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Mechanisms contributing to the pathogenesis of myocardial ischemia-

reperfusion (I/R) injury are complex and multifactorial. Many strategies have

been developed to ameliorate myocardial I/R injuries based on these

mechanisms. However, the cardioprotective effects of these strategies

appear to diminish in diabetic states. Diabetes weakens myocardial

responses to therapies by disrupting intracellular signaling pathways which

may be responsible for enhancing cellular resistance to damage. Intriguingly, it

was found that Dexmedetomidine (DEX), a potent and selective α2-adrenergic
agonist, appears to have the property to reverse diabetes-related inhibition of

most intervention-mediated myocardial protection and exert a protective

effect. Several mechanisms were revealed to be involved in DEX’s protection

in diabetic rodent myocardial I/R models, including PI3K/Akt and associated

GSK-3β pathway stimulation, endoplasmic reticulum stress (ERS) alleviation,

and apoptosis inhibition. In addition, DEX could attenuate diabetic myocardial

I/R injury by up-regulating autophagy, reducing ROS production, and inhibiting

the inflammatory response through HMGB1 pathways. The regulation of

autonomic nervous function also appeared to be involved in the protective

mechanisms of DEX. In the present review, the evidence and underlying

mechanisms of DEX in ameliorating myocardial I/R injury in diabetes are

summarized, and the potential of DEX for the treatment/prevention of

myocardial I/R injury in diabetic patients is discussed.
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1 Introduction

The prevalence of diabetes has rapidly reached an

epidemic level globally, shaping the disease into one of

the 21st-century healthcare challenges and posing an

incredibly high economic burden to the whole world

(Zimmet et al., 2014; Schmidt, 2018; Berezin and

Berezin, 2019). Coronary occlusions are more likely to

occur and the heart is more sensitive to ischemia-

reperfusion (I/R) injury in diabetic patients than in non-

diabetic patients (Sasso et al., 2011; Henning, 2018). The

incidence of cardiovascular disease in adults with diabetes

is two to three times higher than those without diabetes

(Sarwar et al., 2010; Henning, 2018; Strain and Paldánius,

2018). One possible reason is that the diabetic patients

share several pathological features including

inflammation and oxidative stress (Fisher, 1999; Alegria

et al., 2007; Marso et al., 2007; Miki et al., 2012; Lejay et al.,

2016; Russo et al., 2017; Zhao et al., 2017). Additionally,

cardioprotective interventions such as ischemic

preconditioning and postconditioning that are effective

in nondiabetic subjects, are largely ineffective in diabetes

(Keating, 2015; Russell et al., 2019). Therefore, it is

extremely important to identify new pharmacological

targets for the prevention and treatment of diabetic

myocardial I/R injury.

DEX is a potent α-2 adrenergic receptor agonist that has

sedative, analgesic, anxiolytic and opioid-sparing properties

(Ebert et al., 2000; Venn and Grounds, 2001; Panzer et al.,

2009; Keating, 2015). For its low risk of respiration inhibition

and unique property of organ protection, the application of

DEX is gaining popularity (Belleville et al., 1992; Venn et al.,

2000). Plenty of evidence proved that the administration of

DEX could protect the intestine (Sun et al., 2015; Zhang et al.,

2020a), heart (Zhang et al., 2020b; Wu et al., 2020), kidney (Li

et al., 2018), lung (Liang et al., 2019), and liver (Sahin et al.,

2013; Lim et al., 2021) against I/R injury through

“pharmacological preconditioning” or “pharmacological

postconditioning” (Cai et al., 2014). Although most

interventions failed to confer protection against I/R injury

in diabetic states, it is interesting to note that DEX could

ameliorate diabetic I/R injuries of various organs in animal

models (Arslan et al., 2012; Kip et al., 2015; Yeda et al., 2017;

Liu C. Y. et al., 2018; Castillo et al., 2019; Chen et al., 2019;

Hou et al., 2020). Thus, it is of great importance to elucidate

the biological function and the associated molecular

mechanism of DEX under diabetic conditions, which will

be useful for new pharmaceutical target finding and drug

development against I/R injury in diabetes. Here, in this

paper, the mechanisms of myocardial I/R injury and

current strategies are reviewed and the therapeutic value of

DEX and its molecular mechanisms in the treatment of

diabetic myocardial I/R injury are elaborated.

