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Analysis of bulk RNA sequencing (RNA-Seq) data is a valuable tool to understand
transcription at the genome scale. Targeted sequencing of RNA has emerged as a
practical means of assessing the majority of the transcriptomic space with less reliance
on large resources for consumables and bioinformatics. TempO-Seq is a templated,
multiplexed RNA-Seq platform that interrogates a panel of sentinel genes representative
of genome-wide transcription. Nuances of the technology require proper preprocessing
of the data. Various methods have been proposed and compared for normalizing bulk
RNA-Seq data, but there has been little to no investigation of how the methods perform
on TempO-Seq data. We simulated count data into two groups (treated vs. untreated) at
seven-fold change (FC) levels (including no change) using control samples from human
HepaRG cells run on TempO-Seq and normalized the data using seven normalization
methods. Upper Quartile (UQ) performed the best with regard to maintaining FC levels
as detected by a limma contrast between treated vs. untreated groups. For all FC
levels, specificity of the UQ normalization was greater than 0.84 and sensitivity greater
than 0.90 except for the no change and +1.5 levels. Furthermore, K-means clustering
of the simulated genes normalized by UQ agreed the most with the FC assignments
[adjusted Rand index (ARI) = 0.67]. Despite having an assumption of the majority of
genes being unchanged, the DESeq2 scaling factors normalization method performed
reasonably well as did simple normalization procedures counts per million (CPM) and
total counts (TCs). These results suggest that for two class comparisons of TempO-Seq
data, UQ, CPM, TC, or DESeq2 normalization should provide reasonably reliable results
at absolute FC levels ≥2.0. These findings will help guide researchers to normalize
TempO-Seq gene expression data for more reliable results.

Keywords: TempO-Seq, normalization, gene expression, mRNA, transcription

INTRODUCTION

Over the past 25 years, interrogation of genome-wide gene expression has taken many forms. cDNA
and oligonucleotide microarrays (Millen and Glauser, 1978; Lockhart et al., 1996) analysis methods
matured over time whereby preprocessing of the data for single-channel microarrays ultimately
defaulted to the de facto Robust Multichip Average (RMA) normalization (Irizarry et al., 2003a,b).
The advent of massive parallel signature sequencing (MPSS) and next-generation sequencing by
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synthesis for mRNA (RNA-Seq) ushered in a new paradigm for
whole transcriptome analysis (Bainbridge et al., 2006; Cloonan
et al., 2008; Lister et al., 2008; Mortazavi et al., 2008; Nagalakshmi
et al., 2008). Crowdsourcing bioinformatics analysis of RNA-Seq
data through the US Food and Drug Administration MicroArray
Quality Control (MAQC), SEquence Quality Control (SEQC)
phase effort led to a comprehensive assessment of RNA-Seq
analysis including comparison to microarray and normalization
using External RNA Control Consortium (ERCC) spike-in
controls (Consortium, 2014; Risso et al., 2014; Wang et al., 2014;
Xu et al., 2014). In addition, several studies have compared
various normalization approaches for RNA-Seq data (Dillies
et al., 2013; Zyprych-Walczak et al., 2015; Lin et al., 2016; Li et al.,
2017). Proper normalization of gene expression data is essential
to ensure valid and reliable results from downstream analyses
(Park et al., 2003).

In the last few years, targeted sequencing of RNA has emerged
as a practical means of capturing the totality of the transcriptomic
space with less reliance on large resources for consumables and
bioinformatics (Li et al., 2012). The TempO-SeqTM technology
from BioSpyderTM is a templated, multiplexed RNA-Seq platform
that measures the expression of sentinel genes representative
of genome-wide transcription (Yeakley et al., 2017; Mav et al.,
2018). A few advantages of TempO-Seq over RNA-Seq is
that it does not require RNA purification, cDNA synthesis,
nor capture of targeted RNA. In addition, by nature of the
technology, it lacks 3′ end bias. Recently, several studies utilized
the TempO-Seq platform for whole transcriptome profiling,
primarily for toxicogenomics (Grimm et al., 2016; House et al.,
2017; Yeakley et al., 2017; Bushel et al., 2018; Limonciel et al.,
2018; Chappell et al., 2019; Ramaiahgari et al., 2019; Simon
et al., 2019), but also carcinogenomics (Batai et al., 2018; Hanke
et al., 2018), and to profile formalin-fixed paraffin-embedded
(FFPE) tissue (Trejo et al., 2019). However, there has not been
a comprehensive comparison of normalization methods applied
to TempO-Seq data.

