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ABSTRACT

Safety evaluation of drugs requires examination of the risk of generating Torsade de Pointes (TdP) because it can lead to sudden cardiac
death. Until recently, the QT interval in the electrocardiogram (ECG) has been used in the evaluation of TdP risk because the QT interval is
known to be associated with the development of TdP. Although TdP risk evaluation based on QT interval has been successful in removing
drugs with TdP risk from the market, some safe drugs may have also been affected due to the low specificity of QT interval-based evaluation.
For more accurate evaluation of drug safety, the comprehensive in vitro proarrhythmia assay (CiPA) has been proposed by regulatory agen-
cies, industry, and academia. Although the CiPA initiative includes in silico evaluation of cellular action potential as a component, attempts
to utilize in silico simulation in drug safety evaluation are expanding, even to simulating human ECG using biophysical three-dimensional
models of the heart and torso under the effects of drugs. Here, we review recent developments in the use of in silico models for the evaluation
of the proarrhythmic risk of drugs. We review the single cell, one-dimensional, two-dimensional, and three-dimensional models and their
applications reported in the literature and discuss the possibility of utilizing ECG simulation in drug safety evaluation.

VC 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5132618

I. INTRODUCTION

The risk of generating Torsade de Pointes (TdP) must be exam-
ined in the safety evaluation of drugs because TdP can lead to sudden
cardiac death. Until recently, the QT interval in the electrocardiogram
(ECG) has been of primary interest in the evaluation of TdP risk
because the QT interval is known to be associated with the develop-
ment of TdP. Although TdP risk evaluation based on the QT interval
has been successful in removing drugs with TdP risk from the market,
some safe drugs may have also been affected due to the low specificity
of QT interval-based evaluation.1 The QT interval is prolonged pri-
marily due to blockade of the delayed rectifier potassium current (IKr),
but if the L-type calcium current (ICaL) and/or the late sodium current
(INaL) are also blocked, TdP risk is minimized even though QT prolon-
gation is present.2 The comprehensive in vitro proarrhythmia assay
(CiPA) has been proposed by regulatory agencies, industry, and aca-
demia for more accurate evaluation of drug safety.3 CiPA consists of
the following four components: (1) assessment of drug effects on mul-
tiple ion currents, (2) in silico prediction of cardiac action potential
(AP), (3) in vitro effects on human stem cell-derived cardiac myocytes,

and (4) human ECG in phase I clinical trials (Fig. 1). The CiPA initia-
tive led to the discovery of the JTpeak interval of ECG as a biomarker
of TdP risk.4 The blockade of IKr in conjunction with ICaL and/or INaL,
which showed antiarrhythmic effects, did not prolong the JTpeak
interval despite a prolonged QT interval.2

Although in silico evaluation of cellular AP was included in the
CiPA initiative as a component, attempts to utilize in silico simulation
in drug safety evaluation are expanding, even to the simulation of
human ECG using biophysical three-dimensional models of the heart
and torso under the effects of drugs. In this article, we review recent
developments in the use of in silico models for drug safety evaluation
and discuss the possibility of utilizing ECG simulation in drug safety
evaluation.

II. SIMULATION METHODS FOR CARDIAC
ELECTROPHYSIOLOGY

Cardiac myocytes are excitable cells in which the membrane
potential increases rapidly when it exceeds a threshold. There are sev-
eral models for the action potential of human cardiac myocytes. Ten

APL Bioeng. 4, 021502 (2020); doi: 10.1063/1.5132618 4, 021502-1

VC Author(s) 2020

APL Bioengineering REVIEW scitation.org/journal/apb

https://doi.org/10.1063/1.5132618
https://doi.org/10.1063/1.5132618
https://doi.org/10.1063/1.5132618
https://doi.org/10.1063/1.5132618
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5132618
http://crossmark.crossref.org/dialog/?doi=10.1063/1.5132618&domain=pdf&date_stamp=2020-06-04
https://orcid.org/0000-0002-3398-3424
https://orcid.org/0000-0001-7425-946X
https://orcid.org/0000-0002-3583-0173
https://orcid.org/0000-0002-3997-7201
mailto:ebshim@kangwon.ac.kr
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1063/1.5132618
https://scitation.org/journal/apb


