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Because of the nutritional ecology of dung- and carrion-feeding, bacteria are the integral
part of Lucilia sericata life cycle. Nevertheless, the disinfected larvae of the blowfly are
applied to treat human chronic wounds in a biosurgery named maggot debridement
therapy (MDT). To realize the effects of location/diet on the gut bacteria, to infer the role
of bacteria in the blowfly ecology plus in the MDT process, and to disclose bacteria
circulating horizontally in and vertically between generations, bacterial communities
associated with L. sericata specimens from various sources were investigated using
culture-based and culture-independent methods. In total, 265 bacteria, including 20
families, 28 genera, and 40 species, were identified in many sources of the L. sericata.
Culture-dependent method identified a number of 144 bacterial isolates, including 21
species, in flies reared in an insectary; specimens were collected from the field, and third-
instar larvae retrieved from chronic wounds of patients. Metagenetic approach exposed
the occurrences of 121 operational taxonomic units comprising of 32 bacterial species
from immature and adult stages of L. sericata. Gammaproteobacteria was distinguished
as the dominant class of bacteria by both methods. Bacteria came into the life cycle
of L. sericata over the foods and transovarially infected eggs. Enterococcus faecalis,
Myroides phaeus, Proteus species, Providencia vermicola, and Serratia marcescens
were exchanged among individuals via transstadial transmission. Factors, including
diets, feeding status, identification tool, gut compartment, and life stage, governed the
bacteria species. Herein, we reemphasized that L. sericata is thoroughly connected
to the bacteria both in numerous gut compartments and in different life stages.
Among all, transstadially transmitted bacteria are underlined, indicating the lack of
antagonistic effect of the larval excretions/secretions on these resident bacteria. While
the culture-dependent method generated useful data on the viable aerobic gut bacteria,

Frontiers in Microbiology | www.frontiersin.org 1 April 2020 | Volume 11 | Article 505

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/journals/microbiology#editorial-board
https://www.frontiersin.org/journals/microbiology#editorial-board
https://doi.org/10.3389/fmicb.2020.00505
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/fmicb.2020.00505
http://crossmark.crossref.org/dialog/?doi=10.3389/fmicb.2020.00505&domain=pdf&date_stamp=2020-04-08
https://www.frontiersin.org/articles/10.3389/fmicb.2020.00505/full
http://loop.frontiersin.org/people/794748/overview
http://loop.frontiersin.org/people/831164/overview
http://loop.frontiersin.org/people/940230/overview
http://loop.frontiersin.org/people/826661/overview
http://loop.frontiersin.org/people/822927/overview
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/microbiology#articles


fmicb-11-00505 April 6, 2020 Time: 20:39 # 2

Maleki-Ravasan et al. Microbiota in Medicinal Maggots

metagenomic method enabled us to identify bacteria directly from the tissues without
any need for cultivation and to facilitate the identification of anaerobic and unculturable
bacteria. These findings are planned to pave the way for further research to determine
the role of each bacterial species/strain in the insect ecology, as well as in antimicrobial,
antibiofilm, anti-inflammatory, and wound healing activities.

Keywords: resident bacteria, blowflies, maggot debridement therapy, forensic entomology, metagenetics, 16S
rRNA

INTRODUCTION

Insects are known as multiorganismal animals because they are
colonized by numerous microorganisms, especially bacteria,
in the intestinal tract. This compartment provides a particular
setting for microbial colonization where its inhabitants have
easy access to food-related microbes, can consume copious
amounts of nutrients, and can be protected against the external
disturbances (Douglas, 2015). The microbiota adapting to such
environment, the resident bacteria, are quite different from
transient ones found in the surrounding environment (Engel and
Moran, 2013). These beneficial bacteria can typically improve
host fitness through contributing to nutrition, reproduction,
tolerance to environmental perturbations, maintenance
and/or enhancement of host immune system homeostasis,
mucosal barrier fortification, colonization resistance, xenobiotic
metabolism, ecological communication, defense, speciation, and
pathogen transmission ability (O’Neill et al., 1997; Dillon and
Dillon, 2004; Ma et al., 2012; Engel and Moran, 2013; Douglas,
2015; Andongma et al., 2018; Maleki-Ravasan et al., 2015, 2019).