2 Basic mechanisms of myocardial I/R
injury and current strategies of
protective interventions

The restoration of blood supply to the ischemic myocardium

after myocardial I/R paradoxically leads to more intense cellular

damage, with complex, diverse and highly integrated

pathogenesis (Frank et al., 2012). During ischemia, hydrogen

ions accumulate in large quantities intracellularly (Frank et al.,

2012). When myocardial blood supply is restored, intracellular

pH rapidly returns to its physiological state, disturbing the ions

exchange of sodium and calcium, and causing an increase in

mitochondrial calcium ions (Yellon and Hausenloy, 2007; Frank

et al., 2012). The calcium ions overload activates calpain pathway

and contributes to cell death (Potz et al., 2016; Valikeserlis et al.,

2021). The mitochondrial permeability transition pore (mPTP)

would open in response to mitochondrial calcium ions overload,

oxidative stress, and the restoration of a physiological pH (Zhang

M. L. et al., 2021; Valikeserlis et al., 2021). MPTP is a crucial

determinant of cellular damage that occurs after ischemic

myocardial reperfusion (Heusch et al., 2010). The irreversible

opening of this channel leads to mitochondrial collapse, further

aggravating ATP depletion and cellular damage (Szabó and

Zoratti, 1991; Kim et al., 2003). Myocardial ischemia

deteriorates with the ensuing inflammatory response after

reperfusion (Frank et al., 2012). However, timely and effective

myocardial reperfusion still represents the most effective clinical

treatment for myocardial ischemia. To reduce the risk of

reperfusion, various strategies have emerged, including

ischemic preconditioning (Arriel et al., 2020), ischemic

postconditioning (Heusch, 2015), remote ischemic

preconditioning, remote ischemic postconditioning (Donato

et al., 2017), and therapeutic hypothermia (Sobczyk et al.,

2020). These cardioprotective strategies were proven to be

effective for the prevention and treatment of myocardial I/R

injury in non-diabetic subjects (Mokhtari-Zaer et al., 2018; Li

et al., 2022). In general, myocardial I/R injury has been

extensively studied, but in patients with comorbidities,

especially with diabetes mellitus, it needs to be further

investigated.

3 Myocardial I/R injury in diabetes

Unfortunately, most strategies for the protection against

myocardial I/R injury appear to be ineffective in diabetic

patients (Gao et al., 2016; Lejay et al., 2016). The non-

responsiveness seems to be related to the alterations in several

signaling pathways (Wang et al., 2013; Gao et al., 2021).

Reperfusion injury signaling kinase (RISK) pathway including

PI3K/Akt signaling cascade, and survivor activating factor

enhancement (SAFE) pathway including JAK2/

STAT3 signaling cascade are key for myocardial protection.
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Defects in these pathways reduce the sensitivity of diabetic

myocardium to treatments. Hyperglycemia induces the

expression of phosphatase and tensin homolog deleted on

chromosome ten (PTEN) and blocks PI3K/Akt pathway

(Mocanu and Yellon, 2007), leading to a failure of GSK-3β
phosphorylation, which promotes mPTP opening and

exacerbates myocardial I/R injury (Lejay et al., 2016).

Mitochondrial dysfunction is an essential cause of irreversible

myocardial damage. STAT3, an effector in the SAFE pathway, is

down-regulated in diabetes, leading to impairment of

mitochondrial function (Wang et al., 2013). Persistent

hyperglycemia of diabetes can also disrupt mitochondria by

increasing dynamin-related protein 1 (DRP1) expression

(Ding et al., 2017), blocking the mitochondrial KATP channel

(Li et al., 2013), and inactivating hypoxia-inducible factor-1

(HIF-1α) (Riquelme et al., 2016). The above factors are highly

integrated and contribute to the desensitization of diabetic

myocardium to therapeutic interventions against I/R injury.

