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The CRISPR/Cas9 gene-editing system is the third-generation gene-editing technology that has been
widely used in biomedical applications. However, off-target effects occurring CRISPR/Cas9 system has
been a challenging problem it faces in practical applications. Although many predictive models have been
developed to predict off-target activities, current models do not effectively use sequence pair informa-
tion. There is still room for improved accuracy. This study aims to effectively use sequence pair informa-
tion to improve the model’s performance for predicting off-target activities. We propose a new coding
scheme for coding sequence pairs and design a newmodel called CRISPR-IP for predicting off-target activ-
ity. Our coding scheme distinguishes regions with different functions in the sequence pairs through the
function channel. Moreover, it distinguishes between bases and base pairs using type channels, effec-
tively representing the sequence pair information. The CRISPR-IP model is based on CNN, BiLSTM, and
the attention layer to learn features of sequence pairs. We performed performance verification on two
data sets and found that our coding scheme can represent sequence pair information effectively, and
the CRISPR-IP model performance is better than others. Data and source codes are available at https://
github.com/BioinfoVirgo/CRISPR-IP.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
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1. Introduction

CRISPR/Cas9 (Clustered Regularly Interspaced Short Palin-
dromic Repeats/CRISPR associated protein 9) system is a powerful
genome editing technology for editing various species and cells [1-
3]. The CRISPR/Cas9 system has two key components: Guide RNA
(gRNA) and Cas9 endonuclease. Guide RNA is an RNA chimera com-
posed of CRISPR RNA (crRNA) and trans-activating crRNA
(tracrRNA). The crRNA contains a guide sequence that can accu-
rately guide the Cas9 protein to the corresponding target of the
genome. The 20-nucleotide guide sequence in the guide RNA is
complementary to the DNA target sequence, and the Cas9 nuclease
cuts the DNA upstream of the 3-nucleotide protospacer adjacent
motif (PAM) to form a blunt-ended DNA double-strand break [4-
6]. Although the CRISPR/Cas9 system has many advantages, its pos-
sible off-target risk has affected the in-depth study of gene-editing
technology [7]. Therefore, improving off-target prediction meth-
ods’ performance is critical to help isolate the exact location of
DNA cleavage.

The off-target effect is that the Cas9 protein binds to an unex-
pected genomic site for cutting [8]. Off-target sites can be divided
into three categories, as shown in Fig. 1: (1) Mismatches, (2) RNA
bulges (insertion), and (3) DNA bulges (deletion) [9].

In recent years, researchers have studied the off-target predic-
tion of the CRISPR/Cas9 system and proposed various methods.
These methods can mainly be divided into alignment-based meth-
ods and scoring-based methods [10]. (1) Alignment-based meth-
ods determine the integrity of the search for potential off-target
sites through the maximum number of mismatches, allowed
PAM, and other conditions, such as Cas-OFFinder [11] and CRIS-
PRitz [12]. Therefore, they are often used to find possible off-
target sites from the entire genome. (2) Score-based methods are
used to predict the off-target activity of gRNA-DNA pairs, which
can be divided into three categories. Early models used
hypothesis-driven methods (evaluating off-target activities based
on formulas), such as MIT [13] and CDF [14]. These methods calcu-
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Fig. 1. Three cases of off-target types.
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late the probability of off-target activity at potential off-target sites
based on hand-made rules. Further, some researchers attempted to
use machine learning methods to construct models, such as CRISTA
[15] and Elevation [16]. These methods used the number of GCs,
mismatch positions, and other artificially constructed features to
predict the probability of off-target activity. Recently, researchers
have proposed some prediction models based on deep learning
methods, such as AttnToMismatch_CNN [17] and CRISPR-Net
[18]. These methods can learn features automatically from the
sequence pairs and utilize these features for prediction.

Although existing studies have attempted complex off-target
prediction models, they do not effectively use the sequence pair
information. How to utilize sequence pair information effectively
is still a challenging problem. We can divide the off-target predic-
tion problem based on deep learning into two tasks. (1) Convert
the gRNA-DNA sequence pair into a vector or matrix representa-
tion. (2) Use deep learning models to learn high-order features
from vector or matrix representations and make predictions for
sequence pairs.

For the first task, a series of coding schemes were proposed. Lin
et al. coded gRNA and DNA into a 4-dimensional one-hot vector
and obtained the corresponding base pair code through the ’OR’
operation [19]. Charlier et al. pointed out that the ’OR’ operation
of the coding scheme would lead to information loss and proposed
using the concatenating operation instead of the ’OR’ operation
[20]. Neither of these two coding schemes considers the off-
target situation with bulges. Lin et al. proposed a new coding
scheme to encode sequence pairs containing bulges and mis-
matches [18]. However, they all ignore that the gRNA-DNA
sequence pair contains two sequence regions with different func-
tions. In addition, the coding scheme proposed by Lin et al. uses
’OR’ operates in the type channel part, which will also cause a part
of the information to be lost.

For the second task, a series of network models are proposed. As
shown in Table 1, these models use two or three of the four types of
network layers. The convolutional layer learns local features
through the convolution kernel [21], the recurrent layer learns
the context features of the sequence by saving the sequence state
Table 1
The model’s association with the network layer.