The gut microbiota of insects is affected by both what they
consume and where they exist. Lucilia sericata (Meigen) (Diptera:
Calliphordidae), a synanthropic blowfly, frequently feeds and
breeds on the carrion, open wounds, feces, and garbage to supply
large quantities of proteins required for the development of the
progeny (Tomberlin et al., 2011; Pezzi et al., 2015; Junqueira
et al., 2017). As a holometabolous insect, L. sericata represents
four developmental stages in their life cycle, including eggs, three
larval instars (L1–L3), pupae, and adults (Pruna et al., 2019).
After mating, the adult females lay cluster of ∼200 eggs at a
time on decomposing materials (Zumpt, 1965). The microbial
volatile organic compounds (MVOCs), as well as semiochemicals
from feeding con- and hetero-specific females, are the key
modulators of the fly behavior in the attraction or repulsion
of the feeding/breeding resources (Ma et al., 2012; Brodie
et al., 2015b). The blowflies can potentially modify microbial
communities of the breeding matrices to the beneficial ones
through both antimicrobial actions of the larvae and residing
symbiotic microbiota (Erdmann and Khalil, 1986; Sherman et al.,
2000; Čeřovský et al., 2010; Singh et al., 2015). The anatomy
of larvae is optimized in such way to uptake large amounts
of foods, that is, 25 mg per larvae within 24 h (Mumcuoglu,
2001). Their simple body structure consists of a pair of salivary
glands, a very flexible crop, a tripartite gut (foregut, midgut, and
hindgut), four Malpighian tubules, liver-like fat body, a simple
central nerve ganglion, and tracheal tubes delivering oxygen
directly (Mumcuoglu et al., 2001; Boonsriwong et al., 2011;

Baumann, 2017). As a consequence of extracorporeal digestion,
larvae secrete a plentiful of digestive enzymes (mainly from the
salivary glands) into the substrate to predigest the tissue, which is
subsequently swallowed back (Andersen et al., 2010; Wilson et al.,
2016). The food and bacteria are degraded enzymatically in the
alimentary channel, especially in the midgut lacking chitin and
glycoproteins (Terra and Ferreira, 1994; Lerch et al., 2003). In this
compartment, a physical barrier posed by the peritrophic matrix
separates the food bolus from the midgut epithelium, to prevent
the abrasion of midgut (Douglas, 2015) and to inhibit bacterial
colonization. The engorged bacteria are removed at this point,
and nutrients are absorbed into the hemolymph (Andersen et al.,
2010). The drainage pipes, Malpighian tubules, sieve excretion
products from the hemolymph and combine them with digested
food coming from the midgut (Baumann et al., 2017). The final
breakdown of excretion products and nutrition uptake take place
in the hindgut, and waste materials are excreted over the anus.
Accordingly, during the digestion process, the number of bacteria
ingested by larvae reduces due to mechanical, enzymatic, and
symbiotic activities throughout the digestive tract (Mumcuoglu
et al., 2001; Valachova et al., 2014b).

Because of aforesaid nutritional ecology, L. sericata is at
the forefront of applied biological sciences. The immature
stages are ripened within the decomposing carrion or animal
remains, which their developmental data can be exploited
for the estimation of the time elapsed since death, denoted
as postmortem interval (PMI) in the forensic entomology
(Cervantès et al., 2018). Likewise, it is one of the facultative
parasites of animals and humans causing wound myiasis
worldwide (Francesconi and Lupi, 2012). The controlled
therapeutic usage of this kind of myiasis is termed maggot
debridement therapy (MDT) (Sherman, 2009). Maggot
debridement therapy is currently addressed as biosurgery
in which live blowfly larvae are used to cure chronic wounds
persistently infected with drug-resistant bacteria (Wollina et al.,
2000; Cowan et al., 2013; Bazalinski et al., 2019). The outline
of modern MDT was based on the clinical trials conducted in
1990s (Sherman et al., 1995; Fleischmann et al., 2004). Larvae
contribute to wound healing process, namely, debridement,
disinfection, and regeneration of tissues through the physical
contact and release of either fecal waste excretions or salivary
gland secretions (ES) containing antimicrobials (Sherman, 2014;
Valachova et al., 2014b).