Tusscher et al.5 (TT04) developed a mathematical model of the action
potential of human ventricular cells based on experimental data on the
major ionic currents. Their model reproduced the experimentally
observed action potential duration (APD) restitution. They also
updated their model to include a more extensive description of intra-
cellular calcium dynamics (TT06).6 Grandi et al.7 developed a detailed
mathematical model for calcium handling and ionic currents in
human ventricular myocytes. They validated their model against
experimental data, including APD adaptation and restitution. O’Hara
et al.8 developed a human ventricular AP model (ORd model) using
undiseased human ventricular data, including rate dependence and
restitution of APD. Their model reproduced experiments for rate
dependence of Ca2þ and intracellular sodium in undiseased human
myocytes. The ORd model is the most updated model based on a large
amount of human experimental data and has been selected as the
starting point for developing an in silicomodel within the CiPA initia-
tive.1 Although the ORd model has been widely used, it has some
drawbacks, including high sensitivity to changes in IKr.

9 There have
been attempts to optimize the baseline ORd model to increase its pre-
dictive power under various conditions. Mann et al.10 optimized three
models of cellular electrophysiology, including the ORd model, by
applying scaling factors to the maximum conductances for ionic cur-
rents. They obtained scaling factors by comparing the simulated
change of APD90 with a clinically obtained change in the QT interval
in patients with long QT syndrome (LQTS). The optimized model
reproduced more accurately the prolongation of repolarization in all
LQTS subtypes. Dutta et al.11 included a Markov model of IKr in the
ORd model to represent dynamic interactions between drugs and IKr.
They also refined the model parameters using experimental data
obtained in human cardiomyocytes under control and drug block con-
ditions with the main purpose to improve model predictions of drug
blocks. Krogh-Madsen et al.9 optimized the ORd model to clinical

long QT data with the application of physiologically based bounds on
intracellular calcium and sodium concentrations. They tested the opti-
mized model against a database of known drugs and showed that it
improved risk assessment. Asakura et al.12 developed a human ventric-
ular cell model including the tight coupled L-type Ca2þ channel and
ryanodine receptor (LCC–RyR) model based on control theory. They
reproduced realistic Ca2þ dynamics and examined the Ca2þ mecha-
nisms involved in the generation of early afterdepolarization (EAD)
and delayed afterdepolarization (DAD) by applying the lead potential
analysis. Recently, Tomek et al.13 developed a human-based ventricu-
lar model (ToR-ORd) based on the ORd model to overcome the
inconsistencies presented by the currently available models. They per-
formed calibration and validation of the model under healthy and key
disease conditions as well as drug blockade.

The electrical signal propagation in the heart in the form of wave,
which enables contraction of the heart, is simulated by solving reac-
tion–diffusion equations numerically. The bidomain model consists of
the following equations:14

@Vm

@t
¼ 1

bCm
r � Dir Vm þ ueð Þð Þ � b Iion þ Isð Þ
� �

; (1)

r � Di þ Deð Þrueð Þ ¼ �r � DirVmð Þ; (2)

where Vm is the membrane potential, b is the membrane surface-to-
volume ratio, Cm is the membrane capacitance, Di and De are intracel-
lular and extracellular conductivity tensors, respectively, ue is the
extracellular potential, Iion is the ionic current, and Is the stimulation
current. Iion is obtained by cellular electrophysiology models, such as
those described above. Eqs. (1) and (2) can be solved simultaneously
to obtain spatiotemporal distributions of both transmembrane and
extracellular potentials in the heart. The numerical methods of solving
those equations can be found in the literature.14–17 The monodomain

