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Background and purpose — External validation of 
machine learning (ML) prediction models is an essential 
step before clinical application. We assessed the proportion, 
performance, and transparent reporting of externally vali-
dated ML prediction models in orthopedic surgery, using the 
Transparent Reporting for Individual Prognosis or Diagnosis 
(TRIPOD) guidelines.

Material and methods — We performed a systematic 
search using synonyms for every orthopedic specialty, ML, 
and external validation. The proportion was determined by 
using 59 ML prediction models with only internal valida-
tion in orthopedic surgical outcome published up until June 
18, 2020, previously identified by our group. Model perfor-
mance was evaluated using discrimination, calibration, and 
decision-curve analysis. The TRIPOD guidelines assessed 
transparent reporting.

Results — We included 18 studies externally validating 
10 different ML prediction models of the 59 available ML 
models after screening 4,682 studies. All external validations 
identified in this review retained good discrimination. Other 
key performance measures were provided in only 3 studies, 
rendering overall performance evaluation difficult. The over-
all median TRIPOD completeness was 61% (IQR 43–89), 
with 6 items being reported in less than 4/18 of the studies.

Interpretation — Most current predictive ML models are 
not externally validated. The 18 available external validation 
studies were characterized by incomplete reporting of per-
formance measures, limiting a transparent examination of 
model performance. Further prospective studies are needed 
to validate or refute the myriad of predictive ML models 
in orthopedics while adhering to existing guidelines. This 
ensures clinicians can take full advantage of validated and 
clinically implementable ML decision tools.

Multiple machine learning (ML) algorithms have recently 
been developed for prediction of outcomes in orthopedic sur-
gery. A recent systematic review demonstrated that 59 models 
are currently available covering a wide variety of surgical 
outcomes, such as survival, postoperative complications, hos-
pitalization, or discharge disposition to aid clinical decision-
making (Ogink et al. 2021). However, it is imperative that 
these models are accurate, reliable, and applicable to patients 
outside the developmental dataset. Even though internal vali-
dation studies regularly report good performance, these results 
are often too optimistic as performance on external validation 
worsens due to initial overfitting (Collins et al. 2014, Siontis 
et al. 2015).

External validation refers to assessing the model’s per-
formance on a dataset that was not used during develop-
ment. Testing the developed model on independent datasets 
addresses the aforementioned concerns of internal valida-
tion, including: the generalizability of the model in differ-
ent patient populations, shortcomings in statistical modelling 
(e.g., incorrect handling of missing data), and model overfit-
ting (Collins et al. 2014, 2015). Therefore, external valida-
tion is essential before a model can be used in routine clinical 
practice.

Although a growing number of ML prediction models are 
being developed in orthopedics, no overview exists of the 
number of available ML prediction models that are externally 
validated, how they perform in an independent dataset, and 
what the transparency of reporting is of these external vali-
dation studies. Therefore, we assessed the proportion, perfor-
mance, and transparent reporting of externally validated ML 
prediction models in orthopedic surgery, using the Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis (TRIPOD) guidelines. 
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Material and methods
Systematic literature search
Adhering to the 2009 PRISMA guidelines, this review was 
registered online at PROSPERO (Moher et al. 2016). A 
systematic search was conducted in PubMed, Embase and 
Cochrane up to November 17, 2020. 

3 different domains of medical subject headings (MeSH) 
terms and keywords were combined with “AND”, and within 
domains the terms were combined with ‘OR’. The 3 domains 
included words related to orthopedics, ML, and external vali-
dation. In addition, we searched the first and last authors from 
the 59 ML prediction models previously identified in a sys-
tematic review by our study group combined with the domain 
“machine learning” (Appendix 1, see Supplementary data) 
(Ogink et al. 2021). 2 authors (NDK, PKT) independently 
screened all titles and abstracts. All references of the included 
studies were examined for relevant studies not identified by 
the initial search. The final list of included studies was sent to 
all coauthors, all of whom had worked with and/or published 
ML prediction models in orthopedics for a last check of poten-
tially missed studies (Figure 1). 