Model Convolution

CRISPR-Net [18] Yes
CRISPR-OFFT [25] Yes
AttnToMismatch_CNN [17] Yes
CNN_std [19] Yes
DeepCRISPR [26] Yes

Notes: ’Yes’ means that the model uses this kind of network layer, and ’NO’ means it do
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[22], and the attention layer learns global features by calculating
the attention score [23,24]. Finally, the dense layer maps the fea-
tures to the sample label space. Different types of network layers
have a different focus on learning features. However, no model
simultaneously uses four types of network layers for off-target
prediction.

In this study, we propose a new coding scheme for gRNA-DNA
sequence pairs. That distinguishes between bases and base pairs
in sequence pairs through the type channels, distinguishes regions
with different functions in the sequence pairs through the function
channel, and solves the information loss problem in Lin’s coding
scheme. In addition, we develop a new model CRISPR-IP (CRISPR
model based on Identity and Position), which learns the identity
features of base pairs through CNN, learns the position features
of base pairs through BiLSTM, and learns the sequence pair features
through the attention layer. Finally, the model predicts the possi-
bility of off-target activity for each potentially off-target gRNA-
DNA pair. The experiments have proved that our coding scheme
effectively represents sequence pair information, which helps
improve the model’s prediction performance. Moreover, the per-
formance of our proposed model is better than several advanced
off-target prediction models. Therefore, it is expected to become
a potential tool to guide the CRISPR/Cas9 system experiments.
2. Results

The experiments in the study are designed as follows: First, we
evaluate the two coding schemes through the CRISPR-IP model and
three types of neural networks. Second, we compared the CRISPR-
IP with other advanced off-target models and analyzed how the
four parts of the CRISPR-IP affect the model’s performance through
ablation experiments. Then, we studied the impact of samples with
bulges on models and augmented epigenetics factor features to
evaluate models. Finally, we studied the impact of over-sampling
and under-sampling methods on the prediction performance of
the CRISPR-IP.
Recurrent Attention Dense

Yes No Yes
No Yes Yes
No Yes Yes
No No Yes
No No Yes

es not.
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2.1. Comparison of coding schemes

We use leave-one-gRNA-out cross-validation (LOGOCV) on the
CIRCLE-Seq data set and SITE-Seq data set to evaluate the predic-
tion performance of the two coding schemes in the same model.
For evaluation details, please refer to the section ‘‘Performance
evaluation”. The average values of the cross-validation results in
the CIRCLE-Seq data set and the SITE-Seq data set are shown in
Table 2 and Table 3.

For the CRISPR-IP model, the evaluation results show that the
off-target prediction performance of the model using the new cod-
ing scheme is improved. On the CIRCLE-Seq data set, the CRISPR-IP
model using our coding scheme achieved better results on PR-AUC,
ROC-AUC, F1-score, Precision, and Recall, with an increase of 1.1%,
0.7%, 0.8%, 0.9%, 2.5%, respectively. Accuracy is the same as the
result of the model using Lin’s coding scheme, and both are
0.989. That also reflects that the imbalance of the samples will
cause some evaluation metrics to be unable to evaluate the predic-
tion results of the model objectively. On the SITE-Seq data set, the
CRISPR-IP model using our coding scheme achieved better results
on PR-AUC, ROC-AUC, F1-score, and Recall, with an increase of
5.6%, 0.9%, 2.3%, and 6.7%. Although Precision has declined by
1.7%, the improvement of the F1-score shows that the CRISPR-IP
model using our coding scheme has improved the overall predic-
tive performance.

To compare the two coding schemes more objectively, we eval-
uated them through three types of network models. For details of
the network, see the section ‘‘Neural networks for comparing cod-
ing schemes”. On the SITE-Seq data set, the CNN and RNN networks
using our coding scheme have achieved better results in six perfor-
mance metrics, which shows that the use of our coding scheme can
improve the performance of CNN and RNN networks. Although the
DNN network using our coding scheme has declined in Recall, the
improvement of the F1-score shows that the performance of the
DNN network’s off-target prediction is overall improved. However,
on the CIRCLE-Seq data set, the prediction results of the three types
of networks using our coding scheme and Lin’s coding scheme have
advantages and disadvantages in six performance metrics. Because
the sample imbalance problem of the CIRCLE-Seq data set is more
serious, making models challenging to learn useful features from
the coding, resulting in poor prediction results. In the performance
of the two data sets, we found that the prediction results on the
SITE-seq data set are better than the results on the CIRCLE-Seq data
set under the same coding scheme and the same model. The prob-
lem of sample imbalance affects the model’s ability to learn infor-
mation from the code. In short, the results of Table 2 and Table 3
show that our coding scheme can more effectively express the
information of sequence pairs, which helps the model to achieve
better results.
Table 2
Performance for each predictive model on the CIRCLE-seq data set.

Metric CRISPR-IP FNN3 FNN5 FNN10

Accuracy 0.989 0.962 0.955 0.988
Accuracy 0.989 0.983 0.976 0.981
F1 score 0.375 0.148 0.110 0.169
F1 score 0.383 0.138 0.096 0.090
PR-AUC 0.483 0.150 0.102 0.161
PR-AUC 0.494 0.103 0.065 0.069
Precision 0.666 0.291 0.229 0.477
Precision 0.675 0.240 0.146 0.190
ROC-AUC 0.961 0.897 0.840 0.770
ROC-AUC 0.968 0.856 0.812 0.782
Recall 0.295 0.330 0.278 0.128
Recall 0.320 0.123 0.113 0.099

Notes: Better results are indicated in bold. Encoding scheme 1 was proposed by Lin et a
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2.2. Comparison of different models

This section compares the CRISPR-IP model with other
advanced off-target prediction models. The experimental results
of the CRISPR-IP and the CRISPR-Net on the two data sets are
shown in Fig. 2.