FIG. 1. The four components of the comprehensive in vitro proarrhythmia assay. (1) Assessment of drug effects on multiple ion currents. (2) In silico prediction of cardiac action
potential. (3) In vitro effects on human stem cell derived cardiac myocytes. (4) Human ECG in phase I clinical trials. Reproduced with permission from Vicente et al., Clin.
Pharmacol. Ther. 103(1), 54–66 (2018) Copyright 2018 Authors, licensed under a Creative Commons Attribution Non-Commercial License.
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model is represented by Eq. (1) alone with no extracellular potential in
the equation. The distribution of the membrane potential in the heart
as a function of time obtained by solving the above equations numeri-
cally provides the pattern of electrical wave propagation in the heart.
While bidomain model describes the electrophysiological change of
the heart in more detail and consequently provides more accurate pre-
dictions of the electrical wave propagations in the heart, the computa-
tion takes much longer time compared to the monodomain model.
The monodomain model is often used instead of the bidomain model
to save computational time.14,17 The mesh on which the equations are
solved numerically is obtained by constructing the geometry of the
heart by segmentation of medical images and generation of an appro-
priate type of grid. One-dimensional (1D) models are constructed by
linking many cellular elements consisting of endocardial, mid-
myocardial, and epicardial cells. Each cellular element is modeled
using an electrophysiological model of ventricular cells, such as the
ORd model, and can be depolarized once an electrical signal arrives.
Propagation of the electrical signal is simulated by solving a reaction–-
diffusion equation18 following electrical stimulation at one end of the
1D model. To obtain a valid morphology of ECG, the ratio of the
thicknesses of the endocardial, mid-myocardial, and epicardial layers
should be appropriately determined because the positive T wave
results from the relatively short APD of the epicardial layer. A 2D
model is a spatial extension of a 1D model, with the very important
advantage that it allows examination of the pattern of cardiac wave
propagation, such as reentry. The simulation is performed by solving a
2D reaction–diffusion equation.18 Various S1–S2 protocols can be
applied to initiate reentry. Simulated ECG can also be obtained.
Three-dimensional (3D) biophysical models of the heart can be used
to evaluate the proarrhythmic potential of drugs by simulating ECG
from the heart model. Torso models can also be included in these
model systems. ECG simulated from a 3D model is closer to the real
ECG than pseudo-ECG from 1D or 2D models. The 3D heart model
can also be used to examine the pattern of cardiac wave propagation
in the heart model under the effects of drugs.

The heart model for drug safety evaluation can range from a ven-
tricular model to a whole heart model combined with a torso model
depending on the type of data needed (Fig. 2).19,20 The ventricular
model generates the QRS complex and the T wave without the P wave
in the ECG. If the P wave needs to be checked, the atrial or whole heart
model should be used. The inclusion of a very detailed model of the
sinoatrial node in the atrial model would provide the data on the
effects of drugs on the automaticity of electrical signal generation in
the heart.21–23 The incorporation of the Purkinje fibers in the ventricu-
lar model would be indispensable because the morphology of the ECG
is closely related to the direction of the electrical signal propagation
guided by the Purkinje fibers. There are a number of models of
Purkinje fibers24–26 such as the one developed by Cardone-Noott
et al.26 in which the Purkinje fibers are emulated by including root
nodes and a fast activation endocardial layer. The ECG obtained by
placing an electrode at a distance from a model without the torso
model is a pseudo-ECG which should be interpreted accordingly.

Ventricular arrhythmia (VA) is an irregular propagation of the
electrical signal in the ventricles, which can lead to sudden cardiac
death. Simulation of the electrical wave propagation in the ventricles
can be used to clarify the mechanisms of VA and develop new treat-
ment strategies. Lim et al.27 simulated electrical wave propagation in

the ventricles and developed a heart–torso model capable of generating
body surface potential maps and ECG waveforms. They determined
the optimal placement of a bipolar mini-ECG for ubiquitous health-
care. Deng et al.28 conducted simulations of ventricular tachycardia
(VT) using ventricular models reconstructed from late gadolinium-
enhanced magnetic resonance imaging (MRI). They examined the
effects of the electrophysiological parameters on VT and predicted
ablation targets in the heart model.

