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Perspectives on benefit of early 
and prereperfusion hypothermia by 
pharmacological approach in stroke
Fengwu Li1, Jie Gao1, Wesley Kohls 2, Xiaokun Geng1,2,3, Yuchuan Ding2

Abstract:
Stroke kills or disables approximately 15 million people worldwide each year. It is the leading cause 
of brain injury, resulting in persistent neurological deficits and profound physical handicaps. In spite 
of over 100 clinical trials, stroke treatment modalities are limited in applicability and efficacy, and 
therefore, identification of new therapeutic modalities is required to combat this growing problem. 
Poststroke oxidative damage and lactic acidosis are widely‑recognized forms of brain ischemia/
reperfusion injury. However, treatments directed at these injury mechanisms have not been effective. 
In this review, we offer a novel approach combining these well‑established damage mechanisms with 
new insights into brain glucose handling. Specifically, emerging evidence of brain gluconeogenesis 
provides a missing link for understanding oxidative injury and lactate toxicity after ischemia. Therefore, 
dysfunctional gluconeogenesis may substantially contribute to oxidative and lactate damage. We 
further review that hypothermia initiated early in ischemia and before reperfusion may ameliorate 
gluconeogenic dysfunction and subsequently provide an important mechanism of hypothermic 
protection. We will focus on the efficacy of pharmacologically assisted hypothermia and suggest a 
combination that minimizes side effects. Together, this study will advance our knowledge of basic 
mechanisms of ischemic damage and apply this knowledge to develop new therapeutic strategies 
that are desperately needed in the clinical treatment of stroke.
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Introduction

Stroke claims approximately 15 million 
v i c t i m s  w o r l d w i d e  e a c h  y e a r 

and is the leading cause of persistent 
neurological deficits and profound physical 
handicap.[1] Many injury mechanisms have 
been identified in the post‑stroke brain. 
However, they were unsuccessfully treated 
in clinical trials. Current clinical treatments 
are limited to tissue plasminogen activator 
or surgery (e.g., thrombectomy) which is 
beneficial to only a proportion of stroke 
victims in a limited time window. Therefore, 
the identification of new therapeutic 

modalities is critical to improve clinical 
outcomes in stroke. Here, we address a 
new approach to oxidative and acidosis 
injury, and study how pharmacological 
hypothermia (PH) may combat these injuries 
and establish a potential neuroprotection 
strategy for stroke treatment.

Oxidative stress, the overproduction of 
reactive oxygen species (ROS), is a 
fundamental damage mechanism after 
stroke which increases brain edema, 
hemorrhagic transformation, cell death, 
and infarct volume.[2] The shift to glycolysis 
during ischemia and subsequent acidosis 
enhances ROS production.[3] Thus, aside 
from cellular energetics, glucose handling 
in the ischemic brain is intimately linked 
to cellular damage mechanisms. However, 
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recent studies suggest this is not the whole story, 
showing gluconeogenic activity also occurs in the 
brain, especially after ischemic stroke.[4] Dysfunctional 
gluconeogenesis during stroke has the potential to 
enhance acidosis and ROS damage. Due to lack of ATP 
during ischemia, gluconeogenesis would be stunted, 
leading to accumulation of phosphoenolpyruvate (PEP) 
catalyzed by phosphoenolpyruvate carboxykinase (PCK). 
In turn, PEP is a source for lactic acidosis and thus 
ROS production, rather than the formation of glucose. 
Hypoxia‑inducible factors (HIFs) are transcription factors 
that respond to decreases in cellular oxygen[5] and regulate 
transcription of gluconeogenic enzymes. A second 
transcription factor, X‑box binding protein 1 (XBP‑1s), 
functions with HIF‑1α to control gluconeogenesis.[6] 
XBP‑1s regulate gluconeogenic genes such as PCK[7‑9] in 
combination with forkhead box O (FoxO) transcription 
factor. Under hypoxic and ischemic conditions, HIF1‑α 
is activated and endoplasmic reticulum (ER) stress leads 
to increased XBP‑1s. However, HIF‑α has been shown 
to generate incomplete gluconeogenesis during hypoxia. 
The roles of HIF‑α, XBP‑1s, and FoxO have been studied 
in relation to gluconeogenesis during stroke and may 
act as the upstream regulators leading to dysfunctional 
gluconeogenesis and contributing to ROS, acidosis, and 
cell death.[10]

