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Factorial trials offer an efficient method to evaluate multiple interventions in
a single trial, however the use of additional treatments can obscure research
objectives, leading to inappropriate analytical methods and interpretation of
results. We define a set of estimands for factorial trials, and describe a frame-
work for applying these estimands, with the aim of clarifying trial objectives
and ensuring appropriate primary and sensitivity analyses are chosen. This
framework is intended for use in factorial trials where the intent is to conduct
“two-trials-in-one” (ie, to separately evaluate the effects of treatments A and
B), and is comprised of four steps: (i) specifying how additional treatment(s)
(eg, treatment B) will be handled in the estimand, and how intercurrent events
affecting the additional treatment(s) will be handled; (ii) designating the appro-
priate factorial estimator as the primary analysis strategy; (iii) evaluating the
interaction to assess the plausibility of the assumptions underpinning the fac-
torial estimator; and (iv) performing a sensitivity analysis using an appropriate
multiarm estimator to evaluate to what extent departures from the underlying
assumption of no interaction may affect results. We show that adjustment for
other factors is necessary for noncollapsible effect measures (such as odds ratio),
and through a trial re-analysis we find that failure to consider the estimand could
lead to inappropriate interpretation of results. We conclude that careful use of
the estimands framework clarifies research objectives and reduces the risk of
misinterpretation of trial results, and should become a standard part of both the
protocol and reporting of factorial trials.
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1 BACKGROUND

Factorial trials allow investigators to evaluate two or more interventions in a single study without need to increase the
sample size.1-5 In a 2× 2 factorial trial, patients are allocated to one of four groups: treatment A alone, B alone, both A
and B, or neither A nor B. Then, all patients allocated to treatment A (A alone+A and B) can be compared against all
patients who were not (B alone+neither A nor B), and similarly for treatment B. We call this a factorial (or at-the-margins)
analysis.
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However, factorial analyses rely on the assumption of no interaction (ie, that the effect of treatment A is the same
whether the patient is allocated to treatment B or not), and can be biased when this assumption is violated.1,2,5,6 Therefore,
it is important to evaluate the plausibility of this assumption through interaction tests, and assess sensitivity to deviations
from this assumption through appropriate sensitivity analyses.2-5 A typical sensitivity analysis involves analyzing the trial
as four separate groups (A alone, B alone, A and B, and neither A nor B), as this approach does not rely on the assumption
of no interaction.2-5 We call this a multiarm (or inside-the-table) analysis.2,5,6

However, the ideal main analysis and corresponding sensitivity analysis will depend on the specific aims of the trial.
For instance, we may wish to know the effect of treatment A vs control either in the presence of treatment B or in its
absence. While both these effects could be estimated using the same factorial estimator described above, they require
different sensitivity analyses. Conversely, the effect of the combination of A and B against control would require both a
different estimator and sensitivity analysis.

As such, understanding the key objectives of the trial is essential, both to allow the investigators to choose an appro-
priate main analysis and corresponding sensitivity analysis, and to allow readers to evaluate whether the chosen methods
are appropriate to the research question. However, the key objectives of factorial trials are rarely reported,5 or else are
stated using ambiguous terminology (eg, to understand the “independent” effects of treatments).

The recent ICH-E9(R1) addendum on estimands7 provides a strategy to systematically think through the trial objec-
tives and ensure study methods are aligned to the objectives. To achieve a precise definition of the treatment effect the
trial aims to estimate, the estimand defines five components7-15: (i) population; (ii) treatment condition(s) of interest;
(iii) outcome measure; (iv) population-level summary (ie, how outcomes under different treatment conditions are to be
compared); and (v) how intercurrent events, such as treatment discontinuation or switching, are to be handled.

In this article we: (i) define a set of estimands that could be used in factorial trials; (ii) describe main and sensitiv-
ity estimators; (iii) outline a framework for applying estimands to factorial trials; and (iv) demonstrate the framework
through a re-analysis of a published factorial trial. We focus on the setting where investigators want to do “two trials in
one”, that is, where the aim is to evaluate the effects of both treatments A and B in the same trial, though we note the
estimands defined here could equally be applied to the setting where only the effect of treatment A is of interest (eg, a
two-arm trial where treatment B is a concomitant treatment).

2 ESTIMANDS FOR FACTORIAL TRIALS

A complete estimand will require specification of the five components listed previously. Because the main differentiator
of factorial trials is the use of additional treatments, we focus on the treatment component here, though we briefly discuss
implications of the factorial design on the population-level summary measure and the handling of intercurrent events.
Other components (population, outcome) could be specified as they would in a conventional two-arm design.

We consider the setting of a 2× 2 factorial trial with treatments A and B. We focus on the comparison of treatment A
to control.

