot, respectively. Subsequently, 

8000

4000

0

–4000

–8000

5000

2500

0

–2500

4000

2000

0

–2000

5000

0

–5000

S
co

re

Im
m

un
eS

co
re S

tr
om

al
S

co
re

E
S

TI
M

AT
E

S
co

re

R=0.58, P=9.6e–09

R=0.61, P=3.4e–10

R=0.68, P=2.2e–16

8                12                16               20

8           12         16         20

8           12         16         20RiskScore

RiskScore

***

Risk High Low

*** ***

Stro
m

alS
co

re

Im
m

un
eS

co
re

ESTIM
AT

ESco
re

A B C

D

RiskScore



Translational Cancer Research, Vol 13, No 10 October 2024 5225

© AME Publishing Company.   Transl Cancer Res 2024;13(10):5214-5232 | https://dx.doi.org/10.21037/tcr-24-1037

Figure 6 The correlation between our 8-gene signature and immune-related characteristics. (A-D) ESTIMATE analysis; (E-H) ssGSEA 
analysis; (I) CIBERSORT analysis; (J,K) exploration of immune checkpoints; (L) submap analysis. *, P<0.05; **, P<0.01; ***, P<0.001; ns, not 
significant. ssGSEA, single sample gene set enrichment analysis; TRS, Tumor Regression Score; MDSC, myeloid-derived suppressor cell.
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Figure 7 The development of a nomogram and Spearman’s correlation analysis. (A,B) Univariate and multivariate Cox analysis displayed 
excellent predictive performance of our risk signature; (C) nomogram model integrating the risk score and stage was constructed; (D) 
calibration curves for 1, 3, and 5 years of nomogram; (E) decision curve for nomogram; (F) comparison of the predictive capacity of 
clinicopathological features and the nomogram using time-ROC analysis; (G-H) the results of Spearman’s correlation analysis and 
differential drug response analysis of 9 CTRP-derived compounds; (I,J) the results of Spearman’s correlation analysis and differential 
drug response analysis of 21 PRISM-derived compounds. Please be aware that reduced values along the y-axis of boxplots indicate higher 
sensitivity to the drug. *, P<0.05; **, P<0.01. CTRP, The Cancer Therapeutics Response Portal; PRISM, profiling relative inhibition 
simultaneously in mixtures; ROC, receiver operating characteristic; CI, confidence interval; OS, overall survival; AUC, area under the curve.
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the differential expression of GPR34 protein between 
TNBC tissue samples and normal breast tissue samples 
was performed by immunohistochemistry. Western blot and 
immunohistochemistry results also showed higher GPR34 
protein expression in MDA-MB-231 and TNBC tissues (Figure 
8A,8B). The result of RT-PCR indicated increased GPR34 
mRNA expression in MDA-MB-231 (P=0.02, Figure 8C). 
Based on earlier research, GPR34 has been found to be more 
highly expressed in macrophages. To further verify that 
GPR34 expression is primarily localized to macrophages in 
tissues, we conducted immunofluorescence co-localization 

experiments using CD163 (markers of macrophages), and 
GPR34. As depicted in Figure 8D, the expression of GPR34 
was predominantly observed in macrophages.

Discussion

With emerging evidence uncovering the crucial role of 
the TME in tumor initiation, progression, therapeutic 
response, and resistance, the insight of cancer research 
gradually shifts from the tumor itself to the surrounding 
microenvironment (20,21). TME is a complex network 

Figure 8 A series of experiments to verify the expression of GPR34. (A) IHC was used to examine GPR34 expression in tumor tissues and 
normal tissues. Scale bars: 20 μm (n>3). (B) Western blotting analysis of GPR34 expression in MDA-MB-231 cells compared with MCF-
10A cells. (C) RT-PCR analysis of GPR34 expression in MDA-MB-231 cells compared with MCF-10A cells (n=3). (D) Immunofluorescence 
staining for GPR34 and CD163 in human breast cancer tissue. Tissues were stained with DAPI. Blue: DPAI. Red: GPR34. The green 
represents CD163. Scale bars, 100 μm (n>3). IHC, immunohistochemistry; GPR34, G protein-coupled receptor 34; RT-PCR, reverse-
transcriptase polymerase chain reaction; DAPI, 4',6-diamidino-2'-phenylindole. *, P<0.05.
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comprising a variety of immune cell types, endothelial cells, 
cancer-associated fibroblasts, and other tissue-resident cell 
types (22). TAMs represent a major component of the TME 
and have been proven to mediate tumor progression, poor 
prognosis, and therapy resistance in various malignancies 
(23,24). Recent research has provided evidence indicating 
the crucial involvement of TAMs in promoting the 
aggressive characteristics of TNBC, suggesting their 
potential as biomarkers for prognosis prediction (25,26). In 
TNBC, TAMs originate from circulating monocytes that 
are recruited by various signals released by the tumor and 
surrounding cells to the TME. Dynamic changes in TAMs 
subpopulations were observed during tumor development 
and correlated with immunotherapy’s efficacy (24). TAMs 
exhibit diverse polarization states, typically categorized 
into M1 (pro-inflammatory) and M2 (anti-inflammatory) 
phenotypes. In TNBC, TAMs often polarize towards the 
M2 phenotype, which is associated with immunosuppression 
and promotion of tumor growth. TAMs contribute to 
TNBC progression mainly through secreting cytokines and 
growth factors that support tumor growth, angiogenesis, 
and tissue remodeling (27). Additionally, TAMs in TNBC 
can be reprogrammed by altering their environment or 
through targeted therapies. Reprogramming strategies aim 
to shift TAMs from a tumor-promoting M2 phenotype 
to a more anti-tumor M1 phenotype, thereby enhancing 
immune responses against the tumor. Understanding these 
aspects of TAM biology is crucial for developing effective 
therapeutic strategies targeting TAMs in TNBC (28).