It can be observed from Fig. 2 that compared with the CRISPR-
Net model, the performance of our model has greatly improved. On
the CIRCLE-Seq data set, CRISPR-IP has increased by 0.1%, 19.4%,
3.7%, 3.4%, 18.5%, 2.5% in Accuracy, PR-AUC, ROC-AUC, F1-score,
Precision, Recall, respectively. On the SITE-seq data set, CRISPR-IP
has increased by 1%, 12.6%, 2.9%, 14.2%, 19.4%, 2.6% in Accuracy,
PR-AUC, ROC-AUC, F1-score, Precision, Recall, respectively.

The results of the CFD, AttnToMismatch_CNN, CNN_std, CRISPR-
OFFT, and Elevation methods on the SITE-seq data set are shown in
Fig. 3. Compared with CFD, AttnToMismatch_CNN, CRISPR-OFFT,
and CNN_std, our model significantly improves the results of the
other five evaluation metrics, except for Accuracy, which is seri-
ously affected by sample imbalance problems. Compared with
the Elevation method, the CRISPR-IP model has improved PR-
AUC, ROC-AUC, F1-score, and Recall by 8.7%, 10.1%, 1.8%, and
6.5%, respectively. Accuracy, Precision has decreased by 0.1% and
1.8%. The Elevation method has better results on Precision. Because
the Elevation method is more inclined to predict samples as nega-
tive samples, resulting in lower Recall and F1-score indicators. We
conclude that CRISPR-IP has better predictive capabilities than
other advanced models in Fig. 2 and Fig. 3.
2.3. Ablation study

In this section, we design ablation experiments to verify the
influence of different parts of CRISPR-IP on the prediction perfor-
mance. The details of CRISPR-IP architecture are in the ‘‘CRISPR-
IP architecture” section. By deleting the four parts of the CRISPR-
IP model, four ablation models were constructed: ‘‘ablation part100,
”ablation part200, ‘‘ablation part300, and ”ablation part400. Among
them, ‘‘ablation part400 does not delete all of the dense layers and
retains a dense layer as the output layer. The purpose of the abla-
tion experiment is mainly to show whether the four parts of the
model improve performance. The experimental results are shown
in Fig. 4.

Due to the imbalance of the sample, models can easily obtain a
high value of Accuracy. The model’s Accuracy has a small gap and
is not distinguishable. Therefore, we gave up the comparison of
Accuracy values. In addition, CRISPR-IP and the four ablation mod-
els have advantages and disadvantages in F1-score, Precision, and
Recall. These metrics are affected by the threshold and have limi-
tations that are difficult to reflect the overall performance. Accord-
ing to PR-AUC and ROC-AUC that can reflect the overall situation,
CNN3 CNN5 LSTM GRU Encoding

0.988 0.988 0.984 0.983 encoding scheme 1
0.988 0.988 0.986 0.976 encoding scheme 2
0.004 0.005 0.250 0.284 encoding scheme 1
0.019 0.037 0.171 0.240 encoding scheme 2
0.244 0.239 0.230 0.265 encoding scheme 1
0.242 0.226 0.331 0.330 encoding scheme 2
0.057 0.240 0.396 0.401 encoding scheme 1
0.334 0.418 0.427 0.424 encoding scheme 2
0.940 0.935 0.873 0.907 encoding scheme 1
0.937 0.929 0.936 0.901 encoding scheme 2
0.002 0.002 0.244 0.320 encoding scheme 1
0.010 0.020 0.161 0.308 encoding scheme 2

l., and coding scheme 2 was proposed by us.



Table 3
Performance for each predictive model on the CIRCLE-seq data set.

Metric CRISPR-IP FNN3 FNN5 FNN10 CNN3 CNN5 LSTM GRU Encoding

Accuracy 0.990 0.670 0.796 0.955 0.982 0.982 0.988 0.987 encoding scheme 1
Accuracy 0.990 0.971 0.966 0.984 0.990 0.989 0.988 0.988 encoding scheme 2
F1 score 0.621 0.144 0.133 0.364 0.222 0.255 0.560 0.518 encoding scheme 1
F1 score 0.644 0.364 0.403 0.472 0.533 0.501 0.569 0.531 encoding scheme 2
PR-AUC 0.695 0.209 0.082 0.302 0.316 0.319 0.665 0.616 encoding scheme 1
PR-AUC 0.751 0.350 0.339 0.391 0.641 0.587 0.682 0.676 encoding scheme 2
Precision 0.808 0.117 0.087 0.325 0.691 0.672 0.669 0.688 encoding scheme 1
Precision 0.791 0.529 0.439 0.538 0.882 0.887 0.725 0.796 encoding scheme 2
ROC-AUC 0.973 0.767 0.775 0.855 0.891 0.885 0.970 0.965 encoding scheme 1
ROC-AUC 0.982 0.892 0.900 0.904 0.968 0.961 0.971 0.973 encoding scheme 2
Recall 0.526 0.711 0.614 0.566 0.194 0.211 0.569 0.504 encoding scheme 1
Recall 0.593 0.473 0.583 0.555 0.396 0.364 0.570 0.506 encoding scheme 2

Notes: Better results are indicated in bold. Encoding scheme 1 was proposed by Lin et al., and coding scheme 2 was proposed by us.