Eligibility criteria
Inclusion criteria were: external validation; prediction models 
based on ML; and orthopedic surgical outcome (defined as 
any outcome after musculoskeletal surgery). Exclusion cri-
teria were: non-ML prediction model (e.g., standard logistic 
regression); internal validation (e.g., cross-validation and 
holdout test set from developmental dataset); lack of full text; 
conference abstracts; animal studies; and languages other 
than English, Spanish, German, or Dutch. We considered 
advanced logistic regression methods as ML algorithms such 

as penalized LR (LASSO, ridge or elastic-net), boosted LR 
and bagged LR.

Data extraction
Data extracted from each study were: year of publication; 1st 
author; disease; type of surgery; prospective study design; 
level of care from which the dataset originates (e.g., tertiary); 
country; type of ML algorithm (e.g., Bayesian Belief Net-
work); sample size; input features; predicted outcome; time 
points of outcome; performance measures according to the 
ABCD approach (Steyerberg and Vergouwe 2014) (A = cal-
ibration-in-the-large, or the model intercept; B = calibration 
slope; C = discrimination, with an area under the curve [AUC] 
using evaluation metrics of receiver operating characteristic 
[ROC] curves or precision-recall [PR] plots; D = decision-
curve analysis); mention of guideline adherence; TRIPOD 
items (Collins et al. 2015); and PROBAST domains (Wolff et 
al. 2019). Data were extracted from the largest cohort when 
multiple cohorts were present and the best performing model 
if a study reported results for multiple outcomes (e.g., 90-day 
and 1-year survival). Performance measures of the develop-
mental study were extracted to compare with the results of 
external validation. 2 reviewers (OQG, BJJB) independently 
extracted all data and disagreements were discussed with a 
third reviewer present (PTO) until consensus was achieved.

TRIPOD and PROBAST
The TRIPOD guidelines were simultaneously published in 11 
leading medical journals in January 2015 (Collins et al. 2015). 
Although various other guidelines exist (von Elm et al. 2007, 
Luo et al. 2016), we deemed the TRIPOD guidelines essen-
tial for transparent reporting requirements, which is impera-
tive when judging the validity and applicability of a prediction 
model. Also, the TRIPOD guidelines were developed entirely 
for transparent reporting of prognosis or diagnosis prediction 
model studies (Figure 2 and 3, see Supplementary data). 

The PROBAST assesses the risk of bias of a study that vali-
dates a prognostic prediction model (Wolff et al. 2019). It is 
specifically designed to grade studies included in a systematic 
review. 4 domains are assessed for risk of bias: (1) partici-
pants; (2) predictors; (3) outcome; (4) and analysis (Figure 4, 
see Supplementary data). 

Statistics
The proportion of externally validated ML prediction models 
in orthopedic surgical outcome was calculated by dividing 59 
models by the externally validated models identified through 
this current study. Our group previously found 59 ML predic-
tion models using only internal validation meeting the same 
criteria (except the criterium was “developmental” instead of 
“external validation”) in a systematic search dated up until 
June 18, 2020 (Groot et al. 2021, Ogink et al. 2021). Of the 
identified external validation studies, we determined how 
many unique models were externally validated, as 1 model 

Records identified through
PubMed, n = 724
Embase, n = 705
Cochrane, n = 43

Records identified through
expertise network of all

authors
n = 3

Records identified through
first and last author

n = 6,042

Records after duplicates removed,
screened on title and abstract

n = 4,682

Excluded
n = 4,627

Excluded (n = 40):
– internal validation, 25
– no surgical outcome, 15
– no prediction model, 3
– no ML, 4
– other exclusion criteria, 0

Full-text articles
assessed for eligibility

n = 55

Included external
validations

n = 18

Figure 1. Flowchart of study selection.
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can be externally validated multiple times with different data-
sets. 1 incremental value study was found, which also reported 
on external validation. Only the external validation part was 
assessed. 

Performance measures were extracted and expressed as they 
were originally reported (Steyerberg and Vergouwe 2014). No 
meta-analysis could be performed because of obvious hetero-
geneity between studies. Adherence to the TRIPOD guide-
lines and PROBAST domains was expressed in percentages 
and visualized by graphs. 