Here we utilize control samples from human HepaRG cells
interrogated on the TempO-Seq platform to simulate gene
expression data at seven-fold change (FC) levels including no
change and normalized data using seven normalization methods
for comparison. We show that based on sensitivity and specificity
performance measures as well as the adjusted Rand index (ARI)
as a measure of agreement, Upper Quartile (UQ) performed
the best with respect to maintaining absolute FC levels ≥2.0
as detected in a two-group comparison. Counts Per Million
(CPM), Total Counts (TCs), and DESeq2 normalization methods
also performed reasonably well. The importance of this study is
centered on providing the research community an assessment of
which method to use for normalization of TempO-Seq data to
ensure the reliable results from downstream analyses.

MATERIALS AND METHODS

Cell Culture
HepaRG cells (Lonza, Catalog: NSHPRG) in cryopreserved form
were thawed and seeded at approximately 20,000 cells/well
onto collagen(I)-coated 384-well plates (Corning, Catalog

#356667). Differentiated HepaRG cultures (2D-DIFF) were
re-differentiated from cryopreserved suspension form over
10 days prior to vehicle exposures. Proliferated HepaRG
cultures (PROLIF) were seeded at approximately 2,000 cells/well,
grown for 3 days, and proliferated during vehicle exposures.
For this, HepaRG were plated using William’s E medium
(ThermoFisher, Catalog: A1217601) which was supplemented
with MHPIT maintenance additive (Lonza, Catalog: MHPIT).
Vehicle exposures durations were 96 h, and at the final time point,
incubation media were removed and cultures were washed once
with 50 µl phosphate-buffered saline (ThermoFisher, Catalog
#10010023). Cells were subsequently lysed for high-throughput
transcriptomics using 20 µl of 1 × Tempo-Seq lysis buffer
(Biospyder) with a 15-min room temperature incubation with
subsequent freezing at −80◦C. Edge effects were minimized by
excluding lysates in rows A, B, O, P, and Columns 1, 2, 23, and 24.

TempO-Seq Analysis
Tempo-Seq analysis was performed as previously described by
Biospyder, Inc. (Yeakley et al., 2017). Briefly, frozen lysates
were thawed, and sequencing libraries for targeted panels of
transcripts were generated. Each detector oligonucleotide (DO)
consisted of complementary sequence to specific mRNA targets
plus a universal primer binding site. Ligation of detector
oligonucleotides via PCR amplification introduces adaptors
required for sequencing and well-specific “barcodes” that link
sequencing data to a specific well of origin. Barcode sequences
flank the target sequence and are inserted into standard illumina
adaptors to permit dual-index sequencing and deconvolution
of sample-specific reads using standard illumina software. All
PCR-amplified and barcoded samples were pooled into a single
library for sequencing on a HighSeq 2500 sequencer (Illumina
Inc., San Diego, CA) using a 50 cycle single-end read flow cell.
Processing of the sequencing data was conducted using Illumina’s
bcl2fastq software employing default parameter settings allowing
for 1 mismatch per read. Sequencing reads were de-multiplexed
using standard instrument software for each sample using
barcodes to give FASTQ files linked to each well. Downsampled
data was generated to obtain 500 mapped reads per gene on
average. The 50 bp reads in the fastq files were aligned using
bowtie version 1.2.2 (using parameters: -v 3 -k 1 -m 1 --best
--strata --trim3 1) to a manifest of the TempO-Seq target genes
sequences (a subset of the human transcriptome [Refseq release
70 downloaded July 23rd 2015)] reflecting the 50 bp sequences
targeted by the DOs). The utility “idxstats” in the samtools
package1 was used to generate read count data matrices.