4 Dexmedetomidine and its potential
protection against myocardial I/R
injury

4.1 Dexmedetomidine and its potential
preconditioning

4.1.1 Dexmedetomidine preconditioning
induced cardioprotection against non-diabetic
I/R injury

Rational use of DEX for preconditioning is effective in

reducing the damage caused by myocardial I/R. It was verified

in numerous animal studies that cardioprotection of DEX

preconditioning could be achieved through the administration

of DEX (10 nM) intravenously 30 minutes before ischemia

(Okada et al., 2007; He et al., 2019). In rats model of

myocardial I/R injury, DEX preconditioning could reduce

myocardial infarct size, decrease the incidence of arrhythmia

and improve left ventricular function (Dong et al., 2017; He et al.,

2019; Xiong et al., 2021). Specific mechanisms of its

cardioprotective effects were explored. It was revealed that

DEX might protect the heart through its direct effects on

myocardial signaling cascades, such as activation of the RISK,

in particular, the PI3K/Akt signaling pathway (Zhang et al.,

2020c).

DEX has been recommended to be used as an auxiliary

sedative for cardiac patients. For those who underwent cardiac

surgery with cardiopulmonary bypass (CPB), a loading dose of

1 μg/kg DEX with a continued infusion at 0.5 μg/kg/h could

reduce intraoperative myocardial injury and attenuate

inflammatory responses and oxidative stress, as evidenced by

decreases in CK-MB, inflammatory factors and MDA (Bayram

et al., 2014; Chen et al., 2021). A retrospective study of

2,068 cardiac surgery patients showed that DEX pretreatment

was associated with a better cardiac outcome and a 7% increase in

5-year patient survival (Peng et al., 2021) (Table 1). Elucidating

the molecular mechanism underlying the cardioprotection

benefits of DEX would be useful for finding new promising

pharmacological targets and catalyze the translation of

cardioprotection related research into clinical settings.

4.1.2 Dexmedetomidine preconditioning
induced cardioprotection against diabetic I/R
injury

By stabilizing and maintaining blood lipids and blood

glucose levels in patients with type 2 diabetes mellitus, DEX

preconditioning is expected to be a new treatment modality

for diabetic myocardial I/R injury (Hui Yun and Suk Choi,

2016; Sun et al., 2019). Arslan et al. (2014) proposed that

DEX could improve the deformability of erythrocytes in rats

model of diabetic myocardial I/R injury. By maintaining the

blood glucose level and reducing oxidative stress-induced

damage to cell membrane, DEX preconditioning could

attenuate the alteration of erythrocyte deformability

(Ozer et al., 2018), improve microcirculation and tissue

perfusion (Simchon et al., 1987; Mokken et al., 1992),

and offer protection against diabetic myocardial I/R

injury. Several recent studies demonstrated that DEX

preconditioning had cardioprotective effects against I/R

injury in both streptozotocin-induced type 1 diabetic rats

(Chang et al., 2020) and type 2 diabetic rats (Deng et al.,

2019; Li et al., 2019; Guo et al., 2020) as evidenced by

significantly reduced myocardial infarct sizes and plasma

cTnT levels.

DEX also confers protection against remote organ injury

caused by diabetic myocardial I/R insult. Intraperitoneal

injection of DEX protected against myocardial I/R induced

lung damage in diabetic rats, as evidenced by decreased

neutrophil infiltration/aggregation and lung injury scores

(Kip et al., 2015). More studies are needed to investigate

the effect of DEX on different organ injuries resulting from

diabetic myocardial I/R, which may contribute to the

understanding of the underlying mechanisms of tissue

damage associated with I/R injury in diabetes. The above

studies revealed the unique features of DEX in diabetic

myocardial I/R injury, which are the ability of DEX to

balance blood glucose and lipids at a certain level,

minimize the damage to the circulatory system, and

mitigate injuries and adverse effects on distal organs.

Generalizing and exploring the dosage of DEX used has

important implications for studying its effect on myocardial

protection. We summarized the common doses of DEX used

in most experimental studies. It seemed that a large dose of DEX

usage was more likely to be beneficial than detrimental. The

dosage of DEX used in animal models ranges from 1 μg/kg to

100 μg/kg, and 1 µM for mostly cellular models (Tables 2, 3) (Kip
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et al., 2015; Oh et al., 2019; Zhang et al., 2020b). It is necessary to

determine the exact pharmacological dose of DEX that is

biologically effective or harmful so that the side effects of

DEX such as hypotension and cardiac arrest can be effectively

avoided. In humans, DEX is administered as a premedication at a

dose range of 0.33–0.67 μg/kg (Afonso and Reis, 2012). The

above studies give a reference for an appropriate use of DEX

in diabetic myocardial protection. Nevertheless, the

cardioprotective effect of DEX preconditioning on I/R injury

in diabetic patients has rarely been reported. One possible

explanation is that the diabetic myocardium is highly

vulnerable to I/R injury and the effect of DEX

preconditioning is quite limited. DEX’s potential of lowering

blood pressure and causing bradycardia or even sinus arrest

might also compromise its cardioprotective effects (Reel and

Maani, 2022).