The removal of both necrotic tissue and pathogenic bacteria,
called debridement, is a crucial and the best studied stage
in the MDT (Sherman, 2014). Larvae debride the wound
beds through mechanical activities of mouth hooks or the
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extracorporeal digestion mediated by proteases and nucleases in
the ES (Andersen et al., 2010; Valachova et al., 2014a; Teh et al.,
2017). Until now, the occurrence of three classes of proteolytic
enzymes, comprising serine proteases, aspartic proteases, and
metalloproteases, has been revealed in the maggot ES (Chambers
et al., 2003; Alipour et al., 2017). Furthermore, tissue-specific
expression of some of these proteases has been determined in the
larval body (Franta et al., 2016).

In the disinfection phase, a variety of antimicrobial peptides
(AMPs) and small molecules are released to clean up the
wound environment (Bexfield et al., 2008; Pöppel et al.,
2015). These compounds might be produced either by larvae
(Valachova et al., 2014a) or by residing symbionts. A number
of 47 AMP genes are encoded by L. sericata, representing
the highest amount of AMPs among dipteran species (Pöppel
et al., 2015). The production of two antibacterial substances,
phenylacetic acid and phenylacetaldehyde, in the blowfly larva
of Cochliomyia hominivorax was attributed to a symbiotic
bacterium, Proteus mirabilis (Erdmann and Khalil, 1986). In
addition, pathogenic microbes are actively picked up by maggots
and destroyed within the digestive tract (Mumcuoglu et al., 2001;
Valachova et al., 2014b).

The larval ES has exhibited antimicrobial activity against
both Gram-positive and Gram-negative bacteria (Bexfield et al.,
2008; Yan et al., 2018), as well as against protozoan parasites
causing dermal leishmaniasis (Polat et al., 2012; Sanei-Dehkordi
et al., 2016). Thus, suppressing the pathogenic microbes on the
feeding substrates promotes the larval development and survival
(Sherman et al., 2000). Maggots can manage this function via
selective antimicrobial activity against pathogenic and symbiotic
bacteria (Jaklic et al., 2008). It has been suggested that infected
environments could influence the larval antibacterial activity;
thus, infected larvae show stronger antibacterial capacities
than germ-free larvae (Kawabata et al., 2010). Furthermore,
maggot proteases have been displayed to be up-regulated
upon immune challenges (Altincicek and Vilcinskas, 2009) and
responsible for the inhibition or degradation of bacterial biofilm
(Harris et al., 2013).

Maggots induce tissue growth via mechanical and biochemical
stimulation of healthy cells. They induce the release of host
growth factors and reduce debris and biofilm or microbial
loads, which likely decreases inflammation and promotes wound
healing (Sherman, 2014). It is thought that the alkalinity of
maggot-treated wounds, together with the isolation of urea-
containing compounds, for example, allantoin, is responsible for
wound healing stimulation (Robinson, 1935; Baumann et al.,
2017). Other basic mechanisms of wound healing, including
inhibition of complement activation, down-regulation of the
C3a/C5a-mediated neutrophil activation, and regulation of
MMP-2 and MMP-9 expressions modulated by AP-1 (c-jun),
have been taken into account in recent years (Tamura et al., 2017;
Tombulturk et al., 2019).

According to the established background, bacteria, especially
resident ones, are an integral part of L. sericata life cycle
and presumably play an important role in the wound healing
process. Diets and breeding environments will also have a great
influence on the blowfly gut bacterial profile. Flies are reciprocally
dependent on specific bacteria and their metabolic pathways for

the growth and development (Zurek et al., 2000; Crooks et al.,
2016). Most studies have shown that the best survival rates of
flies occur in the unsterilized or mixed bacterial environments
(Tomberlin et al., 2017). These considerations that raise several
noteworthy inquiries about the potential bacterial groups
associated with these biosurgeon flies need to be addressed in
detail. To realize the effects of diets and rearing matrices on
the gut bacteria, to infer the role of the gut bacteria in the
blowfly ecology and to disclose bacteria transmitted horizontally
in and vertically between generations, this descriptive cross-
sectional study was designed to survey the bacterial communities
of L. sericata specimens from different resources.