Simulated TempO-Seq Data
Let Ygsm denote the read count of a gene g ∈{1,. . .,G} belonging
to a group m∈{1,2} of a sample S∈{S1, S2,. . .,SN} such that:

Ygsm ∼ NB(mean = µgsm , var = µgsm(1 +
µgsm

θgsm
))

where θgsm is the parameter measuring the dispersion in the data,
µgsm is the true mean of the data, and NB is the negative binomial
distribution. We set the dispersion parameter for each gene to be

1http://www.htslib.org
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the same for all samples. Thus, θgsm = θg . Here,

µgsm = E[Ygsm ] =
λgsm∑G
g=1 λgsm

Msm

TABLE 1 | Parameter settings to simulate data FC.

m

Set 1 2 FC

A 6 1.5 −4

B 3 1.5 −2

C 2.25 1.5 −1.5

D 1.5 2.25 +1.5

E 1.5 3 +2

F 1.5 6 +4

G 1.5 1.5 0

Parameters for the simulation model: N = 50 genes per FC set, 35 samples per m
group, library size lower limit = 0.2 × 106, and library size upper limit = 1.5 × 106.
FC, fold change.

where Msm is the sequencing depth for the mth group in sample
S. Msm = 1 × 106 Usm for Usm∼Unif[0.2,1.5] where Unif is
the uniform distribution. The bounds (minimum and maximum
limits) of Unif and the estimation of the sample mean λ∗gsm

and
θg were obtained from a DESeq analysis (Anders and Huber,
2010) of TempO-Seq count data (Supplementary Data 1: 2,680
genes in the 75th percentile of counts and 240 HepaRG control
cells in the 90th percentile of counts) generated as previously
described (Ramaiahgari et al., 2019) where the read depth
was down-sampled to approximately 500 mapped read counts
per transcript (Yeakley et al., 2017). Then, to generate sets of
simulated genes across the groups of samples, we defined λgsm =

γgsmλ∗gsm
, where S1 is considered the untreated group of samples,

S2 is considered a group of samples with a particular perturbation
(treated) and the ratio

γgsm =
wgs2

/
wgs1 .

The differential expression was simulated at different levels for
the respective sets of genes using values of wgsm denoted in

FIGURE 1 | Representations of the estimates of the fold change (FC) values and simulation of data. (A) Dispersion from the DESeq negative binomial model.
Dispersions less than or equal to 3.0 are plotted. (B) Distribution of the log2 FC estimated from a binomial test of the control samples randomly assigned to two
groups (control1 and control2). Values within the range [-0.8, +0.8] are plotted. (C) Mapped reads of the samples from the simulation (untreated and treated).
(D) Heat map of the log2 FC (ratio of treated to average of the untreated with an offset of 1) from 350 simulated genes (50 from each set in Table 1).
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FIGURE 2 | Distribution of normalized data. (A) Untreated samples. (B) Treated samples.

Table 1. For each FC set, 50 genes were simulated and for each
group m, 35 samples were generated (Supplementary Data 2).

Normalizations
The following normalizations were applied to the simulated data.
Since the TempO-Seq platform is designed of genes that capture
greater than 90% of the biological pathways, most of the genes are
likely to be differentially expressed. Thus, we normalized the data
using the following methods:

Total Counts
The counts per gene were normalized to TCs by dividing it by
the total number of mapped reads per sample and multiplying
by the mean total count across all the samples (Dillies et al.,
2013). The TC normalized data were then transformed with log2
using an offset of 1.

Counts per Million
The counts per gene were normalized to CPM by dividing it by
the total number of mapped reads per sample and multiplying by
1 × 106 (Robinson et al., 2010). The CPM normalized data were
then transformed with log2 using an offset of 1.

Median
The counts per gene were Median normalized (Dillies et al., 2013)
by dividing it by the median of mapped reads for all the samples
and multiplying by 1 × 106. The Median normalized data were
then transformed with log2 using an offset of 1.

Quantile
The counts per gene were quantile (Q) normalized using the
normalizeQuantiles function in the Bioconductor package limma

(Ritchie et al., 2015). The method normalizes the counts of the
genes in a sample to have the same quantiles across the samples
in the data set. If there are ties among the genes for a particular
sample, then the ties are normalized to the same value (i.e., the
average of the quantiles for the tied values).

Upper Quartile
The counts per gene were UQ normalized using the
calcNormFactors function in the Bioconductor package EdgeR
(Robinson et al., 2010; Mccarthy et al., 2012) using the 75th
percentile of the read counts that are mapped per sample.
These scaling factors are then used to adjust the total mapped
reads count for each sample.

The following normalization methods have an assumption
that the majority of the genes on the platform are unchanged.