TABLE 1 Summary of clinical applications related to DEX.

Interventions Main results References

Intravenous DEX infusion of 1.0 μg/kg for 10 min prior to anesthesia,
then 0.5 μg/kg/h DEX for maintenance

Preventing possible renal injury from cardiac angiography in pediatric
patients by decreasing plasma endothelin-1 and renin

Bayram et al. (2014)

Intravenous DEX infusion of 0.007 μg/kg/min was initiated before or
immediately after cardiopulmonary bypass and lasted for <24 h

Improving 5-year survival in patients undergoing cardiac surgery Peng et al. (2021)

Intravenous DEX infusion of 1.0 μg/kg for 10 min prior to anesthesia,
then 0.5 μg/kg/h DEX for maintenance

Reducing myocardial injury, inhibiting the release of inflammatory
factors, promoting the release of anti-inflammatory factors, enhancing
the activity of antioxidant enzymes and reducing oxidative stress and
stress responses

Chen et al. (2021)

Intravenous DEX infusion of 0.4–0.8 μg/kg/h for maintenance Maintaining blood glucose levels at a constant level relative to baseline
in diabetic patients within 24 h postoperatively

Hui Yun and Suk Choi,
(2016)

DEX as an adjuvant to spinal anesthesia Stabilizing hemodynamics Ye et al. (2021)

DEX, dexmedetomidine.

TABLE 2 Molecular mechanisms of DEX in the treatment of diabetic myocardial I/R injury at the animal level.

Interventions Main results References

DEX
Preconditioning

Intravenously injected with DEX at a rate of 1 μg/kg/h for
28 days

Attenuating autophagy via the regulation of ERK and Akt
signaling and improving cardiac malfunction

Oh et al. (2019)

Intravenously injected with 7.5 μg/kg DEX at a rate of
5 μg/kg/h, 30 min before surgery

Alleviating cardiomyocyte apoptosis by mitigating myocardial
endoplasmic reticulum stress

Li et al. (2019)

Intraperitoneally injected with100 μg/kg DEX, 30 min
before the ischemia period

Improving the deformability of erythrocytes and improving
microcirculation

Ozer et al. (2018); Arslan
et al. (2014)

Intraperitoneally injected with100 μg/kg and 10 μg/kg
DEX, 30 min before the ischemia period

Inhibiting cell apoptosis and oxidative stress by activating the
PI3K/Akt pathway

Chang et al. (2020)

Intraperitoneally injected with100 μg/kg DEX, 30 min
before the ischemia period

Decreasing lung injury following myocardial I/R Kip et al. (2015)

Intravenously injected with 1 μg/kg DEX, and then
15 min administration of 0.7 μg/kg/h DEX

Reducing the cTnT levels, the post-reperfusion arrhythmia
score and the infarct size by the induction of GSK-3β
phosphorylation

Deng et al. (2019)

Perfusion of 3 nM DEX over 5 min, followed by a 5-min
wash-out period before 33 min of ischemia

Reducing myocardial infarct size and improving cardiac
function

Torregroza et al. (2020)

Perfusion of 10 nM DEX, 25 min before ischemia Inhibiting inflammation via TLR4/MyD88/NF-κB pathway Yang et al. (2017)

Intravenously injected with 6 μg/kg DEX, and then
15 min administration of 0.7 μg/kg/h DEX

Inhibiting inflammation via TLR4/MyD88/NF-κB pathway Zhang et al. (2017)

Intracoronary infusion of DEX at a rate of 1 ng/ml, 10 ng/
ml, or 100 ng/ml

Exerting the protective effect by regulating the autonomic
nervous system

Yoshitomi et al. (2012)

DEX
Postconditioning

Intravenously injected with 10 μg/kg DEX 5 min before
reperfusion and then subjected to 120 min of reperfusion