The clinical treatment of stroke is highly limited and 
new therapeutic modalities are urgently needed. 
During a stroke, focal ischemia ceases normal brain 
metabolism, and many physiologic adaptations and 
pathophysiological processes come into play. The 
central problem is impaired oxidative phosphorylation 
in mitochondria, the major source of brain ATP, due to 
oxygen and glucose deprivation. Within minutes after 
stroke, a shift from aerobic to anaerobic metabolism 
occurs in ischemic tissue to compensate for the lack 
of ATP. However, compared to aerobic metabolism, 
anaerobic metabolism of glucose is not efficient (2 vs. 
36–38 ATP/glucose). Hyperglycolysis also produces 
lactic acid, leading to oxidative injury. The neuronal 
adaptation to induce hyperglycolysis, paradoxically, 
increases brain injury.[3,11,12] However, clinical trials 
targeting hyperglycolysis or ROS alone were ineffective, 
suggesting a blind spot in our understanding. The role of 
cerebral gluconeogenesis may provide a “missing link” 
in the mechanisms of acidosis and ROS damage. We 
wish to determine the role of gluconeogenesis in focal 
ischemia and reperfusion (I/R) injury, which is expected 
to provide new therapeutic targets.

Therapeutic hypothermia (TH) has long been considered 
a promising neuroprotective treatment after ischemic 
stroke.[13,14] Clinical trials have proved that hypothermia 
in ischemic patients is safely inducible, but they have 
not observed clear amelioration on brain injury thus 

far, albeit they did not fulfill the criteria of an early 
induction of hypothermia, delayed by the priority of 
reperfusion.[13] Clinic limitations in the induction of 
physical hypothermia include delays in cooling initiation 
and the onset of target temperature.[15] The late start 
necessitates a prolonged hypothermia duration, which 
requires labor‑intensive medical and nursing efforts, 
and causes secondary complications.[16] The benefits of 
inter‑ischemia hypothermia have been shown following 
myocardial infarction (MI).[17,18] Studies have reported 
that hypothermia before reperfusion can reduce 
infarction, prevent the death of myocardial cells, and 
improve patient outcome.[17‑21] Considering the benefits 
of inter‑ischemia hypothermia in MI, a more clinically 
manageable approach to overcome the obstacles for 
the application of hypothermia in ischemic stroke is 
highly desirable. PH offers an alternative means of 
hypothermia induction not subject to limitations of 
physical cooling. Eight classes of hypothermia‑inducing 
drugs in animal models were studied[22] and DHC, 
a TRPV1 agonist, showed the greatest effect as a PH 
agent.[22‑24] Unfortunately, the effective doses of DHC 
were toxic and induced complications. Thus, DHC by 
itself cannot act as a PH agent.[22] However, we and 
others showed that DHC at a low, non‑toxic, dose acted 
synergistically with the phenothiazine class of drugs 
to induce a highly effective PH[25] with decreased brain 
glucose metabolism[26,27] and reduced stroke injury.[28] 
Here, we introduce the pharmacological combination 
of DHC and phenothiazines to induce PH and provide 
a novel therapeutic strategy that operates on brain 
glucose metabolism. Specifically, PH which is relatively 
easy to induce, targets brain gluconeogenesis, and thus 
decreases post‑stroke acidosis and oxidative injury and 
improves functional recovery.

