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Abstract

Background: Clinical application of cancer immunotherapy requires a better understanding of tumor
immunogenicity and the tumor microenvironment. HLA class I molecules present antigens to CD8+ cytotoxic cells.
Their loss or downregulation is frequently found in tumors resulting in reduced T cell responses and worse
prognosis.

Methods: We evaluated HLA class I heavy chain expression by immunohistochemistry in 863 biopsies (GeparTrio
trial). Patients received neoadjuvant chemotherapy and adjuvant endocrine treatment if tumors were hormone
receptor-positive (HR+). In parallel, the expression of HLA-A was analyzed using a microarray cohort of 320 breast
cancer patients from the MD Anderson Cancer Center. We evaluated its association with clinical outcome, tumor-
infiltrating lymphocytes (TILs), and immune cell metagenes.

Results: In HR+/HER2− breast cancer, HLA class I heavy chain expression was associated with increased TILs and
better response to chemotherapy (7% vs. 14% pCR rate, P = 0.029), but worse disease-free survival (hazard ratio (HR)
1.6 (1.1–2.4); P = 0.024). The effect was significant in a multivariate model adjusted for clinical and pathological
variables (HR 1.7 (1.1–2.6); P = 0.016) and was confirmed by analysis of HLA-A in a microarray cohort. HLA-A was
correlated to most immune cell metagenes. There was no association with response or survival in triple-negative
or HER2+ disease.

Conclusions: The study confirms the negative prognostic role of lymphocytes in HR+ breast cancer and points at a
complex interaction between chemotherapy, endocrine treatment, and tumor immunogenicity. The results point at
a subtype-specific and potentially treatment-specific role of tumor-immunological processes in breast cancer with
different implications in triple-negative and hormone receptor-positive disease.
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Background
Interactions between cancer cells and the host immune
system are important for development, evolution, and
progression of cancer [1]. They influence response to
therapy and survival of patients and modulating these
effects offer new approaches for cancer therapy.
Immune checkpoint inhibitor (CPI) therapy can en-

hance therapy response in advanced triple-negative
breast cancer (TNBC) [2], and several clinical trials are
ongoing. For a successful implementation of such strat-
egies in clinical practice, a better understanding of
tumor-immunological effects is necessary.
Evidence suggests a role of the immune system in

breast cancer, as the quantity of tumor-infiltrating lym-
phocytes (TILs) is associated with better response to
neoadjuvant chemotherapy and better patient outcome
[3, 4]. In a recent meta-analysis, TILs were associated
with a higher probability of pathologic complete re-
sponse (pCR) [5]. Abundant TILs were associated with a
longer disease-free survival (DFS) in HER2+ breast can-
cer and TNBC. In contrast, TILs were associated with a
shorter OS in patients with hormone receptor-positive,
HER2-negative (HR+/HER2−) disease, pointing at differ-
ences according to breast cancer subtype.
Human leucocyte antigen (HLA) class I molecules are

expressed on the surface of all nucleated cells and are
encoded by the human leukocyte antigens HLA-A,
HLA-B, and HLA-C. Their function is to present anti-
gens to CD8+ cytotoxic T lymphocytes to recognize and
eliminate infected or tumor cells [6]. Downregulation or
loss of HLA class I expression is a frequent event in
pathogen-infected and tumor cells as an effective mech-
anism to evade immune recognition [7, 8]. Deficient
HLA class I expression can be mediated by promoter
methylation [9], mutations in the HLA class I heavy
chains (HC), b2-microglobulin (b2-m) or APM compo-
nents, loss of heterozygosity of HLA gene loci, and tran-
scriptional regulation [10, 11]. Molecular data suggest an
impaired expression of components of the antigen pres-
entation machinery (APM) as a mechanism of resistance
to T cell response [12] and HLA class I abnormalities
have been identified in tumors resistant to CPIs or adop-
tive T cell therapy [13].
Aim of this study was to evaluate the potential of

HLA class I HC expression for prediction of response
to neoadjuvant chemotherapy. To this end, we evalu-
ated expression of HLA class I HC in a large cohort
of breast cancer patients treated with anthracycline/
taxane-based neoadjuvant chemotherapy (within the
GeparTrio trial [14, 15]). We used a clinically anno-
tated microarray cohort from the MD Anderson Can-
cer Center to validate the findings and investigate
correlations with predefined metagenes [16] of differ-
ent immune cell populations.