III. PROARRHYTHMIC RISK EVALUATION OF DRUGS
A. In vitro experiments to determine the effects
of drugs on ion channels

In the evaluation of the proarrhythmic risk of drugs using in silico
models, the effects of drugs are incorporated into the models by partly
blocking appropriate ion channels. The extent of ion channel blockade
for each drug can be determined using in vitro experiments. The CiPA
initiative included in vitro experiments to determine the effects of
drugs on ion channels.1,2 They observed that hERG, late sodium, and
L-type calcium currents were the ones where the block was higher,
and that blockade of late sodium and/or calcium currents reduced the
risk of TdP in the presence of hERG block for low-risk drugs.2 The
experiments were also conducted using high-throughput automated
patch clamp techniques.2 In the case of the hERG channel, it was
observed that the half-maximal inhibitory concentration (IC50) is not
alone sufficient to characterize hERG block and temperature, time,
voltage, and states also significantly affect the interactions between
drugs and the hERG channel.29 Moreover, the IC50 value could differ
depending on the measurement protocol.30 Gomis-Tena et al.30 pro-
posed a three-protocol IC50 assay to estimate the potency to block IKr
in vitro. Li et al.31,32 developed a model of dynamic interactions
between drugs and the hERG channel, incorporated the dynamic
model into the ORd model, and predicted the torsadogenic risk of
drugs. There have also been experiments that showed the effects of
drugs on the blockade of multiple ion channels.33,34 It was found that
the effect of the blockade of the hERG channel can be offset by a con-
comitant block of other currents.33,34

B. Single cell simulations

In silicomodels of cellular electrophysiology can be used to exam-
ine the changes in action potential (AP) biomarkers such as the action
potential duration (APD), AP peak, resting membrane potential, and
calcium transient under the effects of drugs.35–40 The change in the
APD is directly reflected in the morphology of ECG. The CiPA initia-
tive included the prediction of APD change using in silico cell models.1

The cell models described in Sec. II can be used to examine the effects
of drugs on the change of AP morphology and duration by incorporat-
ing an experimentally measured ion channel blockade. Wilhelms
et al.41 examined the effects of amiodarone and cisapride on cellular
APD, the amplitude of AP, and resting membrane potential for
healthy and ischemic cells using the TT06 model. They tested low and
high concentrations of the drugs. Luo et al.18,42 examined the effects of
amiodarone, quinidine, disopyramide, and E-4031 on AP morphology
using the TT06 model. They replaced the IKr model equation with a
Markov change formulation and incorporated INaL from the ORd
model. They modified the parameters of IK1 to incorporate the experi-
mentally observed kinetic properties of the channel, and examined the
transmural AP heterogeneity by simulating endocardial, mid-
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myocardial, and epicardial cells. Kubo et al.43 examined the effects of
dofetilide on cellular AP in models of failing and non-failing hearts
based on the ORd model. They included the protein binding rate into
their model, and observed EAD at a dofetilide concentration of
100nM in the non-failing heart model and at 25 nM in the failing
heart model. Romero et al.44 examined the effects of 84 drugs on the
AP of endocardial, mid-myocardial, and epicardial cells using the ORd
model. Chang et al.45 performed an uncertainty quantification on the
variability in pharmacology data and evaluated the robustness of TdP
risk separation by qNet, an in silico TdP risk metric that they

proposed. Lancaster and Sobie46 constructed classifiers that can assess
the arrhythmogenicity of drugs combining simulations of drug effects
with statistical analysis and machine learning. Paci et al.47 simulated
the effects of mexiletine and ranolazine on the APD of LQT3 human
induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs)
using populations of in silico hiPSC-CM models. These studies show
that specific ion channel models are sometimes adopted from different
cell models and even replaced with different type of models such as a
Markov model. Even with the same model formulations, the model
parameters are sometimes modified using additional experimental

FIG. 2. Simulation of cardiac electrophysiology. (a) An example of a cell model. (b) Simulation of electrical wave propagation. (c) Electrical potential calculation. (d) Body sur-
face potential. (e) Electrical potential signal processing. Reproduced with permission from Ryu et al., Korean J. Physiol. Pharmacol. 23(1), 71–79 (2019). Copyright 2019
Authors, licensed under a Creative Commons Attribution Non-Commercial License.
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data. Appropriate modifications to the cell models depending on the
type of problem would increase the accuracy of the model prediction.