MATERIALS AND METHODS

Blowfly Colony
For mass rearing, a colony of L. sericata (Garmdarreh strain)
was established in the National Insectary of Iran (NII, MVRG),
located at the Production and Research Complex of Pasteur
Institute of Iran (Karaj), from summer 2009. The adult flies
were kept in cages of 50 × 50 × 50 cm at 22.5◦C ± 5◦C
mean temperature, 35 ± 10% relative humidity, and 12 h
photoperiodicity. They were provided with cotton balls saturated
with 10% sugar solution. New individuals had never been
added from field to the colony, but extra-generation breeding
was carried out repeatedly. Oviposition substrates, consisting of
chicken liver plus sawdust, were introduced to the mated females
when needed to extend generations. The eggs were transferred to
the maggotarium to continue the life cycle of the blowfly or were
externally disinfected to apply in the MDT. Flies from the 400th
generation were used for microbiological surveys.

External Disinfection of Blowfly Eggs
To decrease the bacterial load on the L. sericata eggs, Lysol
immersion method was applied as described by Brundage et al.
(2016). Briefly, freshly deposited eggs (16–18 h old) were
immerged in 3% Lysol for 10 min and then rinsed in 10 cc of
70% EtOH and 30 cc of 1% NaOCl. The sterilized eggs were
transferred to the blood agar medium and incubated aerobically
at 37◦C overnight. A number of larvae were allowed to develop
in this sterile medium to check their gut bacterial flora.

Culture-Dependent Identification of
Bacteria
Sampling
To investigate cultivable gut bacteria, we used three types of fly
specimens: samples from NII collections, newly collected samples
from the field, and samples retrieved from the MDT of patients.

A total of 26 specimens were selected from the NII to
investigate their microbiota. The specimens included two larval
and adult food supplies, six developmental stages of eggs, L1
and L2 rearing on the sterile/non-sterile diets, 13 microdissected
compartments (Supplementary Figure S1) from the digestive
tract of L3 (salivary glands, crop, foregut, midgut, hindgut,
and Malpighian tubules, before/after feeding plus the trachea
of respiratory tract), and five specimens from mature stages
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(pupae and male/female adults that their excreta and adult
corpse were preserved for the long term). All the samples were
processed in triplicates.

Field samples were collected from Garmdarreh City
(35◦45′49′′ N, 51◦3′44′′ E). Adult flies were gathered using
chicken-liver baited traps. Captured flies were transferred to the
NII and morphologically identified. Six adult blowflies (including
three L. sericata and three Calliphora species) were dissected
for bacteriological assay, and the rest were kept for progeny
production. Of the new generation, six samples, including three
L3 and three pupae, were examined as well.

Two bed sore and diabetic foot patients (Supplementary
Figures S2, S3), who were under MDT, were screened to find
which bacteria are consumed by the maggots. The origin of the
larvae used for the MDT of these patients was from the NII. 3 days
after MDT, the third-stage larvae were collected from the wounds,
and nine specimens were examined bacteriologically.

Sample Preparation
Prior to dissection, the flies were killed at −20◦C for 3 min.
The specimens were rinsed twice with phosphate-buffered saline
(PBS) to remove the attached particles. Subsequently, to surface
sterilize, they were immerged twice in 70% ethanol for 2 min.
All the specimens were then dissected aseptically within a drop
of sterile PBS on a sterile glass slide, under a laminar flow hood.
Each dissected compartment (or whole bodies of eggs and pupae)
was homogenized in 100 µL of PBS. The solution was entirely
inoculated into the brain heart infusion (BHI) broth medium.

Bacteriological Methods
Several enrichment and selective culture media, comprising
of BHI broth, BHI agar, MacConkey agar, and phenylethyl
alcohol agar (PEA), were used to cultivate bacteria aerobically
at 37◦C overnight. Following the initial selection of the BHI
broth medium, the positive samples were subcultured in the
medium. To obtain individual pure colonies, the grown bacteria
were serially diluted or streaked on specific media (MacConkey
agar for Gram-negative bacteria and PEA for Gram-positive
bacteria). Furthermore, to prevent bacterial swarming (rapid and
coordinated translocation of bacteria, e.g., Proteus species), which
arrests the growth of other bacteria and the achievement of pure
individual colonies, methods such as agar-enriched BHI broth
medium, PEA, and pour plate were employed.