Inhibiting oxidative stress and apoptosis via PI3K/Akt
pathway

Cheng et al. (2018)

Intravenously injected with 10 μg/kg DEX Decreasing overautophagy via Sirt1/mTOR pathway Ding et al. (2015); Zhang
et al. (2020B)

DEX, dexmedetomidine; GSK-3β, glycogen synthase kinase-3β; I/R, ischemia/reperfusion; NF-κB, nuclear factor κB; ERK, extracellular signal-regulated kinase; PI3K, phosphatidylinositol
3-kinase; Akt (PKB), protein kinase B; SIRT1, silent information regulator 1; TLR4, toll-like receptor 4; mTOR, mammalian target of rapamycin.
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4.1.3 Protection mechanisms of
dexmedetomidine preconditioning in diabetic
I/R injury

By inhibiting GSK-3β and affecting oxidative stress,

apoptosis, calcium overload, and mPTP opening, DEX

preconditioning presumably shields the myocardium from

diabetes-induced activation of GSK-3β-mediated pathogenic

effects (Chang et al., 2020; Guo et al., 2020). Another

molecule possibly regulated by DEX is Sirt1, the absence of

which is also closely related to the resistance of diabetic

myocardium to medical interventions against I/R injury (Ding

et al., 2015; Zhang Y. et al., 2021). In addition, the autonomic

nervous system may also be involved.

4.1.3.1 Dexmedetomidine preconditioning and oxidative

stress, apoptosis

DEX grants an anti-diabetic myocardial I/R injury profile

through anti-apoptosis and anti-oxidant stress pathways (Chang

et al., 2020). Preconditioning of H9c2 cardiomyocytes with DEX

significantly mitigated apoptosis and oxidative stress induced by

hyperglycemic hypoxic/reoxygenation injury (Chang et al., 2020).

The protective effects of DEX against diabetic I/R injury-induced

apoptosis and oxidative stress in cardiomyocytes might be mediated

by inhibition of PI3K/Akt pathway (Chang et al., 2020). GSK-3β
plays an important role in necrosis and apoptosis of cardiomyocytes

as one of the downstream targets of PI3K/Akt pathway (Miura and

Miki, 2009). GSK-3β activity is a determinant of the threshold for

mPTP’s opening in cardiomyocytes (Yin et al., 2012). Its

phosphorylation or inactivation can inhibit the opening of

mPTP, which is associated with the upregulation of apoptotic

cascade response process and oxidative stress (Yin et al., 2012).

In the diabetic state, GSK-3β is activated and its activity is 2-fold

higher than in non-diabetic state (Yin et al., 2012). DEX

preconditioning could promote the phosphorylation of GSK-3β,
inhibit mPTP opening, maintain mitochondrial function, block

apoptotic cascade initiation, and enhance myocardial antioxidant

defense (Kip et al., 2015; Guo et al., 2020). Intraperitoneal injection

of DEX attenuates ischemia-reperfusion injury by reducing the

upregulated expression of apoptosis-associated protein (p-BAD,

BAX) and oxidative stress-related protein (MAD) in diabetic

heart (Chang et al., 2020). Hyperglycemia dramatically induced

cardiac dysfunction and ultrastructural disruption following I/R

injury. Treatment with DEX remarkably ameliorated these

abnormalities. Yohimbine, an α2-adrenergic receptor antagonist,

could block the cardioprotective effects induced by DEX by

inhibition the phosphorylation of GSK-3β (Deng et al., 2019).

The underlying mechanisms that involved in the negative

modulation of cardiomyocyte apoptosis and oxidative stress in

these studies further proved the protective role of DEX in

diabetic I/R-induced cardiac injury. However, in the current

study, the molecular mechanism of DEX to attenuate apoptosis

and oxidative stress induced by diabetic myocardial I/R is not

sufficient, and further studies are needed to be carried out.

4.1.3.2 Dexmedetomidine preconditioning and

endoplasmic reticulum stress

The endoplasmic reticulum is the arena where proteins are

folded, modified and processed. Its normal function is crucial to

the stability of the intracellular environment (Yan et al., 2019).