Gluconeogenesis, Limiting Enzymes, and 
Ischemic Stroke

Gluconeogenesis is a metabolic pathway that generates 
glucose from noncarbohydrate carbon substrates 
including amino acids and triglycerides. Gluconeogenesis 
is one of the several important mechanisms used by 
humans and other mammals to maintain glucose 
levels.[4] It is commonly believed that gluconeogenesis is 
present only in the liver, kidney, intestine, and muscle.[29] 
Although these tissues have gluconeogenic activity much 
greater than the brain, due to the application of modern 
molecular methods, there is now unambiguous evidence 
that gluconeogenesis also occurs in the brain.[4]

Gluconeogenesis is a multistep metabolic process that 
generates glucose from pyruvate or a related three‑carbon 
compound (such as lactate). Gluconeogenesis consists of 
a series of eleven enzyme‑catalyzed reactions. It begins 
in mitochondria, oxaloacetate (OAA) is decarboxylated 



Figure 1: Regulation of PH on gluconeogenesis through HIF‑1α/XBP‑1/FoxO1. 
Gluconeogenesis is a multistep metabolic process that generates glucose from 
pyruvate or a related three‑carbon compound (lactate, alanine). Conversion of 
pyruvate to PEP via oxaloacetate, catalyzed by pyruvate carboxylase and PEP 
carboxy kinase is one of the irreversible steps in the gluconeogenic pathway. 

HIF‑1α regulation and XBP‑1‑FoxO Signal play the key roles in gluconeogenic 
activity through PCKs. HIF: Hypoxia‑inducible factor, XBP‑1: X‑box binding protein 

1, FoxO: Forkhead box O, PEP: Phosphoenolpyruvate, PH: Pharmacological 
hypothermia, ROS: Reactive oxygen species, OAA: Oxaloacetate, 

PCK: Phosphoenolpyruvate carboxykinase, ER: Endoplasmic reticulum
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and then phosphorylated to form PEP by the enzyme 
PCK with a GTP. The next steps are glycolysis in 
reverse. Fructose1,6‑bisphosphatase converts fructose 
1,6‑bisphosphate to fructose 6‑phosphate (F6P), using 
one ATP. Glucose‑6‑phosphate (G6P) is formed from 
F6P. The final reaction of gluconeogenesis is the 
formation of glucose from G6P by hydrolysis with 
glucose‑6‑phosphatase (G6PC), which requires another 
ATP. PCK, an enzyme in the lyase family, converts OAA 
into PEP and carbon dioxide through the cytosolic (PCK1) 
or mitochondrial (PCK2) isoforms.[4]

In  i schemia ,  when mitochondria l  oxidat ive 
phosphorylation and ATP production are disrupted, 
anaerobic glycolysis becomes the primary source of ATP. 
Anaerobic glycolysis alone cannot produce sufficient 
ATP to maintain brain functioning, instead lactate 
production leads to acidosis and ROS. It is expected that 
gluconeogenesis would increase after ischemia to provide 
additional substrate for energy production. However, 
the status of gluconeogenesis after ischemia is simply 
unknown. If there is increased gluconeogenesis, then 
this pathway may not function correctly because of lack 
of ATP. This dysfunctional (or stunted) gluconeogenesis 
will lead to excess PEP activity, in turn augmenting 
lactic acidosis since the formation of glucose will be 
interrupted by lack of ATP [Figure 1]. We must note 
that gluconeogenesis is anabolic, increasing the amount 
of glucose, while oxidative phosphorylation is catabolic 
and decreases the amount of glucose. Although they 
are coupled, it is technically difficult to determine the 
percent of glucose due to either pathway. In our recent 

study, we measured energy‑dependent enzymes, PCKs, 
substrates, and products of gluconeogenesis to determine 
the status of gluconeogenesis.[30] All glucose handling 
pathways, including glycolysis and gluconeogenesis, 
are ancillary relative to oxidative phosphorylation, and 
are disrupted by ischemia. Therefore, ancillary pathways 
like gluconeogenesis greatly increase in relative 
importance after stroke when oxidative phosphorylation 
is inactive. Post‑ischemic gluconeogenesis then may lead 
to a significant proportion of lactate and ROS, as our 
preliminary data suggest, which makes the relevance 
of gluconeogenesis to stroke injury highly novel. Our 
recent study demonstrated a key role of PCK (s) and its 
transcriptional regulation by HIF‑XBP‑1‑FoxO in cerebral 
gluconeogenesis in stroke.[10,30]