We used Microsoft Excel Version 19.11 (Microsoft Corp, 
Redmond, WA, USA) to extract data using standardized 
forms, and to create all figures and tables, and Mendeley 
Desktop Version 1.19.4 (Mendeley, London, UK) as reference 
software.

Ethics, funding, and potential conflicts of interest
As there was no contact with patients and no study interven-
tions were performed, permission from our institutional review 
board was not required. The study was supported by a grant 
from the Foundation “De Drie Lichten” in The Netherlands 
(€7.195). The authors reported no further funding disclosures 
or conflicts of interest.

Results
Study characteristics
4,682 unique studies were identified of which 15 remained 
after full-text screening. 3 studies missed by the search were 
added by the coauthor’s expertise network (Forsberg et al. 
2012, 2017, Piccioli et al. 2015, Ogura et al. 2017, Bongers et 
al. 2019, Harris et al. 2019, Huang et al. 2019, Jo et al. 2019, 
Meares et al. 2019, Ramkumar et al. 2019a, 2019b, Stopa et 
al. 2019, Anderson et al. 2020, Bongers et al. 2020a, 2020b, 
Ko et al. 2020, Karhade et al. 2020, Overmann et al. 2020). 
None of the external validations used a prospective cohort 
and 12/18 investigated survival in bone oncology (Table 1). 
6/18 mentioned adherence to the TRIPOD guidelines, but 
none included the actual checklist. All studies were affiliated 
with 6 institutions of which 7/18 with PATHFx and 5/18 with 
SORG (Figure 5, see Supplementary data). 17/18 had at least 
1 author who was also an author on the paper that developed 
the model being evaluated. 9/18 of the studies reported on 
both development and external validation in the same paper; 
the other 9 only reported on external validation. All of the ML 
prediction models were freely available at www.pathfx.org, 
www.sorg-ai.com, safetka.net/, http://med.stanford.edu/s-

Table 1. Characteristics of external validation studies on orthopedic surgical outcome prediction (n = 18)

								        Number	 Adherence
First author, 			   ML	 Prospective		  Input	 of	 to a
publication year	 Disease condition	 Operation	 model	 database	 Output	 predictors	 patients	 guideline

Anderson, 2020	 Pathological fractures	 nos	 BBN	 no	 Survival	 Clinical	 197	 TRIPOD
Bongers, 2019	 Extracranial chondrosarcoma	 nos	 BPM	 no	 Survival	 Clinical	 179	 none
Bongers, 2020a	 Extracranial chondrosarcoma	 nos	 BPM	 no	 Survival	 Clinical	 464	 TRIPOD
Bongers, 2020b	 Bone metastases (spine)	 nos	 SGB	 no	 Survival	 Clinical	 200	 TRIPOD
Forsberg, 2012	 Bone metastases (extremities)	 nos	 BBN	 no	 Survival	 Clinical	 815	 none
Forsberg, 2017	 Bone metastases	 nos	 BBN	 no	 Survival	 Clinical	 815	 TRIPOD
Harris, 2019	 nos	 Elective TJA	 LASSO	 no	 Survival, 	 Clinical	 70,569	 none
						      complications
Huang, 2019	 Non-metastatic chondrosarcoma	 nos	 LASSO	 no	 Survival	 Clinical, 	 72	 none
							       surgical
Jo, 2020	 nos	 TKA	 GBM	 no	 Transfusion	 Clinical, 	 400	 none
							       surgical
Karhade, 2020	 Bone metastases (spine)	 nos	 SGB	 no	 Survival	 Clinical	 176	 TRIPOD
Ko, 2020	 nos	 TKA	 GBM	 no	 Acute kidney	 Clinical, 	 455	 none
						      injury	 surgical
Meares, 2019	 Bone metastases (femoral)	 nos	 BBN	 no	 Survival	 Clinical	 114	 none
Ogura, 2017	 Bone metastases	 nos	 BBN	 no	 Survival	 Clinical	 261	 none
Overmann, 2020	 Bone metastases (extremities)	 nos	 BBN	 no	 Survival	 Clinical	 815	 none
Piccioli, 2015	 Bone metastases	 nos	 BBN	 no	 Survival	 Clinical	 287	 none
Ramkumar, 2019a	 Osteoarthritis	 THA	 ANN	 no	 LOS; discharge	 Clinical	 2,771	 none
						      disposition
Ramkumar, 2019b	 Osteoarthritis	 TKA	 ANN	 no	 LOS; discharge	 Clinical	 4,017	 none
						      disposition
Stopa, 2019	 Lumbar disc disorder	 Decompression	 NN	 no	 Nonhome	 Clinical, 	 144	 TRIPOD
			   or fusion			   discharge	 surgical