Fig. 2. Performance evaluation of CRISPR-IP and CRISPR-Net. The result of CIRCLE-Seq dataset is (a), the result of SITE-Seq dataset is (b).

Fig. 3. Evaluation of performance for CRISPR-IP and other models on SITE-seq data set.
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we found that CRISPR-IP has better results than the four ablation
models. In PR-AUC and ROC-AUC, we focus more on the compar-
ison results of PR-AUC. PR-AUC can better reflect the global perfor-
mance of classification when samples are imbalanced. We observe
from PR-AUC results that removing the convolution layer and pool-
ing layer (ablation part1) has the most significant impact on the
model’s performance, which is reduced by 36.4% on the CIRCLE-
Seq data set, 24.9% on the SITE-Seq data. It shows that learning
the identity features of nucleotide pairs through the convolutional
layer plays an essential role in the model’s off-target predicting.
The significant impacts are to delete the BiLSTM part of the model
(ablation part2) and delete the model’s attention and global pool-
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ing layers (ablation part3). The PR-AUC of the model with the
BiLSTM part removed decreases 14.7% on the CIRCLE-Seq data set
and 10.8% on the SITE-Seq data. The PR-AUC of the model that
removes the attention and global pooling layers reduces 11.5% on
the CIRCLE-Seq data set and 7.6% on the SITE-Seq data. It shows
that learning the sequence features of nucleotide pairs containing
position information through the BiLSTM layer and the focused
learning of nucleotide pairs features through the attention layer
can improve the model’s performance. The most negligible impact
on model performance is the dense layer (ablation part4). The PR-
AUC of the model that deletes the dense layer part is reduced by
0.03% on the CIRCLE-Seq data set and 2.3% on the SITE-Seq data,



Fig. 4. Results of ablation experiments. The result on CIRCLE-Seq dataset is (a), the result on SITE-Seq dataset is (b).
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slightly lower than the CRISPR-IP model. That shows that the dense
layer improves performance, although the degree of improvement
is not precise.
2.4. Impact of sequence pairs with bulges

In this part, we study the impact of samples (sequences) with
bulges on the model’s prediction performance on the CIRCLE-Seq
dataset. We named the original CIRCLE dataset as Dataset_C, which
contains samples with bulges. We delete the samples containing
bulges in the CIRCLE-Seq dataset and construct the dataset named
Dataset_NC. We used LOGOCV to evaluate CRISPR-IP and CRISPR-
Net on two datasets. The evaluation results are shown in Fig. 5.

From Fig. 5(a) and (b), the prediction performance of the models
trained on the Dataset_C has increased or decreased in the Data-
set_NC. CRISPR_IP_C compared with CRISPR_IP_NC ROC-AUC and
PR-AUC increased by 4.5% and 11.1%. In contrast, CRISPR_Net_C
was reduced by 1.3% and 3.4%, respectively, compared with
CRISPR_Net_NC. That shows it is possible to learn effective features
from samples (sequence pairs) with bulges and help classify and
predict samples that do not contain bulges by designing coding
schemes andmodels. Fig. 5(c) and (d) show that the models trained
on the Dataset_NC are difficult to extend to the Dataset_C. Com-
pared with CRISPR_IP_C, results of CRISPR_IP_NC were lower.
ROC-AUC and PR-AUC were reduced by 7.9% and 34.5%, respec-
tively. CRISPR_Net_NC was reduced by 4.0% and 12.1%, respec-
tively, compared with CRISPR_Net_C. In addition, in Fig. 5, we
found that under the same conditions, our model’s performance
is better than CRISPR-Net, which also proves the superiority of
our model.
654
To analyze the reasons why it is difficult to expand, we analyzed
the top N sequence pairs (TopN) predicted to maybe off-target on
the Dataset_C of CRISPR_IP_NC and CRISPR_IP_C, and the results
are shown in Table 4. Taking Top7000 as an example, the CRIS-
PR_IP_NC gives higher prediction scores for unknown samples (se-
quence pairs with bulges). Therefore, the number of sequence pairs
with bulges (NB) contained in Top7000 is as high as 5633, ten
times more than CRISPR_IP_C’s NB. However, the accuracy of CRSI-
PR_IP_NC predicting these samples is very low, affecting the over-
all performance of the model. As a result, the number of off-target
sequence pairs (NOT) predicted by CRSIPR_IP_NC is 2204 fewer
than predicted by CRISPR_IP_C. In addition, we found that both
Dataset_C and Dataset_DC have sample imbalance problems. The
positive–negative sample ratio of Dataset_C is about 1:79, and
the positive–negative sample ratio of Dataset_NC is about 1:47.
The sample imbalance problem of Dataset_C is more serious, which
causes CRISPR_IP_C to give samples a lower prediction score. As
shown in Table 4, the mean of predicted scores (MPS) of CRIS-
PR_IP_C is lower than that of CRISPR_IP_NC.
2.5. Evaluation of CRISPR-IP with epigenetic information

Epigenetic factors are factors that affect gRNA off-target predic-
tion. We study the off-target prediction performance of CRISPR-IP
with four epigenetic features (CTCF, DNase, H3K4me3, and RRBS)
compared the modified CNN_std, CRISPR-Net, and CRISPR-OFFT
on two off-target datasets from HEK293T and K562 cell types.
Since the K562 data set has only 20,319 samples, it is difficult to
use for deep model learning, so we trained models on the HEK293T
dataset and verified them on the K562 dataset. The results are



Fig. 5. Results of models on the Dataset_C and Dataset_NC. The results of the Dataset_NC are (a) and (b), and the results of the Dataset_C are (c) and (d). Model_Name_C are
models trained on the Dataset_C, and so are Model_Name_NC.

