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We isolated 6 phages from 2 environmental water sources and assessed their ability to treat Pseudomonas
aeruginosa infection of Drosophila melanogaster. We found all 6 phages were able to significantly increase mean
survival time (MST) of infected D. melanogaster. Although phage traits, such as adsorption rate, burst size, and lysis time,
varied significantly among these phages, none of the traits correlated significantly with MST. Phage growth rate
determined in vitro, however, was found to be significantly correlated with MST. Overall, our study shows that infected
D. melanogaster can be used as a model system to test the therapeutic efficacy of phages. In addition, a more
comprehensive characteristic, like the in vitro growth rate, seems to be a better indicator in predicting therapeutic
success than constituent traits like the adsorption rate, burst size, or lysis time.

Introduction

Unlike many other discoveries for which their practical appli-
cations are not immediately obvious, the antibacterial potential
of bacteriophage (phage) was recognized at once and vigorously
pursued by one of its discovers.1-3 However, in the early days of
phage therapy, inconsistent treatments and poor results, due to
lack of basic understanding of phage biology, contributed to the
decline of using phage as a therapeutic or prophylactic agent
against bacterial infections.3 The demise of phage therapy, at least
in Western Europe and North America, was later hastened by the
discovery and subsequent widespread use of antibiotics. Ironi-
cally, the current renewed interest in phage therapy is mainly
driven by the emergence of antibiotic-resistant bacterial strains
and the dwindling supply of available antibiotics in the develop-
ment pipeline.4 Expanded use of phages as a low-cost alternative
to manage bacterial problems in non-human cases, such as ani-
mals, agriculture,5,6 and food industry,7 also contribute to the
recent resurgent interest in phage applications.

The sheer number of phages in the environment8 presents a
challenge to finding the most effective phage in treating bacterial
pathogens. The most common approach to assessing the thera-
peutic efficacy of a specific phage is to conduct in vivo studies.5,9-19

However, while results from such studies can directly inform us
whether a specific phage is effective against the bacterial infec-
tion, often it is not immediately clear why one phage is more

efficacious than the others in treating the infection, not to men-
tion the effort and resource that are needed for screening a large
number of potential candidates. A possible alternative to direct
in vivo screening is to identify phage traits that can be used as a
proxy for in vivo efficacy. Theoretical studies of phage therapy,
which routinely incorporate basic phage traits, such as adsorp-
tion rate, lysis time, and burst size, into mathematical models to
investigate population dynamics of phage and targeted bacte-
ria20-23 can be an excellent starting point for identifying impor-
tant phage traits that can effectively depress or eliminate the
infecting bacteria population.

Based on others20-23 and our24-26 previous studies, we hypoth-
esize that any phage trait that contributes to a faster phage growth
(replication) will also result in a faster or more clearing of the
infecting bacteria population; consequently increasing the effi-
cacy of phage treatment. All else being equal, a higher adsorption
rate24 or burst size should result in a higher phage growth rate,
while an optimal lysis time would maximize the growth rate as
well.24-26 That is, we would expect to observe a correlation
between various phage traits (including the phage in vitro or ex
situ growth rate) and therapeutic efficacy.

To test our hypothesis, we adopted a model system13 involv-
ing the phage treatment of a systemic, lethal Pseudomonas aerugi-
nosa infection within Drosophila melanogaster. P. aeruginosa is a
ubiquitous Gram-negative bacterium associated with many
human medical conditions, such as nosocomial27 and burn
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wound28 infections, as well as being a major cause of morbidity
and mortality in cystic fibrosis patients.29 D. melanogaster has
previously been used as a model system to study P. aeruginosa
infections,30-33 including one study13 evaluating the efficacy of
phage therapy in treating infection. In this previous study, Heo
et al.13 evaluated the efficacy of 2 Caudovirales phage strains,
MPK1 and MPK6, in treating P. aeruginosa infections in mice
and in D. melanogaster. While only 2 phages were tested, there
was general agreement that these phages were capable of treating
infections in both the animal and insect systems. In this current
study, we take advantage of the convenience of the Drosophila
system to evaluate the feasibility of using phage traits to predict
the efficacy of phage therapy.