Trimmed Mean of M Values
The counts per gene were normalized using the “weighted”
Trimmed Mean of M-values (TMM) approach (Robinson and
Oshlack, 2010) in the Bioconductor package EdgeR. After
trimming the data [5% for the A values, log ratio 0.3 for
the M values to a reference array (the library whose upper
quartile is closest to the mean upper quartile)], scaling factors for
each sample were generated using the calcNormFactors function.
Scaling factors were then used to adjust the total mapped reads
count from each sample.

DESeq2
The counts per gene were normalized using the
estimateSizeFactors function in the Bioconductor package
DESeq2 (Love et al., 2014). The counts for each gene in each
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FIGURE 3 | Mean–variance relationship of normalized data. The x-axis is the average of the log2 (normalized data + 0.5), and the y-axis is the square root of the
variance from limma linear model of the normalized data. The y-axes have different scales. The average residual standard deviation is marked by a horizontal blue line.

sample is divided by the geometric mean of the gene across all
samples. The median of the ratios for the genes in a sample is
the estimated size “scaling” size factor used to adjust the total
mapped reads count from each sample.

Performance of the Normalizations
Sensitivity
Sensitivity is the probability of the normalization of the read
counts maintaining the genes’ limma-derived FC values.

Sensitivity = True Positives/(True Positives+ False Negatives).

Specificity
Specificity is the probability of the normalization of the
read counts not falsely altering genes’ limma-derived
FC values.

Specificity = True Negatives/(False Positives+ True Negatives).

Precision
Precision is the proportion of limma-derived FC values predicted
correctly.

Precision = True Positives/(True Positives+ False Positives).
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FIGURE 4 | Distribution of the coefficient of variation. (A) Untreated samples.
(B) Treated samples. The y-axes have different scales.

For multiclasses represented by the FC levels, sensitivity,
specificity, and precision were calculated in one vs. all others
fashion by comparing each FC level to the others combined.

Overall Accuracy
Accuracy is the proportion of limma-derived FC values predicted
correctly over all the levels.

Accuracy =
(
True Positives+ True Negatives

)(
True Positives+ True Negatives+ False Positives+ False Negatives

)

Adjusted Rand Index
Validation of K-means (cosine dissimilarity metric and K = 7 FC
sets) cluster assignment by any of the normalizations (log2 ratio
of treated to average of the untreated with an offset of 1) was
carried out using the ARI (Hubert and Arabie, 1985; Jain and
Dubes, 1988; Yeung et al., 2001)
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where nij is the number of objects that are in both class ui and
cluster vj of the U and V partitions, ni. and n.j are the number
of objects in class ui and cluster vj, respectively, and n is the total
number of objects (n). R

′

ranges between 0 and 1. R
′

= 1 when the
two partitions agree 100% and R‘ = 0 when the two partitions are
selected by chance.

RESULTS

Simulation of Fold Change Data
Using the RNA extracted from 240 wells containing HepaRG
control samples and interrogated on the TempO-Seq
platform, we simulated count data for treated (perturbed)
and untreated groups (35 samples in each) using a negative
binomial distribution with mean and dispersion estimates
randomly sampled from the sentinel genes in the control
samples. Table 1 lists the parameters used to generate seven
FC sets of genes (A – G) from a comparison of group
m = 2 vs. m = 1 denoting simulated treated samples vs.
untreated samples. Sets A - F representing -4, -2, -1.5, +1.5,
+2, and +4 FC, respectively, contain 50 simulated genes
each, while set G with 50 simulated genes also represents
no FC. The proportion of genes satisfies the assumption
that the majority of genes are differentially expressed in a
perturbed biological system with samples assayed on the
TempO-Seq targeted platform. Thus, the comparisons of
the normalization approaches would be more representative
of the FC distribution of the genes in a typical targeted
TempO-Seq analysis.

As shown in Figure 1A, the majority of the transcripts from
the control samples have dispersion estimates less than 0.2
and thus have variances close to the mean. The 2,680 fitted
genes from a binomial test of control samples randomly divided
into two groups have predominantly a log2 FC approximately
equal to 0 (Figure 1B). The heterogeneity of the 240 HepaRG
samples is observed by the differential expression of some
of the genes between the two groups of controls. Following
the perturbations to generate the FC sets, the read depth
of the samples ranged between 1.3 × 106 and 1.35 × 106

for the untreated and 1.47 × 106 and 1.53 × 106 for the
treated (Figure 1C). The FC range and variability of the
genes modeled in the simulation are visualized in a heat map
diagram (Figure 1D).