TAMs heterogeneity in the TNBC TME is influenced 
by several molecular mechanisms. Cytokine and chemokine 
signaling: the TME secretes various cytokines and 
chemokines that influence macrophage polarization. For 
example, IL-6, IL-10, and TGF-β are associated with M2 
polarization, which promotes immunosuppression and 
tumor progression. Transcriptional regulation: transcription 
factors such as STAT3, NF-κB, and PPARγ play key roles 
in shaping the macrophage phenotype. These factors can 
drive macrophages towards M2-like states in the presence 
of tumor-derived signals (29). Metabolic pathways: 
metabolic changes within the TME, such as hypoxia 
and altered nutrient availability, can affect macrophage 
polarization and function. For instance, hypoxic conditions 
can lead to increased expression of HIF-1α, promoting M2 
polarization. Epigenetic modifications: epigenetic changes, 
including DNA methylation and histone modifications, can 
also influence macrophage identity and function in TNBC. 
Macrophages play different roles in TNBC progression (30). 

TAMs are involved in the whole process of breast cancer 
development. In the early stages of TNBC, macrophages 
can contribute to tumor initiation through the secretion 
of pro-inflammatory cytokines and growth factors that 
support early tumor cell survival and proliferation. In the 
intermediate stage, as the tumor progresses, macrophages 
play a role in promoting tumor growth and angiogenesis. 
They secrete factors that enhance blood vessel formation 
and support tumor expansion. In the advanced Stage, 
macrophages often adopt an M2-l ike phenotype, 
contributing to immune evasion, metastasis, and resistance 
to therapy. They can create an immunosuppressive 
microenvironment that hinders effective anti-tumor 
responses (31).

Moreover, dynamic changes in TAMs subpopulations 
were observed during tumor development and were 
correlated with the efficacy of immunotherapy (24). In this 
study, we conducted a comprehensive investigation of the 
characteristics and classification of TAMs in TNBC using 
scRNA-seq data. We identified a total of four distinct TAM 
clusters and further examined the correlation between these 
clusters and the prognosis of TNBC. In our analysis, the 
cluster TAM-0 showed a unique prognostic value compared 
with other TAM clusters, which illustrated that specific 
TAM clusters may have potential prognostic prediction and 
help find new prognostic subtyping patterns for TNBC.

Based on DEGs identified within the TAMs clusters, 
which were significantly associated with TNBC prognosis, 
we developed a risk signature specifically based on TAMs. 
The signature is composed of six risk genes (C7, EDNRB, 
GPR34, SDS, STOM, and VSTM4), and two protective 
genes (ADGRF5 and SAMD1). The report has revealed 
that high expression of C7 in breast cancer indicates poor 
prognosis of breast cancer and inhibits sensitivity to taxane-
anthracycline chemotherapy (32). STOM is also dedicated to 
participating in the metastasis of breast cancer (33). G-protein 
coupled receptor 34 (GPR34), which is one member of 
the G-protein coupled receptor superfamily, is reported to 
participate in certain cellular physiological functions such as 
cell growth, differentiation, and motility (34). GPR34 has also 
been demonstrated to promote the malignant phenotype 
of certain cancers, including cervical cancer, gastric 
adenocarcinoma, and colorectal cancer (34,35). Elevated 
expression of GPR34 has been detected in cell lines of 
cervical cancer and colorectal cancer (36-38). Consistent 
with these results, GPR34 also showed a higher presentation 
in TNBC tissues and MDA-MB-231 cells in our study. 
Additionally, our findings demonstrated a stronger immune 
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association between GPR34 and TNBC, in contrast to the 
other seven hub genes. Earlier investigations have also 
highlighted the significance of GPR34 in immune responses, 
emphasizing its role in stimulating paracrine signaling in 
malignant B cells (35,39). Therefore, we hypothesized that 
GPR34 might be involved in the immune-related malignant 
characteristics of TNBC and could serve as a promising 
immunotherapy target. This hypothesis requires further 
investigation. Additionally, we examined the association 
between the signature and the prognosis of TNBC. The 
results revealed that the high-risk group had a poorer 
prognosis, demonstrating the division of the risk signature 
into high- and low-risk groups. Our findings suggest that 
the risk signature represents a dependable tool for precise 
prognosis prediction in TNBC patients. In addition, 
mutation and pathway analysis of the hub genes were then 
performed. We found almost all genes had SNV mutations 
and three oncogenic pathways (PI3K, TP53, and RTK-
RAS) were selected. Since its discovery in 1985, the PI3K 
pathway has remained a prominent and extensively studied 
target for therapeutic intervention (40). PI3K is a kinase 
that was first uncovered to involve cellular transformation 
for its association with polyoma middle T antigens and 
was later found to play an important role in human cancers 
for its activity in mitogenesis and oncogenesis (41). PI3K 
is known to regulate essential cellular functions, including 
protein synthesis, glucose metabolism, cell apoptosis, 
and survival. This is achieved through the generation of 
phosphatidylinositol 3,4,5-trisphosphate (PIP3), which acts 
as a potent second messenger, recruiting specific kinases 
like AKT and PDPK1 to the plasma membrane (41).  
The advent of cancer genome sequencing has shed light on 
PI3K mutations in various human cancers, such as breast, 
colorectal, gastric, and lung tumors, in the 2000s (42).  
Several drugs targeting the PI3K pathway have gained 
regular or accelerated approval from the FDA for the 
treatment of PIK3CA-mutant, estrogen receptor-positive 
advanced-stage breast cancer (41). It is illustrated that 
TNBC harbors mutations in the PI3K that may tend to 
occur progression and therapy resistance (43,44). The 
latest research illustrated that activating the PI3K/AKT 
pathway may induce chemotherapeutic resistance in 
TNBC. Moreover, TMB analysis suggested higher TMB in 
the low-risk group. These findings indicated that our risk 
signature may play an important role in the development 
and therapeutic response of TNBC and might provide 
a basis for exploring new therapeutic targets for TNBC. 
The rapid advancement of immunotherapy has provided 