Results

Pseudomonas aeruginosa phages from the environment
We isolated 6 phages from 2 water sources: a wastewater treat-

ment plant in Menands, New York (phages HWPB-1, HWPB-2,
HWNPB-2, and HWNPB-3) and river water from the Passaic
River in New Jersey (phages HWNPB-1 and HWPB-3). Three
phages require the presence of the type IV pili, a known virulence
factor,34 for attachment and infection (i.e., the HWPB phages)
while the remaining 3 (the HWNPB phages) do not. Partial
genomic sequencing revealed that our phage collection encom-
passes all 3 commonly found P. aeruginosa phage families.
HWPB-1 and HWPB-3 showed high sequence similarity to
Siphoviridae phages M6, YuA and MP1412.35,36 HWPB-2
showed high sequence similarity to wKMV and related mem-
bers.37,38 All 3 non-pilus binding (NPB) phages showed high
sequence similarity to Myoviridae PB-1 and related members.
Since these phages utilize the lipopolysaccharide for cell
entry,39,40 it is possible that our non-pilus-binding phages would
also use the same receptor.

Phage traits and growth rate
We determined several phage traits, such as adsorption rate,

lysis time, and burst size for each of the isolated phages. Table 1
and Figure 1 show these measurements. Overall, the 6 phages
have significantly different adsorption rates (Krusksal-Wallis

x2 D 15.0117, p D 0.0103). There is no significant difference
within the pilus-binding (PB) (Kruskal-Wallis x2 D 5.6000,
p D 0.0608) or non-pilus-binding (NPB) (Krusksal-Wallis
x2 D 5.9556, p D 0.0509) phages. However, there are significant
differences between PB and NPB phages (Kruskal-Wallis:
x2 D 10.9649, p D 0.0009). The PB phages have an average
adsorption rate of 6.31 (§ 4.37, standard error) £ 10¡9 cell¡1

mL¡1 h¡1, while the NPB phages have a higher average adsorp-
tion rate of 3.98 (§ 1.94) £10¡8 cell¡1 mL¡1 h¡1.

Analysis of one-step growth curves (Fig. 2) further showed sig-
nificant differences in lysis times (Krusksal-Wallis x2 D 15.5372,
p D 0.0083) and burst sizes (Krusksal-Wallis x2 D 12.1345,
p D 0.0330). Lysis times ranged from 47 to 100 min (Table 1)
whereas burst sizes ranged from 37 to 589 phages per infected
cell. There is significant difference between the PB and NPB
phages for the lysis time (Kruskal-Wallis test: x2 D 5.2999,
p D 0.0213) but not for the burst size (Kruskal-Wallis test:
x2 D 1.4211, p D 0.2332).

Overall, there is a significant difference in growth rate among
the phages (Kruskal-Wallis test: x2 D 16.5789, p D 0.0054),
with each phage’s growth rate being significantly different from
the others, even after Bonferroni corrections to account for multi-
ple comparisons (Table 1). However, there is not a significant
difference between the PB and NPB phages (Kruskal-Wallis test:
x2 D 1.4211, p D 0.2332). The phage growth rate ranged from
0.33 to 4.84 h¡1 (Table 1).

Therapeutic efficacy of phage treatment
To test the therapeutic efficacy of our phages, adult female D.

melanogaster were injected with »103 P. aeruginosa and 6 hours
later either injected with »2.40 £ 104–1.20 £ 105 phages for
treatment or sterile LB as a control. If left untreated, an inoculum
of this size is fatal within 24–30 h at 25�C (Fig. 3). At the time
of phage treatment, bacterial numbers had increased to »104

bacteria, thus giving a multiplicity of infection (MOI) of »10 at
the time of phage treatment. The survival curves for the phage
treatments are shown in Figure 3.

Overall, there are significant differences among the survival
curves (Log-rank test: x2 D 370, P < 0.001). Fitting of Cox pro-
portional hazard model showed that phage treatment significantly

Table 1. Phage traits, in vitro growth rate, and mean survival time

Measurement*

Adsorption ratey (£ 109) Lysis timey Burst sizey Growth ratey Mean STy Hazard ratioz

LB n/a n/a n/a n/a 22.8 § 0.48 1.00
HWPB-1 8.31 § 3.07 100§ 0 392.8 § 220.1 1.53 § 0.03 32.8 § 0.82 0.12 (0.08 ¡ 0.17)
HWPB-2 8.66 § 1.13 50 § 0 260.0 § 101.9 4.84 § 0.03 45.7 § 1.19 0.04 (0.03 ¡ 0.05)
HWPB-3 1.96 § 0.68 93 § 7 36.8 § 15.1 0.72 § 0.06 31.5 § 0.80 0.14 (0.10 ¡ 0.20)
HWNPB-1 45.70 § 4.84 70 § 6 589.4 §12.6 0.33 § 0.02 27.8 § 0.64 0.27 (0.18 ¡ 0.38)
HWNPB-2 54.90 § 7.85 47 § 3 246.1 § 55.3 2.41 § 0.06 33.2 § 0.79 0.11 (0.08 ¡ 0.16)
HWNPB-3 18.70 § 7.74 47 § 3 116.5 § 42.5 1.21 § 0.13 32.0 § 0.84 0.13 (0.09 ¡ 0.19)