Molecular Identification of Pure Colonies
The genomic DNA of bacteria was prepared using a commercial
kit (Molecular Biological System Transfer [MBST], Tehran,
Iran), according to the manufacturer’s instructions. The universal
primers of 16suF: 5′-GAGTTTGATCCTGGCTCAG-3′ and
16suR: 5′-GTTACCTTGTTACGACTT-3′ were used to amplify
∼1,450 bp of the 16S rRNA gene. The amplification and
sequencing were carried out based on the methods described
previously (Weisburg et al., 1991; Maleki-Ravasan et al.,
2015). Using a UV transilluminator, polymerase chain reaction
(PCR) products were visualized on a 1% agarose gel stained
with GreenViewTM, Parstous Biotechnology, Mahhad, Iran.
Amplicons were separated from the gel, and after purification,

they were sequenced bidirectionally using the same amplification
primers by the Macrogen Company, Tehran, Iran.

A biochemical test using EMB agar (eosin methylene blue
agar) medium was also applied for the identification of the
Escherichia coli and Shigella species, which share identical
16S rRNA sequences, as described by Leininger et al. (2001;
Supplementary Figure S4).

Antimicrobial Susceptibility of P. mirabilis Isolates
Using disk diffusion method, the P. mirabilis isolates were
subjected to antibiotic susceptibility testing against 22 antibiotics
representing eight families. The origin of bacteria were from six
different microdissected compartments of L3 including salivary
glands (n = 4), foregut (n = 4), midgut (n = 2), hindgut (n = 2),
Malpighian tubules (n = 1), and trachea (n = 1). The antibiotics
examined against the isolates included amikacin, azithromycin,
bacitracin, ceftazidime, chloramphenicol, ciprofloxacin,
colistin, cefotaxime, erythromycin, imipenem, kanamycin,
meropenem, novobiocin, neomycin, optochin, penicillin,
piperacillin, ampicillin + sulbactam, streptomycin, tetracycline,
trimethoprim, and vancomycin. Inhibition zone diameter of
each antimicrobial disc was measured, and the isolates were
categorized as resistant, intermediate, and susceptible.

Culture-Independent Identification of
Bacteria
Sampling
A total of 36 specimens were used in the amplicon-based
metagenomic survey of bacteria circulating in the life cycle of
L. sericata. The specimens included three of each developmental
stage of eggs, the L1 and L2, pupae, and male and female adults,
as well as three of each microdissected compartment of the
digestive tract of L3, including salivary glands, crop, foregut,
midgut, hindgut, and Malpighian tubules. All the specimens were
originated from the NII. The conditions for sample preparation,
including anesthetizing, surface sterilizing, and dissection, were
the same as mentioned before. The total DNA of each dissected
tissue was directly subjected to the bacterial identification.

DNA Extraction, Primer Design, and PCR
Total genomic DNA of individual tissues was extracted to
identify intercellular/intracellular bacteria using “tissue protocol”
of MBST kit, following the manufacturer’s guidelines. A nested
PCR assay was conducted to raise the sensitivity of PCR assay
in direct detection of bacteria from the insect tissues. In the first
step of the nested PCR, the universal primers 16suF and 16suR
were used to amplify the whole of nine hypervariable regions
(V1–V9) in the bacterial 16S rRNA genes. In the second step, a
large number of 16S rRNA gene sequences belonged to bacterial
families, including clinical to environmental species, were
subjected to primer designing based on the V1–V5 regions. Two
universal primers, Nest2F (5′-GCRKGCCTAAYACATGCAAG-
3′) and Nest2R (5′-CGTGGACTACCAGGGTATCTAATC-3′),
were designed to amplify ∼800 bp of the gene. The PCR product
of the first stage was used as a template DNA for the next
step. The PCR reaction was performed using 50 ng of PCR
product, 10 picomoles of the primers, 1 mM of dNTP, 1 U of Taq
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DNA polymerase (CinnaGen Company, Tehran, Iran), and PCR
buffer. Polymerase chain reaction conditions included an initial
denaturation step of 94◦C for 5 min, followed by 10 cycles of 94◦C
for 30 s, 58◦C for 30 s, and 72◦C for 90 s, and 25 cycles of 94◦C for
30 s, 57◦C for 30 s, and 72◦C for 90 s, which was accompanied by
a final extension at 72◦C for 10 min. For each sample, the second
stage of nested PCR reaction was repeated four times in a total
volume of 20 µ L.