Negligible Normalization Impact on the
Distribution and Variance of the
Simulated Data
We used seven common normalization methods for RNA-Seq
data to compare the effect on the simulated data. Five
normalization methods, UQ, Median, CPM, TCs, and Q, adjust
the data within sample, whereas two normalization methods,
TMM and DESeq2, adjust the data within and between samples.
The two latter methods have assumptions that the majority of
the genes are not changed. This does not typically hold true for
TempO-Seq data since the platform is designed with sentinel
genes that capture the totality of the transcriptomic space (Mav
et al., 2018). Despite a possible violation of the assumption, we
included these two methods in the comparison since at least one
has been recently used on TempO-Seq data (House et al., 2017).

As shown in Figure 2A, the distributions of the log2
normalized count data for the untreated samples are relatively
tight with short whiskers and consistent across the samples.
The Q normalization appears to remove a fair amount of
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FIGURE 5 | Comparison of limma fold change (FC) values. (A) Percent of differentially expressed genes as upregulated (red), downregulated (blue), or no change
(gray) from the limma model comparing treated to untreated. (B) Correlation of log2 FC values from the limma model.
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TABLE 2 | Correlations of log2 FC from limma.

TMM UQ Median CPM TC DESeq2 Q

TMM 1 0.997734 0.998682 0.998683 0.998683 0.998680 0.984968

UQ 0.997734 1 0.999782 0.999782 0.999782 0.999783 0.985386

Median 0.998682 0.999782 1 1.000000 1.000000 1.000000 0.985765

CPM 0.998683 0.999782 1.000000 1 1.000000 1.000000 0.985765

TC 0.998683 0.999782 1.000000 1.000000 1 1.000000 0.985765

DESeq2 0.998680 0.999783 1.000000 1.000000 1.000000 1 0.985764

Q 0.984968 0.985386 0.985765 0.985765 0.985765 0.985764 1

CPM, counts per million; FC, fold change; Q, quantile; TC, total count; TMM, Trimmed Mean of M-values; UQ, upper quartile.

the variability across the samples. The Median and CPM
normalized data shift the median of the data lower than the
other normalizations. The distributions of the log2 normalized
count data from the treated samples are more variable with longer
whiskers (Figure 2B). The median values of the samples are more
consistent across the normalizations. The Q normalized data have
the same effect as it did with the untreated samples.

The normalization methods had no observable effect on
the mean–variance relationship of the data (Figure 3). Only
the Q normalization exhibited a lower average of the residual
standard deviation (horizontal blue line) compared to the other
normalization methods. In addition, the coefficient of variation
(CV) of the data by normalization method also did not vary either
except for Q (Figure 4). The CV for the Q normalization was
higher that the other normalizations for the untreated samples
but relatively the same for the treated samples.

Normalization Impact Affecting Fold
Change
To assess the effect of normalization on the FC estimate of
the simulated data, we used limma to test the comparison
of treated vs. untreated. The percent of up and down
differentially expressed genes varied according to normalization
(Figure 5A). TMM normalization had more upregulated
genes than downregulated genes, whereas the converse was
true for UQ which had more downregulated genes than
upregulated genes. CPM, TC, and DESeq2 had relatively the
same proportion of differential genes. Q normalization had
the most non-changed genes, while Median normalization had
approximately the expected proportion of up, down, and non-
changed genes.

The limma FC estimates for each normalization were
then binned as follows to compare the similarity of
the normalizations:

bin − 4 : (∞,−3.0], bin − 2 : (−3.0, − 2.0],

bin : − 1.5 (−2.0, − 1.5], bin 0 : (−1.5, + 1.5),

bin + 1.5 : [+1.5, + 2.0), bin + 2 : [+2.0, + 3.0),

bin + 4 : [+3.0, ∞).

As shown in Figure 5B, the log2 FC estimates from limma for
each normalization method correlated very well with each other

except with Q normalization. Although the Pearson correlation
(r) values are greater than +0.98 (Table 2), there are visually some
simulated genes with FC values that are impacted differently by
the normalizations (Figure 5A). Q normalization has the greatest
impact on the FC values.