Methods
GeparTrio trial cohort
The neoadjuvant GeparTrio pilot [17] (NCT00544765)
and main (NCT00544765) trials [14, 15] were prospect-
ive, randomized phase II and III trials including 2357 pa-
tients with breast cancer (cT2–4 cN0–3 cM0) recruited
between 2001 and 2005. Patients received two cycles of
docetaxel, adriamycin, and cyclophosphamide (TAC)
and response was evaluated by ultrasound. Responders
received four more cycles of TAC (pilot study) or were
randomly assigned to four or six cycles of TAC (main
study). Non-responders were randomized to receive ei-
ther four cycles of TAC or four cycles of vinorelbine and
capecitabine. HR+ was defined as ≥ 10% of tumor cells
with estrogen receptor and/or progesterone receptor
expression, as defined in the study protocol. HER2 posi-
tivity was determined by immunohistochemistry (HER2
score 3+) and in situ hybridization where appropriate
(HER2/CEP17 ratio > 2.2). Endocrine treatment for 5
years was planned for patients with HR+ disease but was
not part of the protocol. HER2 therapy was not available
at that time. We used all samples with available material
in the central biobank. Additional file 3: Table S1 lists
the pathological and clinical characteristics of the pa-
tients. The extend of tumor-infiltrating lymphocytes
(TILs) was estimated on H&E-stained whole tissue slides
as the area of tumor cells (for intratumoral TILs) or the
stromal area (for stromal TILs) that is covered by
lymphocytes [3].

Immunohistochemistry of HLA class I antigens
Immunohistochemical staining was performed on tissue
microarrays using the anti-HLA class I antibody EMR-8-5
(dilution 1:600) recognizing the HLA class I HC HLA-A,
HLA-B, and HLA-C (MBL, Woburn, MA, USA). The per-
centage of cells with membranous staining relative to all
cancer cells was assigned to five categories: (0) 0%, (1) 1–
9%, (2) 10–50%, (3) 51–80%, and (4) 81–100%. The inten-
sity of staining was assigned into four categories: (0) nega-
tive, (1) weak, (2) moderate, (3) strong. The groups for
percentage and staining intensity were multiplied resulting
in the immunoreactive score (IRS) ranging from 0 to 12.
Based on the distribution of staining levels and patient
outcome, a cut point (IRS > 2) was selected to optimize
separation of curves in Kaplan-Meier analysis. In addition,
the percentage of positively stained tumor cells was used
continuously to evaluate the effect of HLA immunohisto-
chemistry on clinical endpoints without a defined cut-off.

MD Anderson cancer center (MDACC) microarray cohort
Gene expression data and clinical information of the
MD Anderson Cancer Center cohort [18] (Affymetrix
U133A microarrays) was downloaded from the GEO re-
pository (GSE25066). A total of 320 tumors were HR+/
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HER2− and patients received neoadjuvant chemotherapy
and adjuvant endocrine treatment if HR+. HR positivity
was defined as any number of stained cells. We applied an
additional filter based on gene expression of ESR1 (probe-
set 205225_at) based on its bimodal distribution (> 10.45).
In total, 267 patients met these criteria. Additional file 3:
Table S2 lists the patient characteristics. HLA-A, HLA-B,
and HLA-C metagenes were calculated as mean expres-
sion of the respective probesets (HLA-A: 215313_x_at,
213932_x_at; HLA-B: 211911_x_at, 209140_x_at, 208729_
x_at, HLA-C: 208812_x_at, 216526_x_at, 214459_x_at,
211799_x_at). Unsupervised cut-offs were chosen by
assigning the same fraction of cases to the groups with
high (60%) and low (40%) expression as in the GeparTrio
dataset (HLA-A > 14.24, HLA-B > 13.63, and HLA-C >
13.69). Probesets 205225_at (estrogen receptor 1) and
208079_s_at (Aurora kinase A) were used to evaluate their
association with HLA-A. Immune cell metagenes were

calculated as the mean expression of cell-type-specific
genes [16].