Table 4
The results of TopN.

Metric Model 1000 2000 3000 4000 5000 6000 7000

NOT CRISPR_IP_NC 189 369 545 733 885 1036 1204
NOT CRISPR_IP_C 768 1329 1882 2351 2759 3109 3408
NB CRISPR_IP_NC 880 1708 2536 3323 4118 4893 5633
NB CRISPR_IP_C 40 101 136 206 274 350 441
MPS CRISPR_IP_NC 1.000 0.999 0.998 0.995 0.990 0.983 0.974
MPS CRISPR_IP_C 0.968 0.891 0.799 0.721 0.658 0.606 0.563

Note: NOF: Number of off-target sequence pairs. NB: Number of sequence pairs with bulges. MPS: Mean of the predicted scores.

Zhong-Rui Zhang and Zhen-Ran Jiang Computational and Structural Biotechnology Journal 20 (2022) 650–661
shown in Fig. 6. CRISPR-IP achieved the highest ROC-AUC (0.980)
and PR-AUC (0.444). All in all, compared with advanced deep learn-
ing models, CRISPR-IP with sequence information and epigenetic
factors has outstanding performance in ROC-AUC and PR-AUC.

2.6. Impact of sampling method

From previous experiments, we found that the sample imbal-
ance problem affected the prediction performance of our model.
Therefore, we designed this experiment to test the influence of
two commonly used resampling methods to deal with sample
imbalance on the model. For details of the resampling method,
please refer to the ‘‘Sampling Method” section. The experimental
results are shown in Fig. 7. First of all, on the two data sets, training
models without resampling have better results on Accuracy, PR-
AUC, ROC-AUC, F1-score, and Precision, and only a decrease in
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Recall. That means that using oversampling methods causes exces-
sive noise of positive samples. Using undersampling methods
causes discarding many samples, resulting in the inability to learn
all the features of negative samples. These two problems are more
severe than the sample imbalance problem, seriously affecting the
model’s prediction performance. The sample imbalance problem
with the CIRCLE-Seq data set is more severe than the SITE-Seq data
set. The positive–negative sample ratio is 1:78, larger than the 1:57
of the SITE-Seq data set. We found that oversampling has improved
the model’s accuracy, PR-AUC, F1-score, and Precision compared to
undersampling on the SITE-Seq data set, while ROC-AUC and Recall
have decreased. On the CIRCLE-Seq dataset, oversampling has
improved all of the performance metrics compare to undersam-
pling. Therefore, using the undersampling method, the CIRCLE-
Seq dataset will lose more negative samples, resulting in the model



Fig. 6. Results of CRISPR-IP, CRISPR-Net, CRISPR-OFFT and CNN_std on K562 Dataset.

Fig. 7. Performance evaluation of no processing and two resampling methods on CRISPR-IP model. The result of CIRCLE-Seq dataset is (a), the result of SITE-Seq dataset is (b).
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learning fewer negative sample features and worse model predic-
tion performance.
3. Discussion and conclusion

The guide sequence and potential off-target sequence pairs play
an essential role in off-target prediction. Effective use of sequence
pair information can improve the model performance of off-target
prediction. The process can be divided into two parts: (1) Use cod-
ing schemes to encode sequence pairs and effectively express
information. (2) Use the off-target prediction model to learn fea-
tures from the coding to perform off-target prediction
automatically.

The main contribution of our study is to propose a new coding
scheme and network model. Our coding scheme is the first to con-
sider distinguishing different regions of function in sequence pairs.
It improves the problem of information loss in the coding scheme
proposed by Lin et al. Our experiments prove that it can express
more sequence information for network model learning and pre-
diction. In our experiments, we tested three types of deep learning
networks, i.e., CNN, FNN, and RNN, to show the effectiveness and
robustness of our coding scheme. Our experiments have proved
the practicality of integrating three types of network layers for fea-
ture extraction, which can better use sequence information and
obtain better predictions. We proved the necessity of three net-
656
work layers to extract features through ablation experiments,
and the absence of any one of them will affect the model’s predic-
tion performance.

In addition, we studied whether using the data with bulges for
training affects the prediction of the data with bulges. We found
that using data that does not contain bulges for training, the model
cannot learn the features of bulges and cannot be used to predict
samples that contain bulges. We evaluate the model’s performance
with epigenetic information and the impact of the sampling
method on the model through experiments. Compared with
advanced deep learning models, CRISPR-IP with sequence informa-
tion and epigenetic factors has outstanding performance. Under-
sampling and oversampling methods will reduce the model’s
prediction performance.