Hypoxia‑Inducible Factor‑1α, X‑box Binding 
Protein‑1s, and Forkhead Box O Regulation 

of Gluconeogenic Activity in Stroke

Stroke and endoplasmic reticulum stress
The normal ER function of protein synthesis is disrupted 
when a cell experiences stress conditions, such as 
starvation, redox imbalance, and metabolic failure, then 
the ER switches to a stress state, in which unfolded or 
misfolded proteins in the ER are accumulated due to 
an imbalance of ER homeostasis.[31‑34] ER stress is an 
essential step in the progression of brain I/R injury,[35] 
which involves protein synthesis inhibition and 
selective activation of stress gene expression for cells 
to regulate signaling pathways for cell damage, repair, 
or death. ER stress induces cleavage of the mRNA 
coding the transcription factor called XBP‑1 and the 
removal of a 26‑bp intron from the full‑length XBP‑1 
mRNA. The ligation of the two mRNA fragments 
creates a translational frameshift, which leads to the 
translation of processed XBP‑1s,[8] which acts as a 
nuclear transcription factor. Furthermore, XBP‑1s 
interact with FoxO transcription factor and directs 
it toward proteasome‑mediated degradation. FoxO 
subfamily has emerged as a shared component among 
pathways regulating diverse cellular functions, such 
as differentiation, metabolism, proliferation, and 
survival.[36‑38] In particular, FoxO1 acts as a cardinal 
regulator of whole‑body energy homeostasis, including 
glucose output, adipocyte and muscle differentiation, 
and feeding behavior in the brain.[36,37]

X‑box binding protein‑1 interaction with 
hypoxia‑inducible factor‑1α
XBP‑1 drives a transcriptional complex with HIF‑1α 
that regulates the expression of HIF‑1α target 
genes [Figure 1],[39,40] including direct binding to the 
promoters of genes coding gluconeogenic enzymes. 
XBP‑1 transcriptional activity is induced following 
neonatal hypoxia‑ischemia with HIF‑1α overexpression. 
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There is evidence of IRE‑1α cleavage of XBP‑1 after 
stroke, but the study of its target genes have not 
been conducted. Whether the XBP‑1‑HIF‑1α complex 
regulates gluconeogenesis genes after stroke remains 
to be determined.

Stimulation of Forkhead box O 1 on 
phosphoenolpyruvate carboxykinase expression
The transcription factor FoxO1 regulates hepatic 
gluconeogenesis.[41] FoxO1 binds the promotor of and 
increases gene expression of PCK1, the key rate‑limiting 
gluconeogenic enzymes, and thus upregulates hepatic 
glucose.[7,42] Studies in hepatoma cells suggest that FoxO1 
controls the transcription of reporter genes containing 
the PCK promoters.[9,43] A dominant‑negative FoxO1 
mutant prevents the dex/cAMP–induced increases in 
PCK expression in primary hepatocytes.[44,45] FoxO1 
transcriptionally regulates PCK in the pyruvate‑PEP 
futile cycle.[46] The resulting glucose reduction activates 
ER stress and it correspondingly regulates PCK2 mRNA. 
XBP‑1s bind to FoxO1 to promote FoxO1 degradation by 
the 26S proteasome.[8]

A n t a g o n i s m  o f  P h o s p h o e n o l p y r u v a t e 
Carboxykinase Transcriptional regulation
FoxO1 regulates gluconeogenesis in the liver by the 
traditional regulators of insulin and glucagon, but 
it is unknown whether it regulates gluconeogenesis 
in the brain. However, since it is a known regulator 
of gluconeogenesis, it is imperative to study FoxO1 
regulation after stroke. XBP‑1 acts as a negative 
regulator of gluconeogenesis in hepatic cells, whereas 
HIF‑1α works synergistically with XBP‑1 to upregulate 
gluconeogenesis. Our previous study showed that 
stroke upregulates PCK transcription, for which the 
net increase is expected to be an interplay between 
the positive HIF‑1α‑XBP‑1 pathway, and the negative 
FoxO1‑XBP‑1.[10,30]