Statistical methods
Pathologic complete response (pCR) was defined as the
absence of invasive cancer in breast and lymph nodes
(ypT0/ypTis ypN0). In the MD Anderson cohort, re-
sponse to chemotherapy was recorded using the residual
cancer burden index [19]. Disease-free survival (DFS)
was defined as time from study entry to local or distant
recurrence or death from any cause, distant recurrence-
free survival (DRFS) as the interval between diagnosis
and distant recurrence or death from any cause, and
overall survival (OS) as the time from study entry to
death from any cause. To evaluate associations between
clinical and pathological variables with HLA I, χ2 tests
were used. Kaplan-Meier estimators and log-rank tests
were used for survival analyses (R package survival). The
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Fig. 1 HLA class I HC immunohistochemistry in the GeparTrio cohort: HLA class I HC immunohistochemistry showed a membranous staining
pattern. Examples of a positive case and a negative case are shown in the upper and lower half, respectively (a). The data distribution of the
immunoreactive score (IRS) as a function of staining quantity (percentage) and quality (intensity) is shown. The colored bars represent the
different breast cancer subtypes (b). HLA I was more frequently high in HR−/HER2− breast cancer as compared to other subtypes (c). It was also
associated with higher tumor grade, tumor-infiltrating lymphocytes, and nodal status (d)
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independent prognostic value was assessed in multivari-
ate Cox regression analyses and likelihood ratio tests.
Statistical computations were performed in R version
3.3.1 (R Development Core Team, Vienna, Austria). Sig-
nificance was based on P < 0.05 and 95% CI estimates.

Results
HLA class I expression in breast cancer
A total of 732 cases from the GeparTrio trial were ana-
lyzed for HLA class I HC expression. In total, 669 cases
(91%) showed a positive staining; 63 were negative (9%,
Fig. 1). We defined a cut-off to dichotomize HLA class I
expression based on data distribution and patient out-
come. This resulted in 480 cases with high expression
(66%) and 252 (34%) with low expression across breast
cancer subtypes. Additional file 3: Table S1 lists the pa-
tient and tumor characteristics of the GeparTrio study
cohort that was evaluated for HLA class I HC expression
(and Additional file 3: Table S2 the characteristics of the
HR+/HER2− cohort).

Association with clinical and pathological tumor
characteristics
The frequency of HLA class I HC expression was higher
in TNBC compared to other subtypes (81% in TNBC,
Fig. 1), in patients with node-positive disease (P = 0.004)
and in tumors with a higher histological grade
(P < 0.001). High levels of HLA class I HC expression
was associated with extensive stromal TILs in the entire
cohort (P < 0.001, Fig. 1) and within HR+/HER2− tu-
mors (P < 0.001), where both the extent of intratumoral
and stromal TILs were associated with high HLA class I
HC expression (Fig. 2). There was no significant associ-
ation with HER2 status, clinical T stage (T1–2 vs. T3–
4), and histological subtype (no special type vs. lobular;
data not shown).

Association of HLA class I HC expression with clinical
endpoints
High HLA class I HC expression was associated with a
higher rate of pathologic complete response (pCR) in pa-
tients with HR+/HER2− disease (7% vs. 14%, P = 0.029,

0 1−9 10−29 30−59 60−100

Intratumoral TILs and HLA I

Percent Intratumoral TILs

F
ra

ct
io

n 
w

ith
 h

ig
h 

or
 lo

w
 H

LA
 I

0.0

0.2

0.4

0.6

0.8

1.0

A
HR+/HER2−

N = 132 N = 27

N = 55

N = 25

N = 18

N = 122 N = 24

N = 22

N = 6

N = 2

0 1−9 10−29 30−59 60−100

Stromal TILs and HLA I

Percent Stromal TILs

F
ra

ct
io

n 
w

ith
 h

ig
h 

or
 lo

w
 H

LA
 I

0.0

0.2

0.4

0.6

0.8

1.0

B
HR+/HER2−

N = 36

N = 40
N = 81

N = 51

N = 49

N = 49

N = 33
N = 57

N = 25

N = 12

Both Stromal Both

Patterns of  TILs and HLA I

F
ra

ct
io

n 
w

ith
 h

ig
h 

or
 lo

w
 H

LA
 I

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

depleted present present

C
HR+/HER2−

N = 36

N = 96

N = 125

N = 49

N = 73

N = 54

0 2 4 6 8 10 12 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Patterns of TILs and Survival

Disease−free Survival [years]