Deep learning models trained on imbalanced data tend to
achieve high accuracies for the majority class. However, the learn-
ing models generally perform worse for the minority class, which
is noteworthy in this case [25]. Data imbalance is a common prob-
lem for off-target prediction, and efficient computational tech-
niques can help address the issue [27]. The two resampling
methods will reduce the CRISPR-IP’s prediction performance. How-
ever, the improvement in Recall shows that the model is still
affected by sample imbalance. How to alleviate the impact of sam-
ple imbalance is our research direction in the future.
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4. Materials and methods

4.1. Dataset

The experimental methods of whole-genome detection of off-
target sites are currently divided into in vitro and in vivo methods
[28]. This paper uses the experimental data sets obtained by two
in vitro detection methods for model training and verification to
compare the sequence pairs’ influence on off-target activities and
exclude the influence of the complex environment in the cell.
The two data sets are the experimental results based on the
SITE-seq method [29] and the CIRCLE-seq method [30]. The
CIRCLE-Seq dataset contains gRNA-DNA pairs from 10 guide
sequences, of which 7371 are active off-target (430 with bulges).
The SITE-Seq dataset contains gRNA-DNA pairs from 9 guide
sequences, of which 3767 are active off-target (no bulges). Given
the guide sequence, Cas-offinder [11], a versatile tool for searching
for potential off-target sites, obtains inactive off-target sites in the
genome. The CIRCLE-Seq dataset obtained 577,578 inactive off-
target sites. The SITE-Seq data set obtained 213,966 inactive off-
target sites. For the classification model, the active off-target sites
are labeled as ‘‘100, and the inactive off-target sites are labeled as
”000. In addition, we use the HEK293T and K562 datasets collected
by Chuai et al. to evaluate CRISPR-IP with epigenetic information
[26].
4.2. Coding scheme

The potential off-target sequence of the guide sequence is a
sequence that is similar but not the same as the target sequence
in other positions of the genome. Although the guide sequence
and the potential off-target sequence have mismatches, insertions,
or deletions, they can guide and activate the Cas9 nuclease to cut.
Therefore, we can predict whether off-target activities occur at the
potential off-target site based on the guide sequence and the
potential off-target sequence. This study represents gRNA-DNA
pairs by corresponding target sequence and potential off-target
sequence pairs, as shown in Fig. 8. The targeting sequence in the
DNA represents the guide sequence. Thymine (T) replaces uracil
Fig. 8. Representation for
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(U), which retains the original information and avoids redundant
coding.

To our knowledge, the coding scheme proposed by Lin et al. [18]
is the first and only coding scheme proposed to encode sequence
pairs with bulges. Lin’s coding scheme includes five type channels
(A, T, C, G, _) and two direction channels. The type channels are
adenine (A), guanine (G), cytosine (C), thymine (T), and base dele-
tion (-). Encode bases through one-hot vectors, and encode base
pairs through OR operations. For example, adenine is encoding as
(1,0,0,0,0), adenine and guanine pair is encoding as (1,0,0,1,0), ade-
nine and adenine pair is encoding as (1,0,0,0,0). The encoding of the
adenine pair is the same as adenine’s encoding in the adenine
channel. Therefore, the label ‘10 of the adenine channel cannot dis-
tinguish that it is an adenine or an adenine pair. That will inevita-
bly lead to the loss of some information. In addition, there are two
sequence regions with different functions in the gRNA-DNA pair.
The guide sequence region is responsible for accurately guiding
the Cas9 protein to the corresponding target of the genome. The
PAM sequence region has no guiding function but has an important
influence on the role of the Cas9 protein. The coding does not
reflect that the base pairs in different regions have different func-
tions. That will also lead to some information loss.

We propose a new coding scheme to solve information loss, as
shown in Fig. 9. We constructed four type channels (A, T, G, C),
using one-hot vectors (1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1) respec-
tively represent adenine, thymine, cytosine, and guanine. When
there is a bulge on DNA or RNA (corresponding base deletion on
RNA or DNA), use (0,0,0,0) to indicate the base deletion at that
position. When two bases in a base pair are different, or one base
in a base pair is deletion, our coding scheme performs an OR oper-
ation on the two vectors representing the base pair. When two
bases in a base pair are the same, our coding scheme performs
an OR operation and reverses it. For example, the base pair ‘‘AC”
is represented as (1,0,0,1), ‘‘AA” is represented as (�1,0,0,0).

In this article, the first base of base-pair is on gRNA and the sec-
ond base is on DNA. For example, ‘‘AC” means A is on gRNA, C is on
DNA. However, it is impossible to distinguish the bases on different
sequences after encoding the base pair. For example, ‘‘AC” and ‘‘CA”
are the same code (1,0,0,1). To distinguish the base in different
the gRNA-DNA pair.



Fig. 9. An example of gRNA-DNA pair coding.
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sequences, we have added two-position channels (R, N). The first
distinguishes whether it is on gRNA, and the second distinguishes
whether it is on DNA—the high priority base position in the type
channels. The priority order is A, T, G, C. Therefore, adenine in
the ‘‘AC” has a high priority, and on gRNA, the direction vector is
(1,0). In the ‘‘CA,” adenine on DNA is highly prioritized, and the
direction vector is (0,1). In the ‘‘AA” base pair, adenine has a high
priority, and on DNA and gRNA, the direction vector is (1,1). In
addition, to distinguish the different regions of the gRNA-DNA
sequence pair, we added a function channel. The guide sequence
area is defined by ’00, and the PAM sequence area is defined by ’10.
4.3. CRISPR-IP architecture