When specifying an estimand for treatment A vs control, it may be tempting to define it solely in terms of treatment
A, while ignoring treatment B. For instance, we may wish to specify the estimand as:

E
(

Y (ZA=1) − Y (ZA=0)
)

where ZA denotes treatment A (1 = yes, 0 = no), and Y (ZA) denotes the patient’s potential outcome under treatment ZA
(for instance, Y (ZA=1) would denote the patient’s potential outcome under ZA = 1). However, this definition is not valid,
because the potential outcomes Y (ZA=1) and Y (ZA=0) are not well defined in this setting.16 This is because the value of Y (ZA)
may itself depend on whether the patient receives treatment B or not, that is, Y (ZA=0,ZB=0) may be different to Y (ZA=0,ZB=1)
(where Y (ZA=0,ZB=0) denotes the patient’s potential outcome under ZA = 0 and ZB = 0, where ZB refers to treatment B).
Hence, an estimand written solely in terms of Y (ZA) could in fact represent two different things.

Therefore, specifying the estimand only in terms of treatment A is not sufficiently clear, and it must be written in terms
of treatment B as well. We can incorporate treatment B into the estimand in a number of different ways. For instance, we
may wish to know the effect of treatment A vs control (i) in the absence of treatment B; (ii) in the presence of treatment
B; (iii) when treatment B is given according to usual practice; or (iv) when used in combination with treatment B. Each
of these questions represents a different treatment strategy, and hence corresponds to a different estimand (Table 1).



KAHAN et al. 4301

T A B L E 1 Overview of estimands for factorial trials. ZA denotes treatment A (1 = yes, 0 = no), ZB denotes treatment B (1 = yes, 0 = no),
z(UP)

A and z(UP,zA=1)
B denotes the value of ZB the patient would receive under usual practice with zA = 1 (and similarly for z(UP,zA=1)

B ).

Estimand definition Description

𝛽A,B=0 = E
(

Y (ZA=1,ZB=0) − Y (ZA=0,ZB=0)
)

Effect of treatment A in absence of treatment
B (A alone vs control alone)

𝛽A,B=1 = E
(

Y (ZA=1,ZB=1) − Y (ZA=0,ZB=1)
)

Effect of treatment A in presence of treatment
B (A+B vs control+B)

𝛽A,B=UP = E
(

Y (ZA=1,ZB(UP,ZA=1)) − Y (ZA=0,ZB(UP,ZA=0))
)

Effect of treatment A when treatment B is
given according to usual practice (A+usual
practice B vs control+usual practice B)

𝛽A+B = E
(

Y (ZA=1,ZB=1) − Y (ZA=0,ZB=0)
)

Effect of combination A and B (A+B vs control alone)

We formally define these estimands below. In subsequent sections we then specify how each of these estimands could
be estimated. Note the estimands defined here are not intended to be comprehensive, and other estimands may also be
of interest.

2.1 Estimand 1: Effect of treatment A in the absence of treatment B

This estimand is defined as the effect of treatment A vs control in the absence of treatment B (ie, if no one received
treatment B):

𝛽A,B=0 = E
(

Y (ZA=1,ZB=0) − Y (ZA=0,ZB=0)
)
. (1)

2.2 Estimand 2: Effect of treatment A in the presence of treatment B

This estimand is defined as the effect of treatment A vs control in the presence of treatment B (ie, if everyone received
treatment B):

𝛽A,B=1 = E
(

Y (ZA=1,ZB=1) − Y (ZA=0,ZB=1)
)
. (2)

2.3 Estimand 3: Effect of treatment A when treatment B is given
according to usual practice

This estimand is defined as the effect of treatment A vs control if treatment B were given according to usual practice (ie,
if patients received treatment B as they would under usual practice):

𝛽A,B=UP = E
(

Y (ZA=1,ZB(UP,ZA=1 )) − Y (ZA=0,ZB(UP,ZA=0))
)
, (3)

where ZB (UP,ZA = 1) is the potential value of ZB the patient would receive according to usual practice under ZA = 1, and
vice versa for ZB (UP,ZA = 0).

This estimand may be of interest when the use of treatment B varies, so that some but not all patients would receive
treatment B under usual practice.

2.4 Estimand 4: Effect of treatments A and B against control alone

This estimand is defined as the effect of treatment A when used in combination with treatment B (ie, the effect of A and
B against neither treatment A nor B):

𝛽A+B = E
(

Y (ZA=1,ZB=1) − Y (ZA=0,ZB=0)
)
. (4)
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3 HANDLING OF INTERCURRENT EVENTS

Specification of how intercurrent events are to be handled is a key component of the estimand.7,10-12,15,17-19 Intercurrent
events are postrandomisation events which affect the interpretation or existence of the outcome measure, such as treat-
ment discontinuation, treatment switching, or use of nontrial treatments such as rescue medication. The ICH-E9(R1)
addendum lists five strategies to handle intercurrent events: treatment policy (where the intercurrent event is taken to
be part of the treatments being compared); hypothetical (where the treatment effect in a hypothetical scenario where the
intercurrent event would not have occurred is of interest); composite (where the intercurrent event is incorporated into
the definition of the outcome); while-on-treatment (where the outcome prior to the occurrence of the intercurrent event
is of interest); and principal stratum (where the treatment effect in the principal stratum in which the intercurrent event
would not occur is of interest).