P
ro

po
rt

io
n 

S
ur

vi
va

l

Stromal & Intratumoral

None

Stromal

D

p = 0.05

HR+/HER2−
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Table 1), even after adjustment for clinical and patho-
logical characteristics, but not in other subtypes
(Table 1). High HLA class I expression was associated
with shorter DFS in HR+/HER2− breast cancer (P =
0.024, Fig. 3, Table 1), but not in other subtypes
(Table 1). In patients with HR+/HER2− breast cancer,
HLA class I HC expression was prognostic when strati-
fied for nodal status (Fig. 3) and in a multivariate ana-
lysis adjusted for clinical and pathological characteristics
(Table 1). In an exploratory analysis within HR+/HER2−
breast cancer, HLA class I HC was associated with higher
risk of relapse in patients with grade 1–2 tumors, patients
with residual disease after neoadjuvant chemotherapy, in
patients with non-lobular breast cancer and those without
extensive intratumoral lymphocytes (Additional file 1:
Figure S1). We also used the percentage of cells positively
stained for HLA I to evaluate its association with clinical
endpoints without a predefined cut-off (Additional file 3:
Table S3).

HLA I expression in an independent dataset
For validation, we used data from a clinically annotated,
publicly available dataset of 267 hormone HR+/HER2−
breast cancer patients with chemo-endocrine treatment
[18] that shares characteristics with the GeparTrio cohort
(Additional file 3: Table S2). We evaluated the expression
of HLA-A, HLA-B, and HLA-C using the continuous data
and defined cut points corresponding to the observed fre-
quencies of high vs. low HLA class I expression in the
IHC dataset (Table 2, Fig. 3). HLA-A, HLA-B, and HLA-C
were strongly correlated (Additional file 2: Figure S2).
HLA-A, but not HLA-B or HLA-C, was associated with
longer distant recurrence-free survival but not with
response to therapy (Table 2, Fig. 3).

Association of HLA class I expression with immune cell
populations
The association of HLA-A expression with previously de-
scribed immune-cell-specific metagenes [16] was evalu-
ated in the microarray-based dataset to better understand
the association with the immunological tumor infiltrate
(Additional file 3: Table S4). Within the HR+/HER− sub-
set, positive correlations of the HLA metagene were found
with all signatures (Additional file 3: Table S4). The stron-
gest associations were detected for the T cell signatures
(ρP = 0.553), myeloid dendritic cells (ρP = 0.488), and cyto-
toxic lymphocyte signatures (ρP = 0.471).

Immune cell populations and patient outcome
Univariate Cox and logistic regression were performed
to evaluate the predictive and prognostic influence of
the different immune cell populations in HR+/HER2−
breast cancer. The metagene representing neutrophils
was associated with reduced response to neoadjuvant

Table 1 Univariate Cox and logistic regression within tumor
subtypes and multivariate Cox and logistic regression in patients
with HR+/HER2− breast cancer for comparing tumors with high
vs. low HLA class I immunohistochemistry

Univariate Cox regression—disease-free survival (GeparTrio)

Subtype MHCI HR 95% CI P

HR+/HER2− High vs. low 1.590 1.062–
2.380

0.024

HR−/HER2− High vs. low 0.649 0.315–
1.336

0.241

HR+/HER2+ High vs. low 2.486 0.956–
6.467

0.062

HR−/HER2+ High vs. low 1.015 0.304–
3.384

0.981

Multivariate Cox regression—disease-free survival (GeparTrio; HR+/HER2−)

HR 95% CI P

Response pCR vs. RD 0.457 0.225–
0.925

0.029

cT stage cT3–4 vs. cT1–2 2.270 1.522–
3.385

<
0.001

cN stage cN+ vs. cN− 2.026 1.335–
3.075

0.001

Therapy Resp. guided vs.
standard

0.945 0.638–
1.400

0.777

Grade G3 vs. G1–2 1.733 1.024–
2.932

0.041

Age Age ≥ 50 vs. < 50 1.252 0.838–
1.870

0.272

HLA class I
HC

High vs. low 1.701 1.105–
2.618

0.016

Univariate logistic regression—pCR (GeparTrio)

Subtype MHCI HR 95% CI P

HR+/HER2− High vs. low 2.226 1.154–
4.585

0.022

HR−/HER2− High vs. low 0.852 0.332–
2.316

0.744

HR+/HER2+ High vs. low 2.022 0.728–
6.590

0.202

HR−/HER2+ High vs. low 0.857 0.220–
3.385

0.823

Multivariate logistic regression—pCR (GeparTrio; HR+/HER2−)