The significant role of endoplasmic reticulum stress (ERS) in the

pathogenesis of diabetic myocardial I/R injury has been widely

accepted (Li W. et al., 2020). Inhibition of ERS would be an

effective strategy to treat diabetic myocardial I/R injury. The

myocardial protection of DEX in diabetes is associated with ERS

inhibition. Preconditioning H9c2 cardiomyocytes with DEX

(1 μM) could decrease the expression of mitochondrial

apoptotic proteins and ERS-related proteins, including

glucose-regulated protein (GRP78), C/EBP-homologous

protein (CHOP), ERO1α, ERO1β and PDI. ERS agonist

reversed the effects of DEX on hypoxia/reoxygenation (H/R)-

induced apoptosis (Li W. et al., 2020). In diabetic rats model of

myocardial I/R injury, DEX preconditioning could inhibit

diabetes-exacerbated ERS and significantly reduce myocardial

infarct size and improve myocardial ultrastructure damage (Li

et al., 2019). The above results suggest that DEX is a novel

myocardial protective agent for the treatment of diabetic

TABLE 3 Molecular mechanisms of DEX in the treatment of diabetic myocardial I/R injury at the cellular level.

Interventions Main results References

DEX
Preconditioning

H9c2 cardiomyocytes were treated with DEX (1 μM) for
12 h before H/R

Inhibition of ERS-dependent apoptosis via CHOP
signaling pathway

Li et al. (2019)

Cardiomyocytes were treated with DEX for 1 h Attenuation of OGD/R-induced apoptosis in
cardiomyocytes by activating the PI3K/Akt pathway

Chang et al. (2020)

H9c2 cardiomyocytes were treated with DEX (1 μM) for 1 h
before hypoxia

Inhibition of ERS via Sirt1/CHOP pathway Ding et al. (2015); Zhang
et al. (2021)

H9c2 cardiomyocytes were treated with DEX until the final
concentration reached 5 μmol/L

Up-regulation of autophagy Shi et al. (2021)

DEX, dexmedetomidine; OGD/R, oxygen-glucose deprivation and reoxygenation; H/R, hypoxia/reoxygenation; PI3K, phosphatidylinositol 3-kinase; Akt (PKB), protein kinase B; CHOP,

C/EBP, homologous protein; ERS, endoplasmic reticulum stress; Sirt1, silent information regulator 1.
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myocardial I/R injury due to its strong inhibition of ERS-

dependent apoptosis pathway.

4.1.3.3 Dexmedetomidine preconditioning and

autophagy

Autophagy is a process of self-digestion, which can remove

damaged cells and renew dysfunctional organelles and proteins

(Huang et al., 2020). During myocardial I/R injury, autophagy

plays diverse roles in different stages. At the stage of ischemia,

autophagy is beneficial for providing cells with the energy needed

and inhibiting apoptosis and necrosis. Nevertheless, at the stage

of reperfusion, excessive autophagy has the detrimental effect of

destroying cellular components and causing myocardial injury

(Shi et al., 2019). Modulation of autophagy has been considered

an appropriate therapeutic option for cardioprotection (Liu et al.,

2017; Liu R. et al., 2018; Li Y. et al., 2020). Studies revealed that

DEX could upregulate autophagy and reduce myocardial H/R

injury in isolated cardiomyocytes under high glucose conditions

(Shi et al., 2021). It was found that DEX could ameliorate cardiac

dysfunction and autophagic impairment in diabetic rats by

suppressing the expression of LC3B and autophagy related

genes (ATG) and proteins (Oh et al., 2019). Thus it is

hypothesized that DEX could exert different effects on

autophagy at different stages of I/R. The autophagy regulation

of DEX in diabetic myocardial I/R injury and its molecular

mechanism are to be further explored in the future.

4.1.3.4 Dexmedetomidine preconditioning and

inflammation

Inflammation is one of the most important pathological

mechanisms of myocardial I/R injury. DEX reduced the

expression of inflammatory factors such as TNF-α and IL-1β,
and inhibited the inflammatory response in vivo (Yang et al.,

2017; Zhang et al., 2017). TLR4/MyD88/NF-κB signaling

pathway plays a key role in the regulation of inflammation.

DEX preconditioning could down-regulate HMGB1 mediated

the TLR4/MyD88/NF-lB signaling pathway and attenuate

myocardial I/R injury (Yang et al., 2017; Zhang et al., 2017).