Many models have been proposed to predict off-target activi-
ties, but they have not effectively used sequence pair information.
The unfocused learning features from sequence pairs will be dis-
turbed by irrelevant information. This paper proposes a neural net-
work model CRISPR-IP to predict off-target activities. The idea of
CRISPR-IP is to extract sequence features based on the identity
and position of base pairs to predict each potential off-target
gRNA-DNA pair. The research of Doench et al. [14] and Listgarten
et al. [16] inspire this idea. Doench et al. found that the identity
and position of mismatched nucleotide pairs played an important
role in determining off-target activity and proposed cutting fre-
quency determination (CFD) score to calculate potential off-
target activity scores. Listgarten et al. built a machine learning
model Elevation-score to predict off-target activity based on the
position and identity of mismatched nucleotide pairs. They found
that a single feature that merges the identity and position of mis-
matched nucleotide pairs is more important. However, the internal
mechanism of the CRISPR/cas9 system is not presently clear and
explicit. Manually designed features may negatively affect the pre-
diction results. Therefore, we proposed the CRISPR-IP model, which
automatically learns the features of sequence pairs based on the
identity and position of base pairs and predicts the off-target activ-
ity of gRNA-DNA pairs.

Fig. 10 describes the network architecture of CRISPR-IP. CRISPR-
IP can be divided into four parts, (1) Convolutional layer and pool-
ing layers, (2) BiLSTM layer, (3) Attention layer and global pooling
layers, (4) Dense layers. The input of CRISPR-IP is the coding matrix
after gRNA-DNA pair coding. The dimension of the coding matrix is
(T, 7), where T is the sequence length and 7 is the coding dimen-
sion of nucleotide pairs.

First, the input of the model goes through the convolutional
layer. Convolution is another representation of the input and con-
volution of the input data to obtain new features. The convolution
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kernel is also called a filter, and it is usually a two-dimensional
matrix used to extract data features. Superimpose multiple convo-
lution kernels to form the convolutional layer. Through the convo-
lution layer, the model performs convolution operation with the
coding of each nucleotide pair in turn to learn the identity features
of each nucleotide pair. The pooling layer is also called the down-
sampling layer, usually after the convolutional layer. Pooling first
divides the features obtained by convolution into several regions
and then calculates the average or maximum value in the regions,
respectively. The small transformation of the input through the
pooling operation becomes approximately unchanged, which
improves the model’s generalization ability.

Second, the features extracted by the convolutional and pooling
layers will be input to the BiLSTM layer. BiLSTM is a variant of
LSTM [31] and consists of two parallel LSTMs: an input forward
sequence and an input reverse sequence, which can obtain the fea-
tures representation of the sequence forward and reverse informa-
tion. LSTM is a type of recurrent neural network (RNN), which adds
gate control (input gate, forget gate, and output gate) based on a
recurrent neural network to determine the storage and discarding
of information. LSTM solves the problem of gradient explosion of
the RNN model and can better describe sequence data. The basic
formula of the LSTM model is as follows:

f t ¼ r Wf Â � ht�1; xt½ � þ bf

� �
it ¼ r WiÂ � ht�1; xt½ � þ bi

� �
fCt ¼ tanh WC � ht�1; xt½ � þ bCð Þ
Ct ¼ f t � Ct�1 þ it �fCt
ot ¼ r WoÂ � ht�1; xt½ � þ bo

� �
ht ¼ ot � tanh Ctð Þ
Assuming that the input sequence X is x1; x2; � � � ; xtð Þ, the state H

of the hidden layer is h1;h2; � � � ; htð Þ. In the formula, f t is the forget
gate at position t to prevent the introduction of too much informa-
tion; it is the input gate at position t, used for information selec-

tion; fCt is the state of the cell unit at the current position; Ct is
the output of the cell unit at the current position; ot is the output
gate at position t; ht is the predicted value at position t in the
sequence. Through the BiLSTM layer, the corresponding feature



Fig. 10. Architecture of the CRISPR-IP.
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of each nucleotide pair in the sequence will learn the sequence
information before and after it, which contains the position infor-
mation of the nucleotide pair.

Subsequently, the features extracted by the BiLSTM layer are
input into the attention layer. The attention layer is based on
Luong-style attention [32], and the calculation formula is as
follows:
Attention Q ;K;Vð Þ ¼ softmax QKT
� �

V

Q , K , and V are query, key, and value vectors, respectively. The
attention mechanism applies human attention patterns to neural
networks, emphasizing critical information and eliminating the
interference of unimportant details. We use a variant of the atten-
tion mechanism, the self-attention mechanism [23], to learn
sequence features. The self-attention mechanisms’ Q , K , and V
are the same, reducing the dependence on external information
and better capturing the internal correlation of data or features.
Through the attention layer, the features of each base pair are
based on the ‘‘attention” to learn the remaining base pair informa-
tion in the selected sequence. Then the global maximum pooling
and global average pooling are used to reduce information redun-
dancy and prevent excessive Fitting.

Finally, the sequence features extracted by the attention layer
and the global pooling layers are input to the dense layers to pre-
dict the possibility of off-target activities.
Table 5
Taxonomy of the models used in coding schemes experiments and their respective
architectures.

Name Type Architecture

DNN3 DNN 3 dense layers
DNN5 DNN 5 dense layers
DNN10 DNN 10 dense layers
CNN2 CNN 1 convolutional layer, 1 dense layer
CNN3 CNN 2 convolutional layer, 1 dense layer
LSTM RNN 1 LSTM layer, 2 dense layers
GRU RNN 1 GRU layer, 2 dense layers
4.4. Performance evaluation

All experiments are evaluated using leave-one-gRNA-out cross-
validation (LOGOCV). LOGOCV divides the entire data set into two
non-overlapping subsets, uses data from one gRNA for testing and
from the remaining gRNA to train the model. For the objectivity of
the experiment, we use data from different gRNAs in turn as the
test set in the verification.