Specification of how intercurrent events for treatment A (eg, discontinuation of treatment A) are to be handled is
required for a complete estimand. However, because the factorial design means that treatment B is also part of the
treatment strategy, additional specification of how intercurrent events related to treatment B are to be handled is required.

For instance, if we are interested in the estimand 𝛽A,B=1 (the effect of treatment A in the presence of B), some patients
may discontinue treatment B early, or may miss several doses. We would need to decide how this is handled in the esti-
mand. For instance, a treatment policy strategy would address the question “the effect of treatment A vs control, when
used alongside a policy of treatment B (regardless of whether people adhere to that policy).” Conversely, a hypothetical
strategy would address the question “the effect of treatment A vs control, in a hypothetical scenario where everyone takes
treatment B as intended.” The strategies for handling intercurrent events could in principle be different for A and B, for
example, invoking a treatment policy strategy for treatment A with a hypothetical strategy for treatment B.

In some instances, treatment B itself may be a cause of intercurrent events for treatment A (for instance, if treatment
B causes an adverse effect which necessitates discontinuation of all study treatments, including A). Here, if the estimand
of interest is 𝛽A,B=1 (the effect of treatment A in the presence of B), a treatment policy strategy may be most appropriate (as
the intercurrent event would occur in practice, as patients are also taking treatment B); however, if the estimand 𝛽A,B=0
(the effect of treatment A in the absence of B) is of interest, this intercurrent event would not occur in practice, as patients
would not be taking treatment B. Hence, we may wish to use a hypothetical strategy for intercurrent events caused by
treatment B (eg, the effect the hypothetical setting where patients did not discontinue A due to adverse events caused by
treatment B), as this is more reflective of the effect seen in clinical practice where patients would not receive B. However,
it can be difficult to ascertain causes of intercurrent events (ie, to determine whether treatment B was indeed the cause),
so this decision should be handled with care.

4 POPULATION-LEVEL SUMMARY MEASURE

The population-level summary measure denotes how outcomes under different treatment conditions are to be compared
(eg, through a difference in means, risk ratio, odds ratio, etc.). For collapsible summary measures20 (such as a mean
difference, risk ratio, risk difference), the choice of summary measure could be made as in a parallel group trial. However,
for noncollapsible summary measures (such as an odds ratio), additional considerations arise in a factorial trial (for further
details on collapsible vs noncollapsible summary measures, see Reference 20).

The issue of noncollapsibility applies when patients can be grouped into different strata; then, a conditional estimand
is based on the stratum-specific effect, while a marginal estimand is based on the effect after collapsing over stratum (and,
for noncollapsible summary measures, the values of these two estimands will typically differ). In a factorial trial, for the
comparison of treatment A, patients may be grouped into stratum according to use of treatment B.

Consider the data in Table 2. Here, the odds ratio (OR) is 0.50 for treatment A, and 0.10 for treatment B, and there
is no interaction on the log odds scale (ie, the OR for “A” vs “no A" is 0.50 both in the stratum of participants allocated
to “B”, and the stratum allocated to “no B"). From this table, the conditional OR for treatment A vs control (conditional
on whether patients were allocated to B), is 0.50; however, the marginal OR is 0.56. However, it is worth noting that true
value of the marginal estimand for A depends on the distribution of treatment B. Hence, the value of 0.56 relates to a
population where 50% of patients receive B; however, if 20% or 80% were to receive B, then this would lead to different
marginal odds ratios.

Therefore, for the estimands defined earlier, we need to consider whether a marginal vs conditional interpretation is
desired (if applicable; see below). We note the marginal vs conditional distinction also applies to baseline covariates (such
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T A B L E 2 Event probabilities in a fictitious 2× 2 factorial trial

Treatment B

No Yes

Treatment A No 50% 9.1%

Yes 33.3% 4.8%

as age, disease stage, etc.), however these same considerations apply to a two-arm trial, so we do not consider this further
here.

For estimands (1) and (2) (the effect of A in the absence of B, and the effect of A in the presence of B),
we are interested in the treatment effect in the setting where no patients receive treatment B (or where all patients receive
treatment B). Hence, all patients belong to the same stratum (because there is no variation in whether patients receive
treatment B), and so the marginal vs conditional distinction does not apply, and so does not require specification in
the estimand.