HR 95% CI P

cT stage cT3–4 vs. cT1–2 0.946 0.447–
1.903

0.880

cN stage cN+ vs. cN- 1.107 0.579–
2.135

0.760

Therapy Resp. guided vs.
standard

0.842 0.444–
1.578

0.593

Grade G3 vs. G1–2 2.804 1.348–
5.644

0.005

Age Age ≥ 50 vs. < 50 0.564 0.297–
1.055

0.075

HLA class I
HC

High vs. low 2.132 1.057–
4.603

0.042
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chemotherapy, while the metagene for the monocytic
lineage was associated with better response (Fig. 4). The
HLA-A metagene, the monocytic lineage, and the B
lineage were associated with higher risk of distant relapse.

Association of HLA class I expression with ESR1 and
Aurora kinase A expression
To evaluate subtyping effects of HLA-A expression, we
correlated the expression with estrogen receptor 1
(ESR1) and aurora kinase A (AUKRA) as a marker of
proliferation [20]. There was no strong association of
HLA-A with either gene (ρP = − 0.164 and − 0.122, re-
spectively; Additional file 3: Table S4).

Discussion
HLA class I HC expression as evaluated by IHC is pre-
dictive for better response and worse DFS and OS in
HR+/HER2− breast cancer in a large clinical trial cohort.
It was positively associated with TILs and independently
prognostic for patient survival adjusted for other clinical
and pathological factors. It was neither predictive nor
prognostic in TNBC or HER2+ disease. We confirmed
the prognostic value of HLA-A expression in an inde-
pendent microarray-based dataset.
HLA class I HC expression was associated with clinical

and pathological tumor characteristics indicative of a
more aggressive tumor biology such as the presence of
lymph node metastases and high histopathological grade.

Fig. 3 HLA class I HC immunohistochemistry in GeparTrio and HLA-A mRNA analysis in the MDACC cohort: in GeparTrio, HLA class I
immunohistochemistry was associated with shorter disease-free survival (a, b) in HR+/HER2− tumors. For the HR+/HER2− microarray data, we
chose a cut-off for HLA-A without prior knowledge of patients’ outcome to assign the same fraction of patients to each group as in the
immunohistochemistry dataset. The effect on survival could be confirmed (c, d)
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We considered that this might explain the better re-
sponse, but worse DFS that was associated with high
HLA class I HC expression. However, there was no
strong association of HLA-A expression with either
ESR1 expression or AURKA expression. HLA was prog-
nostic in a multivariate analysis adjusted for clinical and
pathological tumor characteristics including nodal status
and tumor grade. Thus, the effects could not be ex-
plained by these correlations alone.
The main caveat of the study is that we cannot evalu-

ate the role of HLA class I expression for sensitivity to
different treatments, as patients received both cytotoxic
and endocrine therapy. Also, we cannot provide data on
HLA class I in its most relevant context of therapeutic
immunomodulation.
Another major limitation of the study is the lack of

an independent validation cohort, especially to valid-
ate the cut-point used for immunohistochemistry.
Even though the GeparTrio and MD Anderson data-
sets share clinical and pathological features, a differ-
ent technology is used to detect biomarkers on
different biological levels. This approach comes with
limitations, both on the technical and clinical levels.
An important clinical difference is that in GeparTrio,
hormone receptor positivity was defined as ≥ 10% of
tumor cells stained for estrogen or progesterone re-
ceptor, in the MD Anderson cohort, as any stained
tumor cells. As it is known that low hormone
receptor-positive cases may resemble triple-negative
disease on the molecular level and clinically [21, 22],

Table 2 Univariate Cox and logistic regression analyses to
predict distant recurrence-free survival using the dichotomized
and continuous expression data of HLA-A, HLA-B, and HLA-C,
respectively. HLA-A, but not HLA-B and HLA-C, is predictive for
patient survival, but not for response to neoadjuvant treatment

Univariate Cox regression—distant recurrence-free survival (MDACC)

HR 95% CI P

HLA-A High vs. low 2.493 1.131–5.494 0.023

HLA-B High vs. low 2.042 0.956–4.358 0.065

HLA-C High vs. low 1.477 0.723–3.016 0.284

Univariate logistic regression—pCR (MDACC)