*The units for each phage trait and measurement are: adsorption rate, cell¡1 mL¡1 h¡1; lysis time, min; burst size, phage/cell; growth rate (h¡1); mean sur-
vival time (using the Kaplan-Meier estimator), h.
yShowing mean§ standard error.
zShowing mean (95% confidence interval).
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increased the survival of the infected flies (Table 1). The Kaplan-
Meier estimate of mean survival time of untreated flies was 22.8 §
0.48 h, whereas those for the phage-treated flies ranged from 27.8
§ 0.64 h for the least efficacious phage treatment to 45.7 §
1.19 h for the most (Table 1). From these survival analyses, 3 dis-
tinct clusters of phages with varying degrees of therapeutic efficacy
are discernible: HWPB-2> HWPB-1 � HWPB-3� HWNPB-2
� HWNPB-3> HWNPB-1.

Correlations between phage traits and therapeutic efficacy
The main reason for the current study was to see whether any

phage trait determined in vitro would correlate significantly with
its therapeutic efficacy. None of the individual phage traits:
adsorption rate (r D ¡0.38, p D 0.4585), lysis time (r D ¡0.36,

p D 0.4803), or burst size (r D ¡0.22, p D 0.6753), were signifi-
cantly correlated with the mean survival time (MST). However,
phage growth rate determined in vitro was significantly correlated
with MST (r D 0.97, p D 0.0015) (Fig. 4). This positive correla-
tion remains significant even after the most effective phage
(HWPB-2) is removed from the analysis (Pearson’s r D 0.83,
p D 0.0807; Kendal’s t D 1, p D 0.0167). In general, the faster
the phage is able to grow in vitro, the better the phage is able to
combat bacterial infection.

Discussion

Initial attempts at using phage to treat bacterial infections
were mired mainly by lack of basic understanding of phage

Figure 1. Estimated phage traits and growth rates. Six environmentally isolated P. aeruginosa phages were estimated for their adsorption rates (A), lysis
times (B), burst sizes (C), and in vitro growth rates (D). Vertical bars show the standard errors (SEs). Some SEs are too small to show.
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biology.3 After almost a century, researchers are able to compile
simple rules and propose best practices for a successful applica-
tion of phage therapy.6,41-43 One of the future challenges for
phage therapy will be to efficiently identify the most efficacious
phages among many potential candidates. As a first step, it would
be valuable to know if phage characteristics can be used to predict
therapeutic efficacy in vivo.

In this study, each phage in our collection, to various degrees,
is able to significantly increase the mean survival time (MST) of
P. aeruginosa-infected flies. However, the amount of MST
increase does not correlate with individual phage traits. Con-
versely, we did observe a positive correlation between phage in
vitro growth rate and therapeutic efficacy. One possibility for the
lack of correlation between individual phage traits and therapeu-
tic efficacy is that the trait values estimated in vitro do not reflect
what they would have been if measured in vivo. While in vivo
and in vitro measurements are likely to be different, we do expect
that their rank-orders will remain the same. That is, a phage with
a high in vitro adsorption rate would be expected to have a high
in vivo adsorption rate as well. Therefore, if a significant correla-
tion existed we should be able to detect it (e.g., with nonparamet-
ric correlation tests). The more likely reason for the lack of
correlation is that individual phage traits are poor surrogates for
phage in vitro growth rate; even though the phage in vitro growth
rate is a function of individual phage traits. For example, a phage
with a high adsorption rate but a long lysis time may not grow as
fast as a phage with a slightly lower adsorption rate but a much
shorter lysis time. Nevertheless, our study showed that therapeu-
tic efficacy is positively correlated with phage in vitro growth
rate, a much more immediate proxy for bacterial clearance rate.
This finding also corroborates a previous study by Henry et al.44

Figure 2. One-step growth curves. Fold-of-increase of phage concentra-
tions were plotted against time after adsorption. Symbols denote phages
HWPB-1 (solid circles), HWPB-2 (solid squares), HWPB-3 (solid diamonds),
HWNPB-1 (open circles), HWNPB-2 (open squares), and HWNPB-3 (open
diamonds). Vertical bars show the standard errors.