Similarly, for estimand (4) (the effect of the combination of A and B), the marginal/conditional distinction does not
apply, as B is part of the treatment condition being compared.

For estimand (3) (the effect of treatment A when treatment B is given according to usual practice), the
marginal/conditional distinction can apply (provided usual practice is not that either no patients, or all patients receive
B), however this can be challenging in practice. In a factorial trial, patients belong to clearly defined strata (allocated to
B, or not allocated to B), however in practice these strata may not be so well defined, for instance if ZB (UP,ZA = 1) ≠
ZB (UP,ZA = 0) (ie, if receipt of treatment B depends on use of treatment A). In this setting, a conditional estimand is not
well defined. However, if ZB (UP,ZA = 1) = ZB (UP,ZA = 0) (ie, if receipt of treatment B is independent of use of treat-
ment A), then the strata are well defined, and so is the conditional estimand. In practice however, this will be difficult to
ascertain, and so our view is that a marginal estimand is preferable, as the use of treatment B is generally not a typical
baseline covariate, and so the conditional estimand may be ill-defined.

5 CHOICE OF ESTIMAND

Different estimands may be of interest depending on the setting. If treatment B is a novel pharmaceutical which does not
yet have regulatory approval, than interest may lie in the effect of treatment A in the absence of treatment B. Conversely,
if treatment B is in common use, there may also be interest in the effect of treatment A in the presence of B, or when
treatment B is given according to usual care.

In some situations, more than one estimand may be of interest, and multiple estimands could be defined. It may also
be the case that which estimand is of most interest depends on the results of the trial itself. For instance, if the trial shows
that treatment B is harmful, then the effect of treatment A in the absence of B will be most useful. Conversely, if treatment
B is shown to be extremely effective, it may become the new standard of care, and so the effect of treatment A in the
presence of B would be of interest. If more than one estimand is to be used, it is important to clarify which estimand(s)
is/are considered primary.21,22

Also of note, in certain settings the true value of different estimands will coincide. For example, when treatments A
and B do not interact, then the true values of the estimands 𝛽A,B=0 and 𝛽A,B=1 are the same. Similarly, the estimand 𝛽A,B=UP
will coincide with either 𝛽A,B=0 or 𝛽A,B=1 if usual practice for treatment B is to withhold it from all patients (estimand
𝛽A,B=0), or to give it to all patients (estimand 𝛽A,B=1).

6 ESTIMATORS AND SENSITIVITY ANALYZES UNDER
A FACTORIAL DESIGN

6.1 Factorial estimators

A factorial analysis is typically used for the primary analysis under a factorial design, as it is the most efficient approach,
and enables the comparison of multiple interventions in a single study without need to increase the sample size. Here,



4304 KAHAN et al.

the effect of treatment A is estimated by comparing all patients allocated to treatment A (treatment A alone+ treatments
A and B) against all those who did not (treatment B alone+neither treatment A nor B) and similarly for treatment B.

There are two ways in which this could be implemented. Under the first approach, the analysis model can be
written as:

Y = 𝛼 + 𝛽AZA + 𝛽BZB + 𝜀, (5)

where Y is the observed outcome. Then, ̂𝛽A and ̂
𝛽B are the factorial estimators for the effects of treatments A and B. Here,

the effect of A is estimated while adjusting for the effect of B (and vice versa).
An alternative approach that is sometimes used is to omit the term ZB from the model to obtain an estimate for 𝛽A

(and vice versa), for example, as:

Y = 𝛼 + 𝛽AZA + 𝜀. (6)

For collapsible effect measures (eg, difference in means, risk ratio, risk difference), the key difference between models (5)
and (6) is efficiency; if treatment B affects outcome, then model (5) will be more efficient than (6) for the effect of A.5

However, for noncollapsible measures (eg, odds ratio), failure to adjust for the alternative treatment in the analysis (ie,
using model (6)) can actually introduce bias for the estimands considered in this Article. This is because model (6) provides
a marginal odds ratio based on the allocation ratio used in the trial (eg, a marginal OR if 50% of patients received treatment
B, and 50% did not). However, this marginal OR does not match the any of estimands (1) to (4) defined here, and hence
will be biased. Conversely, model (5) (which adjusts for the alternative factor), will be unbiased for estimands (1), (2), and
(4) under certain assumptions (see below), mainly that there is no interaction. This is, at first glance, counterintuitive,
as model (5) appears to be estimating a conditional OR. However, if we consider estimand (1) as an example, we are
interested in the effect of A in the absence of B. Model (5) can be seen to estimate the stratum-specific OR (eg, in Table 2,
this is 0.50); and, under the assumption of no interaction, this stratum-specific OR of 0.50 is equal the OR in the group of
patients who were not allocated to treatment B, that is, this estimator will be an unbiased estimator for the effect of A in
the absence of B.