ML = machine learning; nos = not otherwise specified; TJA = total joint arthroplasty; TKA = total knee arthroplasty; THA = total hip arthroplasty; 
BBN = Bayesian Belief Network; NN = neural network; BPM = Bayes Point Machine; SGB = Stochastic Gradient Boosting; LASSO = least 
absolute shrinkage and selection operator; GBM = gradient boosting machine; LOS = length of stay; TRIPOD = Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or Diagnosis. 
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spire/Resources/clinical-tools-.html, and https://github.com/
JaretK/NeuralNetArthroplasty. 17 datasets were used because 
3 studies used 1 Scandinavian dataset and 1 study included 
2 validation registry cohorts (Table 2). 14/17 of the datasets 
originated from hospitals, the other 3 were from a registry. 
The median sample size of the external validation datasets 
was 274 patients (IQR, 178–552) and 7/17 were American 
datasets (Figure 6).

Proportion
This systematic review identified 18 external validation stud-
ies of ML models predicting outcomes in orthopedic sur-
gery. In these 18 external validation studies, 10 unique ML 
prediction models were validated as 2 models were validated 
twice, and 1 model 7 times as it was validated and updated 
multiple times with distinct datasets. Therefore, 10/59 of the 

ML models predicting outcomes in orthopedic surgery pub-
lished until June 18, 2020 were externally validated. Of the 10 
models, 3 were externally validated with patients from another 
country than the developmental cohort, including 1 model by 
4 different countries. 

Performance
All studies reported the ROC AUC, which retained good dis-
criminative ability with a value greater than 0.70 and/or less 
than 0.10 decreased performance compared with the corre-
sponding development study (Table 3 and Figure 7, see Sup-
plementary data). No PR AUC evaluation metrics were pro-
vided, despite 3/18 of the datasets consisting of imbalanced 
class distribution in which the ratio events:non-events was 
greater than 1:10. Calibration intercept and slope, or curve, 
were reported in 7/18. 5/18 reported calibration slope or 

Table 2. Characteristics of hospital setting and years of enrollment from external validation and corresponding developmental studies

	 Authors’ 
	 development 
		  and validation	 First author, 					     Years of	
Model or institution	 the same	 publication	 Country	 Tertiary	 Hospitals	 Registry	 year enrollment