C. One-dimensional simulations

A very important advantage of using a 1D model is that a virtual
ECG can be obtained despite the very simple structure of the model by
placing a virtual electrode at a distance from the 1D model and solving
the governing equation of electrical potential.18 O’Hara et al.8 obtained
pseudo-ECG from a 1D model based on their ORd model and verified
that the T-wave was upright and rate-dependent. Moreno et al.48 per-
formed a 1D simulation under the effects of ranolazine and reported
marked prolongation of QTc, which was not consistent with clinical
data. When they included weaker ranolazine metabolite inhibition of
IKr in their model, the QTc prolongation was consistent with clinical
data. Wilhelms et al.41 examined the effective refractory period, slope
of APD90, conduction velocity, and wavelength restitution curves
using a 1D model under the effects of amiodarone and cisapride and
compared these parameters under ischemic and healthy conditions.
Luo et al.18,42 examined the pseudo-ECG from a 1-D model under the
effects of E-4031, disopyramide, quinidine, and amiodarone. They
used an IKr ratio of 1.6:1:1 in the epicardial, mid-myocardial, and
endocardial cells based on the experimental study,49 which generated a
positive T-wave amplitude. Patel et al.50 examined the effects of citalo-
pram and its primary and secondary metabolites on QT interval pro-
longation using the pseudo-ECG obtained from a 1D model. They
examined the effects using unbound or total plasma as the operating
drug concentration. Romero et al.44 examined the effects of 84 drugs
on the QT interval using pseudo-ECG obtained from a 1D model, and
proposed a new index for discriminating torsadogenic compounds,
which was defined as the ratio of the drug concentrations producing

10% prolongation of the cellular endocardial, midmyocardial, and epi-
cardial APDs and the QT interval, over the maximum effective free
therapeutic plasma concentration. Polak et al.51 developed a cardiac
risk algorithm using pseudo-ECG obtained from a 1D model. They
simulated increasing concentrations of 96 reference compounds and
used multiple machine learning techniques to develop an algorithm
that can classify drugs according to TdP risk.51 They tested machine
learning algorithms including decision trees, random forests, and sup-
port vector machines, and the model using alternating decision tree
was found to be the best in TdP risk classification. The input variables
include the time gap between the end of electric and mechanical sys-
tole, and the index of cardiac electrophysiological balance (¼QT/QRS)
obtained from pseudo-ECG of a 1Dmodel. The output is the probabil-
ity of TdP risk. The algorithm correctly classified 89% of reference
compounds and 10 out of 12 validation compounds. Loewe et al.52

simulated the effects of amiodarone and dronedarone on the occur-
rence of atrial fibrillation (AF) by adapting the
Courtemanche–Ramirez–Nattel model to represent chronic AF and
hERG mutations. They observed that there are significant differences
in the arrhythmia scores that they computed between the two drugs.

D. Two-dimensional simulations

Kubo et al.43 constructed a transmural 2D model consisting of
endocardial, mid-myocardial, and epicardial layers. Their model
included a model of fiber orientation to achieve a transmural differ-
ence in conduction velocity. They amplified INa of the ORd model to
adjust the conduction velocity to clinical values. They applied a stimu-
lus to a section of the endocardial border and observed arrhythmia
under the effects of dofetilide at its supratherapeutic proarrhythmic
concentration. They also examined simulated ECG under the effects of

FIG. 3. 3D model for evaluating the drug effects. Action potentials from a single cell and 3D model under the effects of dofetilide are shown. Action potential distributions in the
ventricular model are also shown. Reproduced with permission from Hwang et al., Front. Physiol. 10, 1139 (2019). Copyright 2019 Authors, licensed under a Creative
Commons Attribution License.
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six drugs and compared the results with those of a prospective clinical
study. Luo et al.18,42 also constructed a transmural 2D model consist-
ing of endocardial, mid-myocardial, and epicardial layers. A reentrant
wave was initiated with an S1–S2 protocol. An S1 stimulus was applied
to the side of the endocardial layer and an S2 stimulus was applied to
the junction region of the mid-myocardial and epicardial layers to gen-
erate unidirectional wave propagation. The effects of quinidine, diso-
pyramide, E-4031, and amiodarone on the dynamic behaviors of the
wave were evaluated under conditions of short QT syndromes.