Neuroprotection of Therapeutic 
Hypothermia and Its Induction

Neuroprotection and limitations of therapeutic 
hypothermia
Hypothermia (TH) at 30°C–34°C core temperature is a 
highly effective neuroprotective treatment for ischemic 
stroke.[47] The mechanisms by which TH protects brain 
include reduced oxygen demand, preservation of ATP 
levels, and a general enhancement of cellular survival.[48] 
However, a positive outcome of TH is dependent on 
multiple factors such as initiation, duration, and depth 
of hypothermia.[16,49] In addition, temperature‑induced 
hypothermia is fought every step of the way by the 
body’s intrinsic physiological thermoregulatory 
mechanism, such as shivering and brown fat metabolism. 

These responses work against the clinician’s efforts and 
may prolong the induction phase and give a less stable 
maintenance phase.[15,16] These and other factors reduce 
the clinical efficacy of temperature‑induced TH and have 
led us to investigate alternative ways to induce TH.

Pharmacological hypothermia
PH is an alternative to physically‑induced temperature 
reduction.[50] Dihydrocapsaicin (DHC), a capsaicinoid, 
is a widely used experimental PH agent.[22] DHC 
is an analog and congener of capsaicin in chili 
peppers (Capsicum), and accounts for 22% of the total 
capsaicinoid mixture and has nearly the same pungency 
as capsaicin. The mode of action of DHC involves the 
TRPV1 nonspecific cation channel which is expressed 
in warm‑sensing nerve fibers in the peripheral and 
central nervous system.[51] TRPV1 decreases body 
temperature by reducing the thermoregulatory set‑point 
at peripheral thermosensors and at the pre‑optic anterior 
hypothalamus.[52] TRPV receptors are activated by 
capsaicin, DHC, and rinvanil in animal models.[23,53,54] 
TRPV1 activation is thought to act as a neuroprotectant 
by lowering body temperature to a hypothermic 
range.[23,24] High‑dose DHC (>2.0 mg/kg/h), acting 
as a TRPV agonist, reduced core body temperature to 
33.0 ± 0.2°C after 100 min in a rodent stroke model.[55] 
However, the downside was induction of hypotension 
and bradycardia at the high‑dose (>2.0 mg/kg/h), 
which neutralized the benefits.[51] Low‑dose DHC 
(0.5 mg/kg) does not show neurotoxicity,[55,56] and 
while it did not show cardiac complications, it was 
not an effective neuroprotectant.[25] We then studied 
the effect of low‑dose DHC and other PH agents to 
achieve neuroprotection safely and effectively. In our 
preliminary study,[57,58] as compared to each agent alone, 
we showed a faster induction of hypothermia, within 
5 min (vs. 30 min), a longer duration up to 6 h (vs. 2 h), and 
deeper body temperature at 34°C (vs. 35.8°C), induced 
by a combination of low‑dose of DHC (0.5 mg/kg) and 
chlorpromazine and promethazine (C + P, 4 mg/kg). 
Importantly, there was a 40% greater reduction in 
infarct volume by combination therapy versus either 
agent alone.[58]

Antipsychotic and sedative drugs, such as the 
neuroleptics (C + P) have also garnered interest because 
of their depressant effects.[59,60] These agents served as 
prototypes for the phenothiazines, which we propose to 
use in combination with DHC. C + P were thought to induce 
an “artificial hibernation.”[61] We showed phenothiazines 
are neuroprotective after ischemic stroke,[28] likely due 
to their depressing effects on the nervous system where 
C + P alters glucose metabolism,[26] inhibits glucose 
uptake, and inhibits carbohydrates oxidation.[27,62,63] 
Impaired carbohydrate utilization occurred under 
normoxic conditions.[64] In diabetic models, an induced 
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hyperglycemia was blocked by Promethazine. Other 
studies have indicated that the depressive effect of 
phenothiazines on glucose utilization was similar to 
anesthetics such as pentobarbitone.[65,66] It was also shown 
that phenothiazines cause a dose‑dependent reduction 
in cerebral blood flow and oxygen consumption,[67] and 
reduced energy metabolism.[26,62] Finally, inhibitory effects 
of C + P on lipid peroxidation were also observed in brain 
tissue.[68] Taken together, the data shows a spectrum from 
natural hibernation, through the depressant effects of 
anesthetics, to the action of neuroleptics that modulate 
cerebral energy utilization through blood flow and 
glucose handling, and this line of evidence underpins our 
approach. It is a desirable strategy to seek to overcome 
the limitations of temperature‑induced hypothermia and 
the limits of toxic PH agents by developing a combination 
therapy with DHC and phenothiazines.[58]