Cleveland	 Validation	 yes	 Ramkumar, 2019a	 USA	 mixed	 11	 no	 2016–2018	
	 Development 		  Same	 USA	 mixed	 multiple	 NIS	 2009–2011
Cleveland	 Validation	 yes	 Ramkumar, 2019b	 USA	 mixed	 11	 no	 2016–2018	
	 Development		  Same	 USA	 mixed	 multiple	 NIS	 2009–2013
BETS/ PATHFx 1.0	 Validation 	 yes	 Forsberg, 2012	 Scandinavia	 yes	 8	 no	 1999–2009
	 Development 		  Forsberg, 2011	 USA	 yes	 1	 no	 1999–2003
PATHFx 1.0	 Validation 	 yes	 Piccioli, 2015	 Italy	 yes	 13	 no	 2010–2013
	 Development 		  Forsberg, 2011	 USA	 yes	 1	 no	 1999–2003
PATHFx 1.0	 Validation 	 yes	 Forsberg, 2017	 Scandinavia	 yes	 8	 no	 1999–2009
	 Development 		  Same	 USA	 yes	 1	 no	 1999–2003
PATHFx 1.0	 Validation 	 yes	 Ogura, 2017	 Japan	 yes	 5	 no	 2009–2015
	 Validation 	 no	 Meares, 2019	 Australia	 unknown	 1	 no	 2003–2014
	 Development 		  Forsberg, 2011/2017	 USA	 yes	 1	 no	 1999–2003
PATHFx 2.0	 Validation 	 yes	 Overmann, 2020	 Scandinavia	 yes	 8	 no	 1999–2009
	 Development 		  Same	 USA	 yes	 1	 no	 1999-2003
PATHFx 3.0	 Validation 	 yes	 Anderson, 2020	 Multinational	 yes	 multiple	 IBMR a	 2016–2018
	 Development 		  Same	 USA	 yes	 1	 no	 1999–2003,
								        2015–2018
SafeTKA	 Validation 	 yes	 Jo, 2020	 unknown	 unknown	 1	 no	 unknown
	 Development 		  Same	 South-Korea	 yes	 1	 no	 2012–2018
SafeTKA	 Validation 	 yes	 Ko, 2020	 South-Korea	 yes	 1	 no	 2018–2019
	 Development 		  Same	 South-Korea	 yes	 2	 no	 2012–2019
SORG	 Validation 	 yes	 Bongers, 2019	 USA	 yes	 2	 no	 1992–2013
	 Development 		  Thio, 2018	 USA	 mixed	 multiple	 SEER	 2000–2010
SORG	 Validation 	 yes	 Bongers, 2020a	 Italy	 yes	 1	 no	 2000–2014
	 Validation 	 yes	 Karhade, 2020	 USA	 yes	 1	 no	 2003–2016
	 Development 		  Karhade, 2020	 USA	 yes	 2	 no	 2000–2016
SORG	 Validation 	 yes	 Bongers, 2020b	 USA	 yes	 1	 no	 2014–2016
	 Validation 	 yes	 Stopa, 2019	 USA	 yes	 1	 no	 2013–2015
	 Development 		  Karhade, 2018	 USA	 mixed	 multiple	 NSQIP	 2011–2016
Stanford	 Validation 	 yes	 Harris, 2019	 USA	 mixed	 multiple	 VASQIP	 2005–2013
	 Development 		  Same	 USA	 mixed	 multiple	 NSQIP	 2013–2014
Zhengzhou	 Validation 	 yes	 Huang, 2019	 China	 yes	 1	 no	 2011–2016
	 Development 		  Same	 USA	 mixed	 multiple	 SEER	 2005–2014

BETS = Bayesian Estimated Tools for Survival; SORG = Spinal Oncology Research Group; NSQIP = National Surgical Quality Improvement 
Program; SEER = Surveillance, Epidemiology, and End Results; IBMR = International Bone Metastasis Registry; NIS = National Inpatient 
Sample; VASQIP = Veterans Affairs Surgical Quality Improvement Program.
 a This study also included an external validation on a second registry cohort of 192 patients from the Military Health System Data Repository.
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curves that showed overall underfitting of the data. Decision 
curve analyses were provided in 9/18, all of which illustrated 
that the prediction models were suitable for clinical use. 

TRIPOD and PROBAST
The overall median completeness of the TRIPOD items was 
61% (IQR 43–90%; Figure 8 and Table 4, see Supplementary 
data). All method items adhered to a median completeness of 
56% (IQR 44–72%) and all results items to a median of 42% 
(IQR 22–61%). 6 items were reported in more than 16 studies 
including 3 discussion items (Table 5). 6 items were reported 
in less than 4 studies, including details of abstract, participant 
selection, and reporting key performance measures. 