It is believed that the inhibition of HMGB1-mediated TLR4/

MyD88/NF-κB signaling pathway may be one of the anti-

inflammatory mechanisms of DEX to induce myocardial

protection (Yang et al., 2017; Zhang et al., 2017).

Interestingly, DEX could also reduce systemic inflammatory

response through TLR4/MyD88/NF-κB pathway in lower limb

surgery of diabetic patients. However, whether DEX could

alleviate myocardial I/R injury in diabetes mellitus by

inhibiting HMGB1 mediated inflammation remains unclear.

4.1.3.5 Dexmedetomidine preconditioning and

autonomic nervous system

DEX has been found to protect against myocardial I/R injury

by regulating the autonomic nervous system (Yoshitomi et al.,

2012). Through inhibiting the norepinephrine neuron activity in

the locus coeruleus, DEX could suppress sympathetic excitation,

reduce catecholamine level in the blood, and decrease cardiac

load and myocardial oxygen consumption. Meanwhile, with

prolonged time of diastolic perfusion and increased left

ventricular coronary blood flow, the release of cardiac lactic

acid was reduced and the resistance of myocardial to ischemia

and hypoxia was enhanced. In addition, DEX could directly

inhibit the release of cardiac norepinephrine and lower the

incidence of arrhythmia in high-risk patients. The mechanism

may be due to the parasympathetic effect of DEX on calcium ions

transport in cardiomyocytes (Yoshitomi et al., 2012; Bao and

Tang, 2020). Furthermore, studies have shown that DEX

increases vagal nerve tone and triggers its anti-inflammatory

effect, which may contribute to the alleviation of myocardial I/R

injury (Zi et al., 2019; Ju et al., 2020). Heart rate variability reflects

the balance of the patient’s autonomic nervous system. In the

diabetic state, DEX affects heart rate variability by regulating

autonomic nerve function (Ye et al., 2021). However, the

mechanism of how DEX regulates diabetic myocardial I/R

injury through autonomic nervous system has not yet been

well studied.

Sirt1 is a multifunctional molecule involved in myocardial

I/R injury (Tian et al., 2019; Wang et al., 2020; Wang and Hu,

2020). Overexpression of Sirt1 could improve cardiac function

and protect the myocardium in diabetic rats (Ding et al., 2015).

DEX inhibits oxidative stress, inflammation and apoptosis by up-

regulating the expression of Sirt1 and improves myocardial I/R

injury in non-diabetic states (Zhang Y. et al., 2021). The effect of

DEX on Sirt1 in diabetic myocardial I/R injury is well worth

studying, which will provide a new theoretical basis for the

treatment of diabetic myocardial I/R injury.

Taken together, the pathophysiologic process of diabetic

myocardial I/R injury is extremely complex and multifactorial.

DEX can work on multiple pathways simultaneously to

effectively protect diabetic myocardium against I/R damage,

which might be an explanation for the effectiveness of DEX

for the treatment of diabetic myocardial I/R. Hence, more

powerful multi-targets drug development could be a direction

for future research, which will make the therapy against diabetic

myocardial I/R injury more effective.

4.2 Dexmedetomidine and its potential
postconditioning

Pharmacological postconditioning with DEX shows more

clinical advantages than invasive ischemic postconditioning (Wu

et al., 2021). From the perspective of clinical application value,

pharmacological postconditioning would be a more suitable

alternative treatment. Results from several experimental

studies seemed to be consistent with the findings that

postconditioning with DEX could ameliorate myocardial I/R

injury (Cheng et al., 2018; Zhang et al., 2020b). The effect of
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DEX postconditioning was concentration-dependent, in ranges

between 0.3 and 3 nM. Increased concentrations of above 3 nM

failed to further enhance the effect. The cardioprotective effect is

independent of the time point and the length of application in the

reperfusion period (Cheng et al., 2016; Bunte et al., 2020).