a new perspective on cancer treatment, emphasizing the 
crucial importance of understanding the immune landscape 
within the TME (45,46). The TME exerts a profound 
influence on cancer biology and can greatly affect the 
efficacy of therapeutic interventions (47). TAM has been 
described to be intimately involved in immunosuppression 
and influences immunotherapy in many cancers (48,49). 
Targeting markers on tumor-associated macrophages could 
enhance cancer immunotherapy (50). TAMs have also 
been shown to modulate PD-1/PD-L1 presentation in the 
TME of TNBC directly and indirectly (51). Our study 
then mainly analyzed immune characteristics of the risk 
signature in TNBC and the results showed that immune-
related pathways were found highly enriched in the high-
risk group. Calculating immune scores of the 8 hub genes, 
the high expression group had significantly higher immune 
scores. The ssGSEA analysis and the CIBERSORT method 
revealed significant differences in immune cell scores 
and immune cell correlation among the two risk groups, 
respectively. In addition, the high-risk group exhibited 
higher levels of TRS, CYT, and IFN-γ which represent a 
more immunoreactive microenvironment. Subsequently, 
the increased expression levels of immune checkpoints 
including PD-1, PD-L1, and CTLA4 in the high-risk 
subtype were evaluated. These studies suggest an important 
immunological value of our risk signature. We, therefore, 
explored potential immunotherapy drugs based on the 
signature. Consequently, 9 CTRP-derived agents and 21 
PRISM-derived agents were found. CTRP-derived GDC-
0941 is PI3K inhibitor and PI3K is an important component 
and has been found aberrant in signaling pathways related 
to cellular biological functions including growth, survival, 
metabolism, and genomic stability in several malignancies, 
breast cancer included (52). Despite previous findings 
indicating the restricted therapeutic efficacy of GDC-
0941 in TNBC, recent in vitro investigations propose 
that co-administration of the third-generation retinoid 
adapalene (ADA) with GDC-0941 could enhance TNBC’s 
responsiveness to GDC, leading to suppressed tumor 
growth and diminished treatment resistance (52,53). Our 
signature may provide novel strategies for the improvement 
of existing immunotherapy and further immunotherapy 
exploration in TNBC.

Our study does have limitations. First, this risk signature 
was constructed mainly based on retrospective data and 
prospective studies remain to be performed. Second, our 
experiments focus on histological and cellular level research, 
while animal-level experiments need to be conducted in 
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the future. Last but not least, the underlying mechanism 
by which this risk signature participates in the prognosis 
and immunity of TNBC patients has not been revealed and 
we shall carry out further exploration of it based on both 
bioinformatics and experiments.

In conclusion, this exploration is an important attempt 
at TAM clusters-related risk signature in TNBC, providing 
unique value for finding independent prognostic factors, 
updating immunotherapy methods, and finding effective 
therapeutic targets.

Conclusions

This study characterized the TAM populations in TNBC 
and generated 4 TAM clusters with distinct diversity. All 
the clusters were significantly associated with TNBC 
prognosis and used to construct a TAM-based prognostic risk 
signature with 8 genes. The TAM-based gene signature was 
observed to be connected with the immune landscape and 
could be used to predict responsiveness to PD-L1 blockade 
immunotherapy. Finally, a novel nomogram integrating the 
risk signature and clinicopathological features was developed, 
which provided a favorable predictive performance in the 
clinical outcome of patients with TNBC.
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