Figure 3. Survival probability of P. aeruginosa-infected D. melanogaster
after phage treatments. Survival probabilities, estimated using the
Kaplan-Meier analysis, were plotted against time after P. aeruginosa
infection. Phage treatments were introduced 6 hours post infection. The
treatments are: control (sham treatment with LB, without phage; black
solid line) and phages HWPB-1 (yellow solid line), HWPB-2 (black long-
dashed line), and HWPB-3 (green solid line), HWNPB-1 (black short-
dashed line), HWNPB-2 (red solid line), and HWNPB-3 (blue solid line).

Figure 4. Correlation between phage in vitro growth rate and D. mela-
nogaster mean survival time. Vertical and horizontal bars show the stan-
dard errors.
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who used 9 phages to treat P. aeruginosa infection in a mouse
pulmonary system. While no statistical analysis was conducted to
investigate whether phage in vitro characteristics (both efficiency
of plating and lysis kinetics in their study) were related to bacteria
in vivo growth in phage-treated mice (determined via a biolumi-
nescent bacterial strain) and probability of survival, it was appar-
ent from this study that a faster in vitro lysis of the targeted
bacteria by phage corresponded closely to a more reduced bacte-
rial load in the infected mice, which in turn resulted in a better
chance of surviving P. aeruginosa infection. A different study by
Bull et al.18 however, showed that phage growth rate, while posi-
tively correlated with the therapeutic efficacy, was not the most
important determinant of it. In this study, mice were infected
with E. coli O18:K1:H7 strain that expresses the K1 capsule on
its surface and treated with 2 types of phages: K1-dependent and
K1-independent. It was found that K1-dependent phages, as a
whole, are much more efficient at rescuing infected mice when
compared to the K1-independent phages (by 6 orders of magni-
tude, as judged by the minimum treatment dose). Even though
the K1-dependent phages were found to have moderately higher
in vivo18 and in vitro (at least in serum)19 growth rates, the pri-
mary factor in determining the efficacy is likely the presence of
the endosialidases in the K1-dependent phages. Apparently,
phage growth rate alone may not be enough to be used as a proxy
for therapeutic efficacy.

In summary, our current study demonstrated that phage in
vitro growth rate can be used as a good starting point for evaluat-
ing myriad of potential phages for prophylactic or therapeutic
purpose. However, examination of additional factors may also be
necessary to determine differences in treatment effectiveness.

Materials and Methods

Fly, bacteria, and bacteriophages
The Drosophila melanogaster individuals used in the experi-

ments were 4–6 day-old females from a laboratory population
established in 2008 with flies caught at the Indian Ladder Farm
in Voorheesville, New York. This population is maintained as a
large outbred population kept at 25�C with a 12:12 light-dark
cycle. Adult females used in infection assays were collected from
low larval density vials established by placing 10 males and 10
females in a vial for 24 h.

The Pseudomonas aeruginosa strains MPAO1 and PW8621
were obtained from the University of Washington Genome Cen-
ter.45 MPAO1 is the laboratory wild-type strain PAO1 and
PW8621 a pilA transposon mutant of MPAO1, thus lacking the
type IV pili. The P. aeruginosa clinical isolates PA1446 and
MPAO1 were used for phage isolation.

Phages capable of infecting P. aeruginosa MPAO1 were iso-
lated from a wastewater treatment plant in Menands, New York
and water from the Passaic River in New Jersey. For isolation,
100 ml of the water sample was incubated with 25 mL log-phase
MPAO1 in LB (Luria-Bertani) broth at 30�C waterbath shaker
for 24 h. A portion of the culture was then centrifuged and the
supernatant passed through a 0.2 mm filter. Approximately

100 ml of the filtrate was plated on MPAO1 lawn. A single pla-
que was randomly picked and used to infect 25 mL MPAO1 cul-
ture as described above. After centrifugation and filtration of the
culture, the phage lysate was stored at 4�C as stock.

Phages HWPB-1, HWPB-2, and HWNPB-2 were isolated
from sewer water sampled from the wastewater treatment plant,
whereas HWPB-3 and HWNPB-1 were isolated from the river
water sample. All phages used MPAO1 as the enrichment host,
except for HWNPB-3, which was isolated from the wastewater
sample but enriched with PA14. Except for HWNPB-3, which is
able to plaque on both MPAO1 and PA14 lawns, the other 5
phages can only plaque on MPAO1.

PW8621 was used to determine whether type IV pilus is
required for infection. Phages unable to form plaques on
PW8621 are likely to utilize the type IV pili for adsorption and
are classified as HWPB (Heather Wilson Pilus-Binding) phages.
Otherwise, they are classified as HWNPB (Heather Wilson Non-
Pilus-Binding) phages.