4.2.1 Dexmedetomidine postconditioning-
induced cardioprotection against diabetic I/R
injury

The currently available data on the application of DEX

postconditioning in diabetic myocardial I/R injury are

minimal. A study by Cheng et al. (Cheng et al., 2018)

reported that DEX postconditioning exerted the same effect as

DEX preconditioning in diabetic myocardial I/R model. The

potency of DEX postconditioning mediated cardioprotection was

reflected in the reduction of plasma CK-MB, LDH and MDA,

and an improvement in myocardial histology. However, an

opposite result was found by Torregroza et al. who concluded

that DEX postconditioning was unable to maintain its

cardioprotective properties with acute hyperglycemia

(Torregroza et al., 2020). This discrepancy was probably due

to the difference in experimental models. Chen et al. investigated

type 2 diabetes, a chronic inflammatory condition, whereas

Torregroza et al. studied an acute hyperglycemic model. Due

to the unpredictability of preconditioning, postconditioning is of

higher value. Diabetes mellitus and acute hyperglycemia ought to

be involved in future translational research with DEX

postconditioning.

4.2.2 Protection mechanisms of
dexmedetomidine postconditioning in diabetic
I/R injury

Similar to DEX preconditioning, the protective role of DEX

postconditioning in diabetic myocardium is also associated with

GSK-3β. DEX postconditioning promotes the phosphorylation

of GSK-3β and inhibits its activity via PI3K/Akt pathway (Cheng
et al., 2018; Del’Guidice and Beaulieu, 2010). The

phosphorylation of GSK-3β could reduce I/R damage and

protect the myocardium by adjusting the Bcl-2/Bax ratio and

inhibiting the caspase-controlled apoptotic pathway (Deng et al.,

FIGURE 1
A schematic of proposed mechanisms of cardioprotection from DEX preconditioning and postconditioning in diabetes.
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2019; Wang et al., 2019; Liu et al., 2020; Sharma et al., 2020). In

diabetic rats subjected to myocardial I/R, DEX postconditioning

inhibited cardiomyocyte apoptosis and oxidative stress with an

elevation of p-PI3K, p-Akt, and a reduction in GSK-3β. And the

effects were abrogated by PI3K inhibitors (Cheng et al., 2018). In

addition, a study showed that DEX postconditioning could

alleviate myocardial I/R injury by activating the Sirt1/mTOR

axis (Zhang et al., 2020b). Whether the Sirt1/mTOR axis plays a

role in alleviating myocardial I/R injury in diabetes by DEX

postconditioning has not been reported. These results suggested

that both preconditioning and postconditioning of DEX activate

the PI3K/Akt signaling pathway, inducing the phosphorylation

of downstream kinases to inhibit several pro-apoptotic factors

and the irreversible opening of mPTP, then with increased the

expression of p-GSK-3β in myocardial tissue with diabetic I/R

injury, effectively inhibiting apoptosis and oxidative stress.

However, the degree of activation of related signaling pathway

by the two conditioning methods might be different. Study has

shown that acute hyperglycemia abolished the protective effect of

DEX postconditioning but retained the beneficial effect of DEX

preconditioning on I/R injured myocardium (Torregroza et al.,

2020). This can be explained that the degree of activation of

related signaling pathway by the two conditioning methods

might be different. Preconditioning of DEX probably could be

more effective in activation of PI3K/Akt than postconditioning of

DEX. There is also a possibility that preconditioning could

provide more powerful protection effect through some other

unknown pathways, which needs to be further investigated.

5 Conclusion and perspective

In this review, the evidence and the possible mechanisms of

DEX in reducing myocardial I/R injury in diabetes are discussed

(Figure 1). The Activation of PI3K/Akt/GSK-3β, inhibition of

CHOP, attenuation of oxidative stress, regulation of autophagy,

and protection of mitochondrial function are possible

mechanisms that collectively contribute to DEX’s protection

of diabetic myocardium. The protection of DEX on I/R

insulted myocardium was not entirely dependent on the

activation of α2-adrenoceptor (Yin et al., 2020). DEX may

also exert protective effects by activating several other

receptors (Zhang et al., 2012). This potentially interesting

hypothesis needs to be verified in future studies. Other α2-

adrenoceptors have not been reported in the study of diabetic

myocardial protection, and their effectiveness in attenuating

myocardial I/R injury in diabetes is to be confirmed. Although

DEX has been widely used in various clinical scenarios, its

research on diabetic myocardial I/R injury is quite limited. A

better understanding of the mechanisms underlying DEX-related

myocardial protection would be helpful for establishing new

protective methods and developing more promising

cardioprotective agents against diabetic myocardial I/R injury

in the future.
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