This will not be the case for estimand (3) (the effect of A when B is given according to usual practice), if interest lies
in the marginal OR, and hence both models (5) and (6) will be biased for this. However, if interest lies in the conditional
OR, model (5) will be unbiased under certain assumptions (Table 3).

T A B L E 3 Assumptions required for unbiasedness for factoriala designs

Factorial analysisb Multiarm analysisc

Estimand Estimator Assumptions for unbiasedness Estimator Assumptions for unbiasedness

x ̂
𝛽A No interaction ̂

𝛽A0 None

𝛽A,B=1 ̂
𝛽A No interaction ̂

𝛽AB − ̂
𝛽0B None

𝛽A,B=UP
d

̂
𝛽A Assumes (1); no interaction; and

(2) the decision to assign
treatment B does not depend
on whether they receive
treatment A

(1 − 𝜋)̂𝛽A0 + 𝜋
(
̂
𝛽AB − ̂

𝛽0B

)
e Assumes (1) the decision to assign

treatment B does not depend on
whether they receive treatment A;
and (2) estimators ̂𝛽A0 and ̂

𝛽AB − ̂
𝛽0B

will be the same regardless of
whether treatment B is assigned
based on random allocation or
according to usual practice

𝛽A+B ̂
𝛽A + ̂

𝛽B No interaction ̂
𝛽AB None

a Based on a 2× 2 factorial design with treatments A and B, where patients are randomly allocated (1) treatment A; (2) treatment B; (3) treatment A and
treatment B; or (4) neither treatment A nor B (control).
b Based on analysis model: Y = 𝛼 + 𝛽AZA + 𝛽BZB + 𝜀
c Based on analysis model: Y = 𝛼 + 𝛽A0ZA0 + 𝛽0BZ0B + 𝛽ABZAB + 𝜀.
d Assumptions for unbiasedness are based on a collapsible effect measure (eg, difference in means, risk ratio). For noncollapsible measures (eg, odds ratio), the
estimators will be unbiased under the assumptions given for the conditional effect, however will not generally be unbiased for the marginal effect.
e
𝜋 is the proportion of patients assumed to receive treatment B in practice.
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Table 3 shows the factorial estimators corresponding to each estimand, along with assumptions required for unbiased-
ness. We use ̂𝛽A to denote the estimator from model (5) (and similarly for ̂𝛽B). The estimator ̂𝛽A is used for the estimands
𝛽A,B=0, 𝛽A,B=1, and 𝛽A,B=UP, and the estimator ̂𝛽A + ̂

𝛽B is used for the estimand 𝛽A+B.
The estimators above all require the assumption of no interaction for unbiasedness. The reason for this is that the

factorial estimator, ̂𝛽A, targets the estimand E
(

Y (ZA=1,ZB=zB,Rand) − Y (ZA=0,ZB=zB,Rand)
)

, where zB,Rand denotes a random allo-
cation to treatment B. This estimand is in itself usually not of direct interest, but its true value corresponds to those of
estimands 𝛽A,B=0, 𝛽A,B=1, and 𝛽A,B=UP, when treatments A and B do not interact.

We note that the models above could also be adjusted for additional baseline covariates (such as age, disease stage,
etc.), either to increase efficiency,23 or if a conditional estimand is desired.

6.2 Multiarm analyses (sensitivity analyses)

It is often difficult to rule out departures from the assumption of no interaction, as most trials are underpowered to
assess this. Therefore, it is useful to perform sensitivity analyses which assess the impact of deviations to this assumption
on results. Multiarm analyses can be unbiased even when treatments interact, and so make ideal sensitivity analyses.
However, they have higher variance than the factorial estimators, owing to their smaller sample size, which is why they
are typically not used for the primary analysis of factorial designs. We note here that we are using “sensitivity analysis” as
defined in the ICH-E9(R1) addendum (“a series of analyses conducted with the intent to explore the robustness of inferences
from the main estimator to deviations from its underlying modelling assumptions and limitations in the data"7), however
alternative definitions are available.24

The model can be written as:

Y = 𝛼 + 𝛽A0ZA0 + 𝛽0BZ0B + 𝛽ABZAB + 𝜀, (7)

where ZA0, Z0B, and ZAB denote treatment A alone, treatment B alone, or both treatments A and B.
Table 3 shows the multiarm estimators corresponding to each estimand, along with assumptions required for

unbiasedness.
Because no patients are assigned to treatment B according to usual practice (unless usual practice is to give either

no patients or all patients treatment B), the multiarm analysis cannot estimate 𝛽A,B=UP without requiring additional
untestable assumptions. However, it could still be used as a sensitivity analysis for the factorial analysis, as it makes
alternative assumptions, and so if results between the two broadly agree, we can be more confident in our main
conclusions.