E. Three-dimensional simulations

There have been studies in which an in silico heart model was
developed and simulations were performed to test the virtual heart as
a platform for screening drug toxicity including the effects of drugs on
the short QT syndrome.53–56 Dux-Santoy et al.57 examined the effects
of dofetilide on the cardiac conduction system (CCS) using a patient-
specific ventricular model and observed the differences in the distribu-
tion of APD with and without the CCS. Wilhelms et al.41 developed a
3D model of the ventricles using MRI images of a healthy volunteer.
The fiber orientation was generated using a rule-based method and

the His-Purkinje system was mimicked by an endocardial stimulation
profile. The endocardial and mid-myocardial tissues each occupied
40% of the ventricular wall with the epicardial tissue occupying 20%.
The conductivity at the apex was twice that at the base. They examined
the effects of amiodarone and cisapride on the ECG and conduction-
related properties, such as the conduction velocity and wavelength,
using the 3D model. Zemzemi et al.58,59 developed a 3D anatomical
finite-element mesh of the human body from human anatomical data.
They included realistic fiber orientation in the model using a rule-
based method. The electrical activity was simulated using bidomain
equations, and the heart–torso interface was assumed to be a perfect
conductor. Different conductivity tensor values were used in the heart
and different parts of the body. The endocardium surface was progres-
sively activated from the apex to the base to mimic Purkinje network
activation. They examined the effects of blocking IKr, INa, and ICaL on
ECG using the 3D model. Costabal et al.60 developed a 3D model of
the human heart using the ORd model for ventricular cells and the
Stewart model25 for Purkinje cells, which has a feature of automaticity.
The ventricular wall consisted of 20% endocardial cells, 30% mid-wall
cells, and 50% epicardial cells, which ensured positive T waves. The
Purkinje network was generated as a fractal tree that grew from four

FIG. 4. Effects of cell models on ECG. Simulated ECGs are shown for different cell models under the effects of seven drugs. Reproduced with permission from Hwang et al.,
Front. Physiol. 10, 1139 (2019). Copyright 2019 Authors, licensed under a Creative Commons Attribution License.
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locations. They examined the effects of dofetilide on ECG using the
3D model. Okada et al.61,62 created a 3D model of the heart and torso
from the multi-detector computed tomography (CT) images of a
healthy adult. They replaced the model equations for the m gate of the
Na channel with those of the TT04 model to reproduce the physiologi-
cal conduction velocity. The adjustments of the sites of interaction
between the Purkinje network and myocardium were needed to repro-
duce the normal QRS morphology. They used bidomain equations to
obtain the propagation of excitation. They created a five-dimensional
hazard map with coordinates representing the percentage of the block
of IKr, INa, INaL, ICaL, and IKs using simulated ECGs. They compared
the arrhythmogenic risk evaluation based on the hazard map with
those reported in the literature, and found that the JTpeak was a supe-
rior index of arrhythmogenicity compared to the QT interval. We also
developed a 3D model of the human heart and torso for the evaluation
of drug safety (Fig. 3).63 We examined the effects of seven drugs with
high, intermediate, and low proarrhythmic risks on ECG. We tested
three optimized cell models based on the ORd model as well as the
ORdmodel, and examined the effects of the cell models on ECG under
the effects of the seven drugs (Fig. 4). A significant increase in JTpeak
interval was observed under the effects of verapamil, which is a safe
drug, using the ORdmodel although, clinically, safe drugs did not pro-
long the JTpeak interval. Simulation using the cell model optimized by
Mann et al.,10 however, resulted in negligible prolongation of the
JTpeak interval under the effects of verapamil. The cell models devel-
oped and validated using the data obtained from cell-level experiments
would require adjustments using ECG data when the model is incor-
porated in the heart and torso model. Recently, Levrero-Florencio
et al.64 developed a human-based physiologically detailed, and fully
coupled ventricular electromechanical model, and performed a high
performance computing study on the sensitivity of mechanical bio-
markers to key model parameters.