HR 95% CI P

HLA-A High vs. low 1.722 0.699–4.289 0.234

HLA-B High vs. low 1.373 0.552–3.383 0.487

HLA-C High vs. low 1.373 0.552–3.383 0.487

Univariate Cox regression—distant recurrence-free survival (MDACC)

HR 95% CI P

HLA-A Continuous 1.576 1.079–2.303 0.019

HLA-B Continuous 1.364 0.973–1.912 0.072

HLA-C Continuous 1.359 0.941–1.965 0.102

Univariate logistic regression—pCR (MDACC)

HR 95% CI P

HLA-A Continuous 1.346 0.857–2.103 0.192

HLA-B Continuous 1.367 0.887–2.132 0.160

HLA-C Continuous 1.519 0.948–2.466 0.085

Fig. 4 Immune cell populations and patients’ outcome in the HR+/HER2− MDACC cohort: The figure shows the results of univariate logistic
regressions (a) for the probability of a high residual cancer burden after neoadjuvant therapy (RCBII-III) and the results of univariate Cox
regressions (b) for distant recurrence-free survival in dependence of immune cell metagene expression. The metagene for neutrophils was
associated with lesser response, the metagene representing monocytes with better response. HLA-A and the metagenes for monocytes and the
B lineage were associated with higher risk of distant relapse. Statistical significance (P < 0.05) is indicated by black points and bars
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this might influence the comparability of the cohorts.
We have therefore applied an additional filter to ex-
clude cases with low ESR1 expression from the MD
Anderson dataset.
With these limitations in mind, we believe it is a

strength of our study that we are able to show the prog-
nostic relevance of HLA in different cohorts and on the
protein as well as mRNA level, which points out the role
of HLA as a relevant parameter for the description of
the tumor microenvironment.
HLA class I expression was previously evaluated by

immunohistochemistry in 212 breast cancer samples not
stratified for subtype [23]. The frequency of strong stain-
ing (32.5%) was comparable to our data, but HLA class I
was associated with a longer DFS across subtypes. In
other cancers, like colorectal [24] and non-small cell
lung cancer [25], HLA class I expression was positively
associated with survival.
For patients with an excellent response to chemother-

apy, we observed a trend towards better survival if HLA
class I HC expression was high. However, this subgroup
was very small, as most patients with HR+/HER2−
breast cancer do not show a complete response. In our
recent meta-analysis of TILs in breast cancer [5], TILs
were associated with better response to chemotherapy in
HR+/HER2− disease, but shorter DFS and OS. The ef-
fect was strongest in large tumors and in patients who
did not have an excellent response to chemotherapy.
Our observations in this study are in line with our
current findings, pointing at an interaction between lym-
phocytes and cytotoxic and endocrine treatment effects.
All of the analyzed immune cell metagenes were posi-

tively correlated with HLA-A expression. Only HLA-A,
and the monocytic and B cell lineages were statistically
significantly associated with higher risk, but as trends
and correlations were similar for the different immune
cell populations, we found it not possible to pinpoint
HLA-A effects to one or more specific immune cell type
based on these data.
Patient outcome in HR+/HER2− disease is a function

of resistance and sensitivity to neoadjuvant cytotoxic
therapy, adjuvant endocrine treatment, and natural
biology. Because response to chemotherapy was better in
patients with tumors with high HLA class I, we hypothe-
sized that the shorter DFS might be due to an inter-
action with endocrine treatment. Tumors with a high
TIL density might be less responsive to endocrine treat-
ment by unknown mechanisms unrelated to ESR1
expression. Interestingly, immune gene modules can
predict poor antiproliferative response to aromatase in-
hibitors [26, 27]. In a large study on patients receiving
endocrine therapy alone, HLA class I was not prognos-
tic, but the presence of FOXP3-positive cells was associ-
ated with better survival [28].

Conclusions
We demonstrate how HLA class I expression can be
used to predict worse outcome in HR+/HER2− breast
cancer. The results point at a subtype-specific and po-
tentially treatment-specific role of tumor-immunological
processes in breast cancer with different implications in
triple-negative and hormone receptor-positive disease.
Further studies are necessary to understand the under-
lying mechanisms as a foundation for the potential
application of immunotherapy in HR+ breast cancer.
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