Phage purification, DNA isolation and sequencing
Approximately 1010 phage particles were collected, purified,

and DNA isolated as described in Lee and Clark.47 The purified
DNA was digested by various restriction enzymes for 16 h, fol-
lowing manufacturers’ instructions and cloned into either
pSMART (Lucigen) or pUC19. Recombinant plasmids were
confirmed by PCR, then purified and used as templates for DNA
sequencing by the DNA Analysis Facility on Science Hill at Yale
University. The BLAST tool48 from the National Center for Bio-
technology Information (NCBI) was used to identify homolo-
gous sequences. Overall, at least 4 Kb of sequences for each
phage were compared to GeneBank.

Adsorption rate determination
Methods described in Shao and Wang24 were adapted to

determine phage adsorption rate. Final concentrations of »104

pfu/mL of phage were mixed with »1.1 £ 107 cfu/mL log-phase
MPAO1 in 5 mL at 30�C. Samples (0.5 mL) were withdrawn
every 5 min for 20 min and filtered through a 0.2 mm AcroPrep
96 filter plate (Pall, Ann Arbor MI). The filtrate was plated on
MPAO1 lawn to determine the free phage concentration. The
adsorption rate was estimated by fitting the data to the model of
ln(Pt/P0) D ¡rBt, where P0 and Pt are the phage concentrations
at times 0 and t min, respectively, r the adsorption rate constant,
and B the initial cell concentration, which was determined with a
spiral plater (Autoplate 4000, Advanced Instruments Inc.) and
Qcount colony counter (Advanced Instruments Inc.). The bacte-
rial cell concentration was assumed to be constant throughout
the assay as there was only a negligible increase in bacterial cell
count throughout the 20-min assay (data not shown). The mean
adsorption rate is based on 3 replicates for each phage.

One-step growth curves
Methods described by Wang26 were adapted for use to deter-

mine the lysis time and burst size of each phage. In brief, final
concentrations of approximately 2.3–3.5 £ 107 pfu/mL of phage
were mixed with »1.10 £ 108 cfu/mL log-phase MPAO1 for
20 min at 25�C, then diluted 10,000-fold in LB broth to
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10 mL. An aliquot of 0.4 mL of the diluted culture was with-
drawn and filtered through a 0.2 mm filter every 10 min for up
to 180 min. The filtrate was plated on MPAO1 lawn to deter-
mine phage concentration.

To estimate lysis time from the one-step growth curve, we first
convert phage concentration at each time point into fold-of-
increase relative to the input phage concentration at the beginning
of each experiment. The lysis time is defined as the time point
when the fold-of-increase of the next time point is a statistical out-
lier detectable by Dixon’s Q test49 implemented in R. The burst
size is defined as the largest fold-of-increase of phage concentration
during the entire assay period. Mean lysis time and mean burst
size estimates were based on 3 replicates for each phage.

Phage growth rate
Phage growth rate was determined using method adapted

from Wang.26 In brief, final concentrations of »4 £ 104 pfu/mL
phages were mixed with »1 £ 108 cfu/mL log-phase MPAO1 in
3 mL LB broth. The mixture was incubated at 30�C and agitated
in a tissue culture roller drum (New Brunswick Scientific) at set-
ting 7. Growth rate was calculated as w D ln(P3/P0)/3, where P0
and P3 are free phage concentrations at times 0 and 3 h, respec-
tively. The growth rate of each phage was estimated with 3 inde-
pendent replicates.

Therapeutic efficacy of phage in treating P. aeruginosa
infected D. melanogaster

The therapeutic efficacy of the phages was determined by
comparing the survival of phage-treated D. melanogaster to
untreated flies following experimental infection with P. aerugi-
nosa MPAO1. To establish bacterial infection, 50 female flies per
treatment group were injected by piercing the thorax with a
0.1 mm diameter minutien pin (Fine Science Tools) that had
been dipped in an LB culture of MPAO1 diluted to OD600 D

0.097 § 0.011, thus resulting in an initial inoculum of »103

cfu/fly. Six hours post bacterial infection, flies were injected using
a Nanoject injector (Drummond Scientific) with 50.6 nl of either
sterile LB or filtered phage lysate with a concentration of »104

pfu/fly. After phage treatment, flies were checked for survival
every 6 h for 72 h. Three replicates of the experiment were per-
formed for each phage.

Statistical analysis
All statistical analyses were conducted with R.50 The outliers

package51 was used for outlier detection in determining the lysis
time. The survival package52 was used for Kaplan-Meier estima-
tion of the mean and median survival times and Cox propor-
tional hazard model for estimating treatment efficacy. Flies
surviving past the 72-h end point were right-censored. For each
treatment, all flies were pooled together for survival analyses and
estimates.
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