The multiarm estimator for 𝛽A,B=UP can be written as:

̂
𝛽A,weighted = (1 − 𝜋)̂𝛽A0 + 𝜋

(
̂
𝛽AB − ̂

𝛽0B

)
,

where 𝜋 is the proportion of patients assumed to receive treatment B in practice. This estimator separates the effect of
treatment A according to the presence or absence of treatment B, then weights each component according to the assumed
proportion of patients who would receive or not receive treatment B as part of usual practice.

It requires several assumptions for unbiasedness. First, it assumes that receipt of treatment B does not depend on use
of treatment A (ie, that there are no patients who would receive treatment B as part of usual practice under treatment A
but not under control, or vice versa). Second, because the patients who receive treatment B in a factorial trial are not the
same as those who would receive treatment B as part of usual practice, this estimator relies on the assumption that the
estimates ̂𝛽A0 and ̂

𝛽AB − ̂
𝛽0B will be the same regardless of whether treatment B is assigned based on random allocation

or according to usual practice.

7 FRAMEWORK FOR IMPLEMENTING ESTIMANDS
IN FACTORIAL TRIALS

A framework for implementing estimands in factorial trials is shown in Table 4. First, this involves specifying the esti-
mand(s) of interest, including the handling of treatment B in the treatment component (whether interest is in the effect
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T A B L E 4 Framework for implementing estimands in factorial trials

1. Specify estimand(s) of interest, including specification of how the additional treatment(s) (eg, treatment B) will be handled in the
treatment strategy, and how intercurrent events affecting the additional treatment(s) will be handleda.

2. Designate appropriate factorial estimator (adjusting for other factors) as primary analysis strategy

3. Report size of estimated interaction, alongside confidence interval and p-value, to assess plausibility of assumption of no interaction
underpinning factorial estimator

4. Perform sensitivity analysis using appropriate multiarm estimator to evaluate to what extent departures from the underlying
assumption of no interaction may affect results

a These should be specified alongside other components of the estimand, such as outcome, handling of intercurrent events related to treatment A, etc.

of treatment A in the absence of B, in its presence, etc.), as well as how intercurrent events related to treatment B will be
handled.

Second, a primary analysis strategy should be designated for each estimand. This would typically be based on the
appropriate factorial estimator, as this provides the efficiency gains which typically motivate the use of the factorial design.

Third, the plausibility of the assumption of no interaction underpinning the factorial estimators should be assessed
by evaluating the size of the estimated interaction term, along with confidence intervals and a P-value. This can be done
using the following model:

Y = 𝛼 + 𝛽AZA + 𝛽BZB + 𝛽IntZAZB + 𝜀, (8)

where ̂𝛽Int is the estimator for the interaction between treatments A and B. (note that this model should be used only to
assess the interaction term, and not to test the terms 𝛽A or 𝛽B as part of a factorial analysis, as a model which includes the
interaction term is equivalent to model (7) under different parameterization, and so will be equivalent to using a multiarm
estimator, with the corresponding loss in precision).

Fourth, a sensitivity analysis using the appropriate multiarm estimator should be performed to evaluate to what extent
results from the factorial estimators may be affected by departures from the underlying assumption of no interaction.
Care should be taken when interpreting results of these sensitivity analyses, as some deviation between the multiarm
estimators and factorial estimators is expected, due to random variation.

We also note that investigators sometimes perform a two-stage analysis,6 where they perform an initial test of inter-
action; if the test is not significant at some predefined level, they perform a factorial analysis, and if it is significant, they
perform a multiarm analysis. This approach has shown to be biased, and so we do not recommend it.6 In our view, a
preferable approach is to use the test of interaction and multiarm analysis to assess the plausibility and sensitivity to the
underlying assumption of no interaction, in line with recommendations in the ICH-E9 addendum.7 By presenting both
the factorial and multiarm estimators, alongside a formal assessment of the interaction, investigators and readers can
judge for themselves whether they feel trial results are robust. However, we note this approach is not infallible; we will
never know in truth whether an interaction exists or not (and hence, whether the main estimator is valid), and so the
resulting conclusions will be, to some degree, subjective.

8 APPLICATION TO THE MIST2 TRIAL

We now use the previously published MIST2 trial as an illustrative example of how our framework could be applied.
MIST2 was a 2× 2 factorial trial which evaluated the use of two drugs (DNase and tPA) for patients with pleural infection.25

Here, we focus mainly on the evaluation of DNase, though the same considerations could equally apply to the evaluation
of tPA. We focus on the outcome of referral for surgery at 3 months, which represents a failure of the intervention to
improve symptoms.