Cloning and Sequencing
The second-stage PCR products were separated on a 1.5%
agarose gel and then purified using GF-1 PCR Clean-up Kit;
Vivantis, Shah Alam, Selangor Darul Ehsan, Malaysia. The inserts
(∼800-bp-long PCR products) were ligated into the PGEM-T
EASY Vector (Promega, Madison, Wisconsin, United States)
using T4 DNA ligase (Fermentas, Waltham, Massachusetts,
United States). This complex was transformed into DH5α strain
of E. coli. The positive colonies (20–30 clones) were checked
for the presence of inserts through the approaches of colony
PCR and digestion with EcoRI. The plasmid DNA was extracted
from the insert-positive colonies using the GF-1 Plasmid DNA
Extraction Kit (Vivantis) and commercially sequenced with a
Sanger platform by using the M13F and M13R vector primers at
Macrogen Company.

Data Analysis
All successful 16S rRNA sequences were analyzed to assign the
correct scientific name of bacterial species. The last version of
software DECIPHER (Wright et al., 2012) was used to check
the probable chimeric sequences within 16S rRNA gene clone
library, and the specimens with suspicious sequences were
removed from the data. The consensus of confident sequences
was therefore analyzed using databases available for 16S rRNA
genes of prokaryotes, including NCBI (16S rRNA sequences),
EzBioCloud, and leBIBI (Supplementary Tables S1, S2). The
MEGA5 software was utilized for the comparative analysis
of the sequences and phylogenetic tree construction. Position
verifications and phylogenetic inference were conducted using
maximum likelihood method with 1,000 bootstrap replicates. The
sequences data were deposited in the GenBank database. Venn
diagram of all classified sequences was created using the software
VENNTURE (Martin et al., 2012).

RESULTS

General Overview of Identified Bacteria
In total, 265 bacterial isolates, including 20 families, 28 genera,
and 40 species, were identified from different sources of
the L. sericata specimens (Tables 1–3). The isolates were
belonging to four phyla, including Proteobacteria (81.13%),
Firmicutes (15.09%), Bacteroidetes (3.40%), and Actinobacteria
(0.38%) (Figures 1, 2 and Supplementary Tables S1, S2).
The number of 21 and 32 unique species was recognized by
two culture-dependent and metagenetic methods, respectively.
Nine species were identified by both methods, as well
(Figure 3). Morganellaceae and Proteus species were the
most abundant identified family and genus of bacteria,

correspondingly (Figure 4 and Tables 1–3). The consensus
sequences were deposited in the GenBank under accession
numbers MF399269-MF399394 for cultured and MF327011-
MF327133 for uncultured bacteria.

Culture-Dependent Identification of
Bacteria
In culture-dependent method, a number of 144 bacterial isolates,
including 21 species, were identified in specimens rearing in the
NII (n = 19), flies collected from the field (n = 4), and L3 retrieved
from two patients (n = 7) (Tables 1–3). Phylogenetic analysis of
the cultured bacteria based on ∼1,400 bp of the 16S rRNA gene
sequences showed that the isolates were belonging to three phyla,
Proteobacteria (80.56%), Firmicutes (18.75%), and Bacteroidetes
(0.69%) (Figure 1).