In terms of the performance of the normalizations
maintaining the expected FC level, UQ, CPM, TC, and
DESeq2 normalizations had high sensitivity (greater than 0.840)
at absolute FC levels greater than or equal to 2.0 (Table 3).
Other normalizations performed better sensitivity-wise at either
end of the FC spectrum. Specificity of the normalizations
was reasonably high for all of the methods. DESeq2 had
the highest accuracy overall (0.694) in maintaining the FC
levels, followed by all the other methods. Q normalization
which had the worst accuracy = 0.269. The precision of
the normalization methods revealed that all performed well
at either one or both extremes of the FC spectrum, but
Median and UQ normalization methods were more precise
at most FC levels.

To test the agreement of the normalized data with the FC
group assignment, we K-means clustered the genes using the log2
ratio values of the treated to the average of the untreated with
K = 7. The ARI measures the amount of agreement between the
genes in the clusters and their FC set assignment. The ARI ranges
from 0 to 1, where 0 defines the agreement is essentially random,
and 1 indicates that the agreement is perfect. As shown in Table 4,
UQ normalization had the highest ARI score of 0.67, followed by
TC, CPM, DESeq2, and then Median. TMM normalization was
subpar in agreement, and not surprisingly, Q normalization had
the worst agreement overall.

DISCUSSION

The various gene expression platforms that researchers rely
on for whole genome transcriptomics have their own de facto
normalization method that are preferred by analysts. With single-
channel microarray, RMA became the standard normalization
approach. For bulk RNA-seq, many users gravitated to DESeq2
for normalization. For single-cell RNA-Seq, the path forward
continues to emerge. In the case of newer platforms such as
TempO-Seq targeted RNA sequencing, there has not been an
evaluation of the performance of several normalization methods.
Recent publications using the TempO-Seq platform used DESeq2

Frontiers in Genetics | www.frontiersin.org 8 June 2020 | Volume 11 | Article 594

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-11-00594 August 10, 2020 Time: 12:19 # 9

Bushel et al. Normalization of TempO-Seq Data

TABLE 3 | Performance of normalizations.

FC CPM TC Median Q UQ DESeq2 TMM

Accuracy Overall 0.688 0.688 0.683 0.269 0.683 0.694 0.566

Sensitivity −4 0.980 0.980 1.000 1.000 0.962 0.980 1.000

−2 0.950 0.950 0.600 0.070 0.898 0.947 0.105

−1.5 0.776 0.776 0.115 0.114 0.915 0.326 0.000

0.0 0.461 0.461 0.475 0.287 0.448 0.461 0.372

1.5 0.174 0.174 0.840 0.154 0.045 0.653 0.833

2.0 0.846 0.846 0.955 0.108 1.000 0.941 0.652

4.0 1.000 1.000 1.000 1.000 1.000 1.000 0.907

Specificity −4 1.000 1.000 0.997 0.888 1.000 1.000 0.949

−2 0.961 0.961 0.864 0.847 0.980 0.903 0.855

−1.5 0.960 0.960 0.852 0.854 0.977 0.885 0.846

0.0 0.988 0.988 0.992 0.989 0.988 0.988 0.978

1.5 0.862 0.862 0.973 0.859 0.843 0.940 0.922

2.0 0.884 0.884 0.974 0.853 0.867 0.943 0.975

4.0 0.997 0.997 0.997 0.901 0.997 0.997 0.997

Precision −4 1.000 1.000 0.980 0.240 1.000 1.000 0.680

−2 0.760 0.760 0.060 0.060 0.880 0.360 0.040

−1.5 0.760 0.760 0.120 0.080 0.860 0.300 0.000

0.0 0.940 0.940 0.960 0.960 0.940 0.940 0.900

1.5 0.160 0.160 0.840 0.120 0.040 0.640 0.500

2.0 0.220 0.220 0.840 0.080 0.080 0.640 0.860

4.0 0.980 0.980 0.980 0.340 0.980 0.980 0.980

CPM, counts per million; FC, fold change; Q, quantile; TC, total count; TMM, Trimmed Mean of M-values; UQ, upper quartile.