8.1 Choice of estimand(s)

The first step during the trial design stage is to choose which estimand(s) is of interest. After deciding on the estimand,
we can then choose the corresponding primary and sensitivity analyses. Neither DNase or tPA were in common use at
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T A B L E 5 Example of how primary estimand for DNase vs placebo comparison could be written for the outcome referral for surgery in
MIST2

Estimand component Definition

Treatment conditions DNase alone (without tPA) vs placebo alone (without tPA)

Population Patients with pleural infection, as defined by the trial’s inclusion/exclusion criteria

Outcome Referral for thoracic surgery within 3 months of randomization

Population-level summary measure Marginal odds ratio

Intercurrent events All intercurrent events related to DNase (failure to initiate treatment, treatment discontinuation,
incorrect dose, etc.) will be handled using a treatment policy strategy

Use of nontrial treatments (including tPA) will be handled using a treatment policy strategy

Mortality will be handled using a while-alive strategy (ie, the outcome is defined as whether the
patient was referred for surgery within 3 months of randomization or before they died,
whichever is sooner)

the time the trial was designed (ie, both were “new” treatments for this condition), so the estimand 𝛽A,B=0 (the effect of
DNase in the absence of tPA; DNase alone vs placebo alone) would likely be of most clinical relevance, as this provides
the effect of DNase as introduced into current clinical practice.

However, if tPA were found to be effective in this trial, it may then become part of standard clinical practice, in which
case the estimand 𝛽A,B=1 (the effect of DNase in the presence of tPA; DNase + tPA vs placebo + tPA) may also be of
interest, as it provides the effect of DNAse if tPA were to be added to usual practice. This could therefore be included as
a supplementary estimand (with 𝛽A,B=0 being the primary estimand).

In this setting, since both DNase and tPA are new treatments, 𝛽A,B=UP is the same as 𝛽A,B=0 (ie, usual care is the absence
of tPA), and so the estimand 𝛽A,B=UP does not require additional consideration.

The estimand 𝛽A+B may also be of exploratory interest, and so could also be included as another supplementary
estimand.

This leaves us with one main estimand (𝛽A,B=0) and two supplementary estimands (𝛽A,B=1 and 𝛽A+B), and for each one,
the other components comprising the estimand need to be defined. An example of how this could be done for the primary
estimand is provided in Table 5.

We note we are using an odds ratio as our population-level summary measure, but that the conditional vs marginal
distinction in relation to treatment B does not apply for the chosen estimands; however in Table 5 we have specified a
marginal estimand in relation to any baseline covariates.

8.2 Analysis

The primary analysis for each of the three estimands could be based on the factorial estimator: ̂𝛽A for estimands 𝛽A,B=0
(effect of DNase alone) and 𝛽A,B=1 (effect of DNase+ tPA vs placebo+ tPA), and ̂

𝛽A + ̂
𝛽B for estimand 𝛽A+B (effect of

DNase+ tPA vs placebo) (where these estimators relate to the log(OR)). Importantly, this should be from model (5), that
is, a model which also includes a treatment indicator for tPA as a covariate, given we are using an odds ratio.

Sensitivity analyses could be carried out using the corresponding multiarm estimators: ̂𝛽A0 for 𝛽A,B=0, ̂𝛽AB − ̂
𝛽0B for

𝛽A,B=1, and ̂
𝛽AB for 𝛽A+B.

8.3 Results

For the primary estimand 𝛽A,B=0 (effect of DNase alone), the OR under primary (factorial) estimator ̂𝛽A was 2.44 (95%
CI 1.06 to 5.65), denoting increased harm associated with DNase (Table 6). There was some evidence of an interaction
(interaction OR 0.19; 95% CI 0.02 to 1.50; P-value for interaction 0.12), though this was very imprecisely estimated (with
a 75-fold range between the lower and upper limit of the CI). Under a sensitivity analysis based on ̂

𝛽A0, the OR was 3.46
(95% CI 1.32 to 9.02), which is consistent with the main results (albeit more extreme), highlighting that main results are
likely robust to departures from the “no interaction” assumption.
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T A B L E 6 Estimates for the effect of DNase on referral for surgery in the MIST2 trial

Estimand Estimator Marginal odds ratio (95% CI)

DNase alone vs placebo alone (𝛽A,B=0)

Primary (factorial; ̂𝛽A) 2.44 (1.06, 5.65)

Sensitivity (multiarm; ̂𝛽A0) 3.46 (1.32, 9.02)

DNase with tPA vs placebo with tPA (𝛽A,B=1)

Primary (factorial; ̂𝛽A) 2.44 (1.06, 5.65)

Sensitivity (multiarm; ̂𝛽AB − ̂
𝛽0B) 0.65 (0.10, 4.09)

DNase with tPA vs placebo (𝛽A+B)

Primary (factorial; ̂𝛽A + ̂
𝛽B) 0.34 (0.10, 1.21)