Bacteria entered the L. sericata life cycle through the
foods (which may be inoculated by flies) and transovarially
infected eggs. Six bacterial species were isolated from larval
and adult food supplies. They included Klebsiella oxytoca,
Pseudomonas japonica, and Serratia marcescens from sugar meal
and Enterococcus faecalis, E. coli, and Shigella sonnei from chicken
liver. Results showed the presence of nine and five bacterial
species from developmental stages rearing on the sterile and non-
sterile diets, respectively (Table 1). The bacteria of P. mirabilis
and S. marcescens were shared between two types of diets.
Moreover, larvae reared on a sterile diet generally did not grow up
to the L3 and if grown, the larvae were very small. Four species,
Citrobacter freundii, E. coli, P. mirabilis, and Proteus vulgaris,
were found in sterilized eggs and only one species, Providencia
alcalifaciens, in non-sterile eggs. Regardless of whether they were
sterilized, a number of eight, four, and nine bacterial species were
detected in the L1, L2, and L3, respectively (Table 1).

Three bacterial species, namely, E. faecalis, P. mirabilis, and
Staphylococcus hominis, were isolated from pupal stage. Five
species, including E. faecalis, E. coli, P. mirabilis, P. vulgaris, and
K. oxytoca, were found in adult males and females; the first four
species were detected in fly’s excreta. The bacterium S. marcescens
was isolated from the corpse of adult flies, which had been
preserved in a dry condition for more than 2 years (Table 1).
Proteus species (n = 19) and E. faecalis (n = 8) were detected
in both immature and mature stages of L. sericata, indicating
the transstadial transmission of these bacteria between the larval
stages and adults.

There were nine bacterial species in six compartments of the
digestive tract and the trachea of respiratory tract of L3 (Table 1).
The P. mirabilis was the most abundant bacterium in all the
studied materials. Bacteria in the salivary glands were more
diverse than those observed in other compartments (Table 1).
Bacterial flora in the L3 was examined both before and after
feeding. Seven (E. faecalis, Morganella morganii, Paenibacillus
urinalis, P. mirabilis, P. vermicola, Pseudomonas alcaligenes, and
S. marcescens) and three (Myroides phaeus, P. mirabilis, and
S. marcescens) species were detected in the unfed and fed larvae,
respectively (Table 1).

Four bacterial species, E. faecalis, E. coli, P. mirabilis, and
P. vermicola, were identified in trapped blowflies in the field
of Garmdarreh City (Table 2). However, 28 bacterial isolates,
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TABLE 1 | Details of bacteria found in the Lucilia sericata life cycle reared in the National Insectary of Iran (NII).

Isolation source/Bacteria species Food sources Immature stages Mature stages No.