Participant selection (domain 1) was considered an unclear 
risk of bias in 10 studies because no information was provided 
on the inclusion and exclusion of patients (Figure 9). Predic-
tors (domain 2) were deemed a low risk of bias in 16 studies, 
as 2 studies were unclear in their predictor’s definitions and 
assessment. Outcome (domain 3) was rated a high risk of bias 
in 2 studies as they did not determine survival in a similar way 

for all patients by assigning “death” to all patients lost to fol-
low-up. 2 additional studies in the outcome domain were rated 
an unclear risk of bias because it was difficult to discern if 
they used the same postoperative complication definitions for 
both the development and external validation study. Analysis 
(domain 4) was rated a high risk of bias in 17 studies, mainly 
due to small sample sizes with less than 100 events in the out-
come group or no calibration metrics. The overall judgement 
of risk of bias for the 18 studies was high in 17 studies and low 
in 1 study, as only 1 study scored “low risk of bias” across all 
4 domains. 

Discussion

The focus on developing and publishing ML prediction 
models has led to an increasing body of studies. Yet, it is of 
equal importance to externally validate these models, as the 
TRIPOD states in its guidelines: “external validation is an 
invaluable and crucial step in the introduction of a new predic-

Figure 6. Distribution of development and external validation studies. All of the developmental studies that were externally validated except 2 South 
Korean ones were built on American datasets, unlike the origin of the external validation studies. Symbols without a number correspond with 1 
study. Studies that included both development and external validation within the same study were counted twice in the figure according to where 
both datasets originated from.
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Figure 8. Overall adherence to each TRIPOD item (n = 18). Figure 9. PROBAST results for all 4 domains and overall 
judgement (n = 18).
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tion model before it should be considered for routine clinical 
practice.” Although the external validation studies identified 
in this review retained good discriminatory performance and 
overall adhered well to the TRIPOD guidelines, only 10/50 of 
the ML models predicting orthopedic surgical outcome pub-
lished up to June 2020 have been externally validated. Skepti-
cism of these non-externally validated models is necessary and 
an increased effort in externally validating existing models is 
required to realize the full potential of ML prediction models. 

Proportion
A disappointingly low 10/59 of the current available ML pre-
diction models were externally validated in orthopedic sur-
gical outcome with none of the datasets being prospective. 
Prospectively testing the performance of ML models under 
real-world circumstances is an essential step towards inte-
grating these models into the clinical setting and evaluating 
the impact on healthcare (Collins et al. 2015). In addition, 
increased effort towards external validation on patient data 

from distinct geographic sites is needed, as the generalizabil-
ity of models to other countries may be affected by differences 
in healthcare systems, predictor measurements, and treatment 
strategies (Steyerberg et al. 2013). Although the recent surge 
of ML models in orthopedics is exciting, it is critical that these 
models are tested with external, real-world, operational data in 
different geographical settings before the orthopedic commu-
nity can fully embrace the models in clinical practice. 

Performance
The external validations identified in this review retained good 
discrimination. Other key characteristics recommended evalu-
ating a model’s performance such as calibration, and whether 
decision-curve analysis was inadequately or not reported, as 
observed here and in similar reviews (Collins et al. 2011, 2014, 
Bouwmeester et al. 2012, Tangri et al. 2013). Calibration mea-
sures were provided in only 7 of the 18 studies, preventing 
a transparent examination of model performance across the 
range of predicted probabilities (Steyerberg and Vergouwe 
2014). Lastly, and arguably more important than the other 
metrics, is clinical usefulness evaluated by decision-curve 
analysis (Vickers and Elkin 2006). All 9 of the 18 studies that 
reported a decision-curve analysis indicated that the models 
were suitable for clinical use. Importantly, these curves do 
not estimate the likelihood of the outcome, but rather illus-
trate when the model should and should not be used in certain 
clinical situations over a range of thresholds. Overall, only 3 
studies provided all 4 key measures to evaluate performance 
reliably, despite a substantial body of methodological litera-
ture and published guidance emphasizing the importance of 
these performance measures (von Elm et al. 2007, Steyerberg 
and Vergouwe 2014, Collins et al. 2015, Luo et al. 2016). 
Clinical researchers should use proposed frameworks such 
as Steyerberg’s ABCD approach to systematically report the 
performance of a validated model to allow accurate evaluation 
(Steyerberg and Vergouwe 2014).