Sensitivity (multiarm; ̂𝛽AB) 0.23 (0.09, 0.40)

The supplementary estimand 𝛽A,B=1 (effect of DNase+ tPA vs placebo+ tPA) could become quite relevant in this trial,
as there was some evidence that tPA (treatment B in this example) was effective, which could lead to tPA becoming part of
standard practice in the future (results for tPA: factorial estimate for the effect of tPA alone vs placebo OR 0.14; 95% CI 0.05
to 0.39; P< 0.001; sensitivity analysis 0.36 (0.09, 1.44). The primary (factorial) estimate for 𝛽A,B=1 is ̂𝛽A (as above); OR 2.44
(95% CI 1.06 to 5.65). However, the sensitivity analysis based on the multiarm estimator ̂𝛽AB − ̂

𝛽0B provides contradictory
results (OR 0.65; 95% CI 0.10 to 4.09), highlighting that inferences for this estimand are highly sensitive to the assumption
of no interaction.

Results for the estimand 𝛽A+B (effect of DNase+ tPA vs placebo) under a primary (factorial) estimator (̂𝛽A + ̂
𝛽B) denote

some evidence of benefit (OR 0.34; 95% CI 0.10 to 1.21), and the sensitivity analysis based on the multiarm estimator ̂𝛽AB
showed consistent results (OR 0.23; 95% CI 0.09 to 0.40).

9 DISCUSSION

Factorial trials offer an efficient method of evaluating multiple interventions within a single trial. However, the use of
additional interventions can obscure the exact treatment effect investigators wish to evaluate. To obviate this, we argue
that careful use of the estimands framework clarifies the research objectives, highlighting exactly which treatment effects
are to be estimated, and can guide investigators in choosing appropriate main and sensitivity analyses.

The key difference in specifying the estimand in a factorial trial compared to a standard two-arm design is explanation
of how additional treatments are to be handled in the treatment components of the estimand (eg, are we interested in
the effect of treatment A in the absence of B? In its presence? When it is given according to usual practice?), and how
intercurrent events related to additional treatments (eg, discontinuation) are to be handled.

We propose a simple framework to apply estimands to factorial trials (Table 4), which involves specifying the esti-
mand(s) of interest (including how the additional treatment(s) are to be handled); identifying an appropriate primary
analysis strategy (typically based on a factorial analysis, to realize the efficiency gains of the factorial design); assess-
ing the interaction, to evaluate the plausibility of the assumptions underpinning the primary estimator; and conducting
the appropriate multiarm sensitivity analysis to evaluate the robustness of the primary analysis to departures from its
underlying assumptions.

Consideration of the target estimand at the design stage can also help determine whether a factorial design is the
most appropriate choice. For instance, if interest is in several treatment effects (eg, the effect of treatment A both in
the presence and absence of treatment B), a factorial design allows estimation of both. However, if interest were mainly
in the effect of treatment A if treatment B were given according to usual practice, then a two-arm parallel group design
testing A vs control, which allows treatment B to be given according to usual practice, may be a preferable choice as it
requires fewer assumptions than a factorial design.

Our main focus in this article is on “2-for-1” factorial trials, however we note the estimands used here could also
be useful in trials where interactions are both expected and of primary interest, or indeed in simple two-arm trials,
where patients may receive multiple background therapies in addition to the treatments being evaluated. The use of such
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therapies is often included in the protocol (as stipulated by the SPIRIT guidelines26), but it can be useful to include them
explicitly in the estimand in order to clarify the exact treatment conditions being compared (which can be particularly
useful if the use of such background therapies are expected to modify the treatment effect, and their use in usual practice
varies across settings).

In this article we have used the principles outlined in ICH-E97 to develop our proposed framework for implement-
ing estimands into factorial trials. Our framework was developed with trials of healthcare interventions in mind, where
unbiased estimation of benefits and harms is imperative to aid in medical decision making. However, in other settings,
efficiency may be as important, in which case investigators may be comfortable using the factorial estimator even in pres-
ence of mild interactions due to efficiency gains (ie, lower mean-squared error). The appropriateness of each of these
approaches will depend on the specific trial aims.

In this article we have recommended using model (5) to implement a factorial analysis, though an alternate perspective
is to use model (8) which incorporates the interaction term. As noted, this model is equivalent to model (7), and so
the individual parameters from this model cannot be used for a factorial analysis, however investigators could use a
combination of parameters to obtain a factorial-style estimator.

10 CONCLUSION

Careful use of the estimands framework clarifies research objectives and reduces the risk of misinterpretation of trial
results (which is otherwise increased in a factorial trial because of the complications of the two or more concurrent
treatments). We therefore argue that using estimands in this way should become a standard part of both the protocol and
reporting of factorial trials.
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