F. Models of machine learning/statistical analysis

There have been studies using machine learning (ML)/statistical
analysis (SA) to classify the TdP risk of drugs. The model of ML/SA
can be trained using the data of drugs with a known TdP risk. After
training, the ML/SA model can classify new drugs into TdP risk cate-
gories. The input data for the training of the ML/SA model can be
either the direct features33 such as the extents of drug-induced block of
ion channels or derived features46 such as the output from in silico
simulations using biophysical models in the form of mathematical
equations. The models that can be used for ML/SA include logistic
regression,33,65 Gaussian process regression,66 support vector
machine,46,65 and neural network models.65 Parikh et al.65 proposed a
two-step classifier for TdP risk stratification and found that their clas-
sifiers based on direct features provided identical performance to those
based on derived features as input data. The models of ML/SA can be
an alternative approach to very complex 3D biophysical models for
TdP risk classification.

IV. FUTURE DIRECTIONS

The CiPA initiative included in silico single cell simulation in
drug safety evaluation. Even though it would be ideal if a system of 3D
models of the heart and torso could be used to test the proarrhythmic
potential of drugs (Fig. 5), the computation time is currently prohibi-
tive and supercomputers would be needed, which is impractical for
pharmaceutical companies. One way of reducing computation time at
a relatively low cost would be parallel computing using the graphics
processing unit (GPU) because GPU has generally a much larger num-
ber of cores than the central processing unit (CPU) at the same price.
Table I lists the currently available 3D heart models and solvers for
drug safety simulations.26,41,58,60,61,67–69 Although multiple 3D models
have been developed and studied by different groups, further valida-
tion against clinical data is needed. Recently, the JTpeak has been

FIG. 5. In silico test process for drug safety evaluation. In silico models from single cell to 3D models to test drug effects are shown.
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proposed as a more reliable index of the proarrhythmic potential,
based on clinical data. As demonstrated in our study, different 3D
models incorporating different cell models resulted in different
changes in the JTpeak interval. Validation of the cell models is critical
to improve the accuracy of the 3Dmodels. The accuracy of fiber orien-
tation, the Purkinje network, and distribution of fibrosis would also
affect ECG under the effects of drugs. Minchol�e et al.70 showed that
variabilities in ventricular and torso anatomies among patients affected
the ECG QRS complex. A methodology to include patient-to-patient
anatomical and electrophysiological variabilities in the 3D model
would be ideal. One way of incorporating these variabilities is to con-
struct a virtual population model of the heart. There have been studies
in which inter-subject variability was included in the simulation of car-
diac cellular electrophysiology using a population model.35,71,72

Recently, Zhou et al.73 found the minimum set of ion channels
required for reliable TdP risk predictions, and the effects of the varia-
tions of IC50 and Hill coefficient values on the accuracy of in silico pre-
dictions of TdP risk using a population of human ventricular cell
models. Extending this methodology to a 3D model by considering the
anatomical variability of the heart and torso as well would provide
simulated ECGs including inter-subject variability. By assuming
appropriate ranges of variations in the anatomical and electrophysio-
logical properties of the heart based on the available data, a population
of heart models with different properties can be constructed and simu-
lations can be performed on the virtual population. The simulation
results will be statistical rather than deterministic for a patient. The
population modeling approaches were discussed at a Cardiac Safety
Research Consortium/Health and Environmental Sciences Institute/
U.S. Food and Drug Administration-sponsored meeting as a future
direction.74 As also discussed in the meeting, novel methods to obtain
the covariance of physiological parameters may need to be developed,
and uncertainty quantification may need to be incorporated in inter-
subject variability.74
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