An additional interesting find is that 17 of the 18 studies 
were conducted by authors involved in the development of the 
model. Authors evaluating their own model might be overly 
optimistic, selectively report the results to their own advan-
tage, and even defer publication if the performance is poor 
(Siontis et al. 2015). Although validating one’s model is an 
essential first step, ideally this should be done by researchers 
not affiliated with the developmental study. 

TRIPOD and PROBAST
Although the external validations fared better in overall 
TRIPOD adherence than their corresponding developmental 
studies, they too had numerous incomplete items. The abstract, 
for which complete reporting required information on 12 ele-
ments, was incomplete in all studies. Some basic key details 
such as defining predictor definitions, outcome, or treatment 
elements were poorly reported, despite not being specific to 
ML external validation studies. Specifying and reporting per-

Table 5. Sorted by completeness of above 90% reporting and under 
25% of individual TRIPOD items

TRIPOD item	 TRIPOD description % (n)

Complete reporting > 90% 
	   3a	 Explain the medical context (including whether 
		  diagnostic or prognostic) and rationale for validating 
		  the multivariable prediction model, including 
		  references to existing models	 100 (18)
	   4a	 Describe the study design or source of data 
		  (e.g., randomized trial, cohort, or registry data), 
		  separately for the validation data set	 100 (18)
	 19b	 Give an overall interpretation of the results 
		  considering objectives, limitations, results from 
		  similar studies and other relevant evidence	 100 (18)
	 22	 Give the source of funding and the role of the 
		  funders for the present study	 100 (18)
	   6b	 Report any actions to blind assessment of the 
		  outcome to be predicted	 94 (17)
	 19a	 Discuss the results with reference to performance 
		  in the development data, and any other validation 
		  data	 94 (17)
Complete reporting < 25%
	   2	 Provide a summary of objectives, study design, 
		  setting, participants, sample size, predictors, 
		  outcome, statistical analysis, results, and 
		  conclusions	 0 (0)
	   7b	 Report any actions to blind assessment of 
		  predictors for the outcome and other predictors	 0 (0)
	   7a	 Clearly define all predictors used in validating the 
		  multivariable prediction model, including how and 
		  when they were measured	 11 (2)
	   5c	 Give details of treatments received, if relevant	 22 (4)
	 13a	 Describe the flow of participants through the study, 
		  including the number of participants with and without 
		  the outcome and, if applicable, a summary of the 
		  follow-up time. A diagram may be helpful	 22 (4)
	 16	 Report performance measures (with confidence 
		  intervals) for the prediction model (results)	 22 (4)

TRIPOD = Transparent Reporting of a multivariable prediction model 
for Individual Prognosis Or Diagnosis.
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formance measures was poorly done in over half of the stud-
ies. Despite 6 TRIPOD items scoring less than 25% (5 were 
methods/results), 11 items scored over 75%, which included 
mainly introduction and discussion items. This difference in 
adherence across sections perhaps illustrates that the ortho-
pedic community comprehends the rationale, promise, and 
limitations of ML prediction models, but proper knowledge 
of methodological standards to describe and evaluate exter-
nal validations studies is lacking. Standardized reporting and 
adherence to peer-reviewed guidelines such as the TRIPOD 
guidelines will aid in the execution and reporting of exter-
nal validation studies, resulting in validated ML prediction 
models that are reliable, accurate, and that add to surgical 
decision-making (Collins et al. 2015). 

The PROBAST domains identified 2 major concerns in 
addition to the TRIPOD items. First, little attention was given 
to the flow of patient selection, as none of the studies included 
a flow diagram of included and excluded patients. Possibly, 
studies purposely did not include flow diagrams or selection 
criteria to maintain the generalizability of the model to patients 
outside the selection criteria, but studies should explicitly state 
this. Second, the sample sizes were often too small, as only 5 
of the 17 validation datasets had more than 100 events in each 
outcome group. Previous studies have shown that calibration 
results are less reliable with datasets with less than 100 out-
come events (Vergouwe et al. 2005). In most circumstances, it 
would have been difficult to reach this number as the disease 
conditions were primarily bone oncology related. To address 
the issue of inadequate number of outcomes, multi-institu-
tional collaboration is needed to achieve effective sample sizes 
to allow reliable external validations. 