Therapeutic potential of early‑initiated, 
intra‑ischemia and prereperfusion hypothermia 
in stroke
Brain cells undergo irreversible damage within minutes 
of brain ischemia; therefore, salvage of reversible ischemic 
cerebral tissue remains critical and time‑dependent in 
stroke treatment. The shorter the duration of ischemia, 
the more brain cells that can be saved.[69] The core tenet 
of treatment is to prevent the expansion of irreversible 
injury (i.e., the ischemic core) and salvage the reversible 
ischemic tissue (i.e., the ischemic penumbra)[70] as early 
as possible, to recanalize the cerebral artery for normal 
cerebral blood flow to the penumbra, and restore normal 
glucose metabolism, thus delaying progression to 
irreversible tissue injury.[71]

Induction of hypothermia can take place prior to 
or after reperfusion. With the premise of achieving 
revascularization as quickly as possible, adjuvant 
strategies that induce hypothermia post revascularization 
seem more practical. However, by using PH, it is 
possible to cool the body during the ischemic event, 
while awaiting advanced imaging, or during the 
administration of thrombolysis or thrombectomy. The 
hypothesized benefit of pre‑reperfusion hypothermia 
would be to slow and in turn minimize cellular 
metabolism and core expansion while waiting for 
recanalization and to mitigate reperfusion injury. 
Previous studies on hypothermia during heart ischemia 
have demonstrated multiple benefits,[17‑21,72] including 
reduced infarction size and improved outcomes.[73,74] 
Hypothermia in patients with pre‑hospital cardiac 
arrest also improves outcomes.[75,76] A recent study has 
shown that pre‑reperfusion ischemic hypothermia and 
intra‑ischemia hypothermia translates to functional 
benefit in ischemic stroke using a pharmacological 
approach.[57]

Conclusions

Given the recentness of the discovery of cerebral 
gluconeogenesis, gluconeogenesis is either detrimental 
or beneficial after stroke. Therefore, gluconeogenesis 
may serve as an important therapeutic target after 
ischemic stroke. Previous studies have offered an 
innovative and novel neuroprotective strategy using the 
early initiated inter‑ischemic PH to depress poststroke 
gluconeogenesis and its possible downstream damage 
mechanisms. Prior studies of cerebral gluconeogenesis 
suggest that impaired gluconeogenesis could be an 
important source of lactate after ischemic stroke. Because 
hypothermia preserves ATP after glucose/oxygen 
deprivation and also with increased neuronal metabolic 
demand,[27,77] early hypothermia by combination DHC/
phenothiazine‑induced PH may suppress the detrimental 
effects of gluconeogenesis, improve glucose metabolism, 
and reduce lactic and ROS after acute stroke. This 
would be a breakthrough in stroke therapeutics. Finally, 
because other forms of brain injury such as trauma and 
epilepsy (seizures) share similar damage mechanisms, 
depletion of ATP, acidosis, and ROS production, the 
results obtained in stroke, have the innovative potential 
to translate as therapy for other forms of acute brain 
injury. Past treatments that individually targeted glucose 
metabolism, lactic acidosis, or ROS were ineffective in 
clinical trials. PH is relatively easy to implement and is 
effective in inducing hypothermia during the early stage 
of stroke, which in turn decreases brain energy utilization 
and glucose metabolism in a holistic manner.
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