or CPM for normalization (Grimm et al., 2016; House et al.,
2017; Yeakley et al., 2017; Batai et al., 2018; Bushel et al., 2018;
Hanke et al., 2018; Limonciel et al., 2018; Chappell et al., 2019;
Ramaiahgari et al., 2019; Simon et al., 2019). In this study, we
compared seven normalization methods using simulated data
from human HepaRG control cells to determine which methods
maintained genes at seven assigned FC levels (Table 1). We
found that based on sensitivity, specificity, precision and accuracy
performance metrics (Table 3) as well as the ARI that assessed
the FC group assignments (Table 4), UQ at the 75th percentile
of genes performed best. UQ performed well in comparisons of

TABLE 4 | Agreement with FC assignment.

Normalization ARI

TMM 0.55

UQ 0.67

Median 0.60

CPM 0.63

TC 0.65

DESeq2 0.62

Q 0.30

Groups of genes created by K-means (K = 7) clustering of simulated genes using
log2 of normalized ratio values (treated to average of untreated) with an offset
of 1 and the cosine dissimilarity metric. ARI, adjusted Rand index; CPM, counts
per million; FC, fold change; Q, quantile; TC, total count; TMM, Trimmed Mean of
M-values; UQ, upper quartile.

bulk RNA-Seq normalization when it is scaled across the samples
(Li et al., 2017). This added adjustment might be necessary for
bulk RNA-Seq and not TempO-Seq as the former would likely
have more varying read depths since the majority of genes are not
changed. TempO-Seq, by nature of the targeted platform content,
is designed with sentinel genes that capture the predominance
of the transcriptional landscape. Despite the assumption
that the majority of the genes are not changed, DESeq2
performed reasonably well in our TempO-Seq normalization
comparison as did more simple normalization methods such
as CPM and TCs.

Our analysis reveals some interesting findings regarding some
of the statistics surrounding TempO-Seq normalized data. For
instance, the dispersion of the genes used to generate random
variates for normalization is typically less than 0.2 (Figure 1A).
This suggests that at least for the control HepaRG cultures,
the variance of the genes is close to the mean. Therefore,
variance stabilization transformations might not be necessary to
preprocess the data. Another interesting finding is that most of
the genes in the control HepaRG wells do not vary much between
replicates. The majority of the genes from the simulated data
have a log2 FC approximately equal to 0 (Figure 1B). If the
expression of the genes between the control samples varied more,
it would be more challenging to control the Type I error. We also
found that the normalization methods, except for Q, did not
affect the distribution, variance, or coefficient of variation (CV)
of the data (Figures 2–4). Previous studies on the comparison of
normalization methods for bulk RNA-Seq agree with our finding
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regarding the distribution of the data and some of the summary
statistics (Dillies et al., 2013; Lin et al., 2016).

Our investigation does have some limitations that are
important to keep in mind. UQ, CPM, TC, and DESeq2
performed reasonably well in normalizing the simulated TempO-
Seq data at an absolute FC level ≥2.0, with UQ being the
best overall. Below that threshold, the performances suffered.
Furthermore, our analysis is for a two-class comparison of
groups. More investigation is needed to determine which
normalization is superior when comparing more groups or
data with a dose or time dependency. Our analysis focused on
simulated data from control HepaRG wells and not treated cells.
We simulated various FC levels to mimic perturbations, but we
assumed that the dispersion for each gene was the same across
the two groups. It may be the case that genes in a perturbed
system might have dispersion and other statistical properties
different from the control cells which may presumably impact
the normalization. Note that the TempO-Seq platform that we
elevated the normalization methods is a targeted, human version
with about 3,000 probes/transcripts as content. Normalizations
for data from whole genome TempO-Seq platforms and/or
targeted content from other species may perform differently.
Finally, the simulated data used DESeq, the previous version of
DESeq2, for estimating the dispersion and mean of the genes.
This may have provided an unfair advantage to the DESeq2
performance in the comparison. Despite the aforementioned
limitations, our results shed some light on the utilization of
various standard methods for normalization of TempO-Seq data
and that if used in a proper way, several choices will hopefully
provide reliable analysis results. Future work will investigate
more sophisticated normalization methods for TempO-Seq
data and concentrate on data generated from whole genome
platforms, other species’ gene content, and factorial or series
experimental designs.
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