We used Accuracy, Precision, Recall, F1 Score, PR-AUC (Area
Under the Precision-Recall Curve), ROC-AUC (Area Under the
Receiver Operating Characteristic Curve) as the model’s perfor-
mance metrics. The accuracy rate, precision rate, recall rate, and
F1 Score use 0.5 as the threshold to divide the active off-target
and the inactive off-target. Since the off-target prediction data
set has the problem of sample imbalance, we pay more attention
to the performance metrics of low impact of sample imbalance:
PR-AUC [33]. The higher the value, the proves that the model has
better performance on class imbalance.
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4.5. Model parameters

Through LOGOCV, we determine the locally optimal parameters
of the CRISPR_IP model. The essential parameters of the four parts
of the CRISPR-IP model are as follows: (1) Convolutional layer and
pooling layers. The number of convolutional layer filters is 60, the
convolution kernel size is 1*7, and the step size is 1. The pooling
window size of the pooling layer is 2, and the step size is 2. (2)
BiLSTM layer. BiLSTM consists of two unidirectional LSTM layers,
forward and reverse. Each unidirectional LSTM returns the entire
sequence with neural units are 30 and dropout is 0.25. (3) Atten-
tion layer and global pooling layers. The attention layer uses dot
product self-attention. The global pooling layer performs an aver-
age and maximum pooling operation on the sequence dimensions
in the sequence data. (4) Dense layers. The dense layers have three
layers. The first layer of neural units is 100, using the ‘relu’ activa-
tion function and batch regularization. The number of units in the
second layer is 200, using the ‘relu’ activation function, and the
dropout is 0.9. The third layer is the output layer, the neural unit
is 2, using the ‘softmax’ activation function.

4.6. Neural networks for comparing coding schemes

We used the CRISPR_IP model to evaluate the effects of our cod-
ing scheme and Lin’s coding scheme on the CIRCLE-Seq dataset and
the SITE-Seq dataset. To compare coding schemes more objec-
tively, we use Dense Neural Networks (DNN), Convolutional Neural
Networks (CNNs), and Recurrent Neural Networks (RNNs), three
basic neural networks for evaluation. These three types of net-
works have been widely used in off-target prediction [20]. We built
several different DNN, CNN, and RNN networks and evaluated
them on two data sets to measure our coding scheme and Lin’s
coding scheme. The brief structure description of the neural net-
work used in our research is shown in Table 5, and the detailed
description is shown in Supplementary Table S1.
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4.7. Comparison of other models

We compare CRISPR-IP with six advanced off-target prediction
models, CRISPR-Net [18], CFD(cutting frequently determination)
[14], CNN_std [19], Elevation [16], CRISPR-OFFT [25], and
AttnToMismatch_CNN [17].

To our knowledge, CRISPR-Net is the first and only model that
predicts potential off-target sequence pairs with bulges. Therefore,
we evaluate CRISPR-IP and CRISPR-Net on the CIRCLE-Seq dataset
and the SITE-Seq dataset. The CRISPR-Net model uses the hyperpa-
rameters proposed by the author and uses LOGOCV to retrain and
evaluate.

For the previous off-target prediction model that only predicted
potential gRNA-DNA sequence pairs that contained mismatches,
we evaluated them and CRISPR-IP on the SITE-Seq dataset. These
models include CFD, AttnToMismatch_CNN, CNN_std, Elevation,
CRISPR-OFFT. Among them, the CFD uses the coefficient matrix
provided by the author for score calculation. The AttnToMis-
match_CNN, CRISPR-OFFT, and CNN_std models are retrained and
evaluated based on LOGOCV on the SITE-Seq data set. The first
layer model of Elevation reuses the author’s model and parameters,
and the second layer of Elevation uses AdaBoostRegressor [34] to
retrain and test on the SITE-Seq dataset based on LOGOCV. In addi-
tion, some researchers have proposed DeepCRISPR [26] and Chen’s
models [7] based on pre-training. Since authors do not provide pre-
trained models, we cannot fine-tune them for off-target prediction
tasks based on the SITE-Seq data set, so they did not participate in
the comparison.

4.8. Sampling methods

The two data sets used in the study have sample imbalance
problems. The positive and negative sample ratios of the CIRCLE-
Seq data set and the SITE-Seq data set are about 1:78 and 1:57,
respectively. Imbalanced samples may affect the training results
of the model. Due to different models deal with sample imbalance
in different ways. For example, the CRISPR-Net model does not use
resampling methods because resampling will cause performance
degradation. AttnToMismatch_CNN uses an oversampling method
to balance the samples to get higher prediction performance.

Therefore, we studied the effect of using over-sampling and
under-sampling methods to balance samples on model perfor-
mance. Assume that the number of positive samples is M, negative
samples is N, and M � N. The oversampling method repeatedly
selects positive sample data until positive samples equal negative
samples (the number is N). The undersampling method randomly
selects M samples from all negative samples and discards the
remaining negative samples.
5. Availability of data and materials

Additional data and source codes are available at https://
github.com/BioinfoVirgo/CRISPR-IP.
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