Limitations
1st, studies meeting the selection criteria may have been missed. 
However, we believe this was unlikely as we used 4 different 
search strategies. In addition, we believe that any missed stud-
ies would not have had a profound impact on the review’s mes-
sage as the percentage of externally validated models was well 
below 20%. 2nd, 5 of the 18 included studies originated from 
the authors’ institution (SORG) and the reviewers may have 
been biased assessing them. To account for this potential bias, 
the 2nd reviewer (BJJB) was not affiliated with the institution, 
the PI was not present during the consensus meetings, and an 
online PROSPERO protocol was registered. 3rd, publication 
bias may have occurred as successful external validations may 
be published more often. The performance results presented 
in this review may therefore be too optimistic and the number 
of studies externally validated too pessimistic. Studies demon-
strating poorer performing models are part of the implementa-
tion process and ideally should be equally embraced by jour-
nals as high-performing models. In addition, the AUCs pre-
sented in 3 studies may have been too optimistic as they used 
ROC metrics on imbalanced datasets. Future studies should 
provide PR AUC metrics for datasets with an imbalanced class 

distribution (Saito and Rehmsmeier 2015). 4th, the presented 
low percentage of ML prediction models externally validated 
may have been unfair, as 20 ML models have been developed 
and published in the last year and external validation studies 
are time consuming. However, excluding the studies published 
in the last year to correct for this delay still only yielded a dis-
appointing 18/39 of ML prediction models that were externally 
validated. In addition, not all published ML models are for 
deployment, as we are still exploring the potentials of ML and 
therefore publications’ primary motivation may be exploring 
the space of ML. Instead of externally validating these models, 
online tests should be provided where users can assess them-
selves how the ML models behave in different settings and 
parameters. Unfortunately, over half of the ML development 
studies did not provide online calculators, algorithms, and/or 
open access (Ogink et al. 2021). Future ML studies should 
place more emphasis on providing easy-to-access means 
where outside users can themselves assess model performance 
and behavior. 5th, various reporting guidelines exist such as 
STROBE and JMIR Guidelines for Developing and Reporting 
Machine Learning Models in Biomedical Research (von Elm 
et al. 2007, Luo et al. 2016). However, we used the TRIPOD 
guidelines to assess the transparent reporting as this guideline 
was explicitly developed to cover the development and valida-
tion of prediction models for prognosis (Collins et al. 2015). 
To improve on these guidelines, the TRIPOD authors are cur-
rently developing a TRIPOD-AI version specifically for report-
ing of AI prediction models (Collins and Moons 2019). 6th, 
the guidelines are endorsed by 21 medical journals, of which 
only 1 is orthopedic (Journal of Orthopedic & Sports Physical 
Therapy). Since none of the studies were published in journals 
that officially endorsed the TRIPOD, it may be unfair to expect 
compliance with these guidelines. However, we believe that 
the TRIPOD guidelines present a high-quality benchmark for 
assessing transparent reporting, which is necessary for exter-
nally validating existing models and creating clinically imple-
mentable ML prediction models. Despite these limitations, our 
review provides valuable insights into the amount and transpar-
ent reporting of current ML external validations in orthopedic 
surgical outcome prediction.

Conclusion
Despite the evident importance of evaluating the performance 
of prediction models on unseen datasets, this is rarely done as 
institutions are protective of sharing their data and journals 
prefer publishing development studies. In addition, algorithms 
that perform poorly on external validation may be subject to 
publication bias. The handful of available external validation 
studies overall adhered well to the TRIPOD guidelines, but 
certain items that are essential for transparent reporting were 
inadequately reported or not reported at all, namely details 
of the abstract, participant selection, and key performance 
measures. Increased effort to externally validate existing 
models on large, prospective, geographically distinct datas-
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ets is required to ensure accurate and reliable validated ML 
prediction models. It will be difficult to achieve these types 
of datasets without multi-institutional collaboration across 
different geographic regions. We encourage researchers and 
institutions, from both within and outside the orthopedic ML 
community, to collaborate.
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