Sugar
meal

Chicken
liver

Reared on the sterile/
non-sterile diet

Microdissected third-stage larvae Pupae Male Female Adults
excreta

Corpse of
adult flies

Egg L1 L2 SG Cr FG MG HG MT Tr

Acinetobacter rudis – – – – – – – – – – – – – (1) – – – 1
Bacillus safensis – – – – – – – – – – – – – (1) – – – 1
Chryseobacterium lactis – – – – – – – – – – (1) – – – – – – 1
Citrobacter freundii – – [1](1) – – – – – – – – – – – – – – 2
Clostridium perfringens – – (1) – – – – – – – – – – – – – – 1
Dysgonomonas species – – – – – – – – – – – – – – (2) – – 2
Enterococcus faecalis – 1 – [2] – – – {1} – – – – 2 1 1 1 – 9
Escherichia coli – 1 [1] – – – – – – – – – – – – 3 – 5
Klebsiella michiganensis – – – (1) – – – (1) – – – – – – – – – 2
Klebsiella oxytoca 1 – – 1 – – – – – – – – – – 2 – – 4
Lactobacillus curvatus – – (1) (1) – – – – – – – – – – – – – 2
Lactobacillus sakei – – – (1) (1) – – – – – – – – – – – – 2
Lactococcus garvieae – – – [1] – (1) – – – – – – – – – – – 2
Lysinibacillus parviboronicapiens – – (1) – – – – – – – – – – – – – – 1
Morganella morganii – – – (2) – – – – {1} – – – (1) – – – – 4
Myroides phaeus – – (2) – (1) – 1 – – – (1) – – 1 – – – 6
Paenibacillus urinalis – – – – – – {1} – – – – – – – – – – 1
Propionibacterium acnes – – – – – – – – – – – – – (1) – – – 1
Proteus hauseri – – – – – – – – – – – – (1) – – – – 1
Proteus mirabilis – – [1] [1] [3](2)2 {3}1(1) {4}(1) {1}1 {2}1(2) {4}1(2) {2}2(3) 4 3 (4) 4 1 – 56
Proteus vulgaris – – [1] [1] [1](1) – – (17) – – – – – – – 1 – 22
Providencia alcalifaciens – – 3 – – – – – – – – – – 1 – – – 4
Providencia burhodogranariea – – – – (1) – – – – – – – – – – – – 1
Providencia rettgeri – – – – – – – – (1) (1) – – – – – – – 2
Providencia rustigianii – – – [2] (2) – – – – – – – – – – – – 4
Providencia vermicola – – – – 2(5) {1} – – (3) – (1) – – 1(15) – – – 28
Pseudacidovorax intermedius – – – – – – – (1) – – – – – (1) – – – 2
Pseudomonas alcaligenes – – – – – {1} – – – – – – – – – – – 1
Pseudomonas japonica 1 – – – – – – – – – – – – – – – – 1
Pseudomonas otitidis – – (1) – – – – (3) – – – – – – – – – 4
Pseudomonas sp3 – – – – (1) – – – – – – – – – – – – 1
Pseudomonas sp4 – – – – – – – – – – (1) – – – – – – 1
Pseudomonas sp5 – – – – – – – – – – – – – – (1) – – 1
Pseudoxanthomonas japonensis – – – – (1) – – (4) – – – – – (1) – – – 6
Serratia marcescens 2 – – 2 [1]2 {1} – – {1} 1 {1}(1) – – – – – 4 16
Shigella sonnei – 2 – [1] – – – – – – – – – – – – – 3
Staphylococcus hominis – – – – – – – – – – – – 1 – – – – 1
Vagococcus fluvialis – – (1) – (2) – – – – – (1) – – – – – – 4
Ventosimonas sp1 – – – (3) – – – – – – – – – – (10) – – 13
Weissella koreensis – – (1) – – – – – – – – – – – – – – 1
Total 4 4 16 19 28 9 7 29 11 9 14 4 8 28 20 6 4 220

Numbers in braces, brackets, and parentheses represent bacteria detected in the unfed state of the digestive tract, bacteria identified from specimens reared on the sterile diet, and bacteria identified by metagenetic
approach, respectively. L1–L3, first to third larval stages; SG, salivary glands; Cr, crop; FG, foregut; MG, midgut; HG, hindgut; MT, Malpighian tubules; Tr, trachea.
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TABLE 2 | Bacteria found in trapped blowflies in the field.

Isolation source/Bacteria species Lucilia sericata Calliphora species No.

L3 Pupae Male Female L3 Pupae Male Female

Enterococcus faecalis 1 − − − − − − 2 3

Proteus mirabilis 3 1 − − 4 − − 2 10

Providencia vermicola 1 − 1 − − 1 − − 3

Escherichia coli − 1 − − − − − − 1

Total 5 2 1 − 4 1 − 4 17

TABLE 3 | Bacteria found in the third-stage larvae retrieved from two bed sore
and diabetic foot patients.

Isolation source/
Bacteria species

Patient with bed
sores

Patient with
diabetic foot

No.

Proteus mirabilis 8 − 8

Enterococcus
faecalis

7 3 10

Bacillus cereus 1 − 1

Wohlfahrtiimonas
chitiniclastica

3 − 3

Morganella
morganii

− 1 1

Escherichia coli 1 3 4

Enterococcus
avium

1 − 1

Total 21 7 28

including seven species, were detected in two bed sore and
diabetic foot patients (Table 3). Four out of seven species of
the bacteria (E. faecalis, E. coli, M. morganii, and P. mirabilis)
were also observed in the NII specimens, but only three (Bacillus
cereus, Enterococcus avium, and Wohlfahrtiimonas chitiniclastica)
were new isolates that were absent in the digestive tract of our
previously tested specimens.

Antimicrobial Susceptibility of P. mirabilis
Isolates
Antibiogram results showed several P. mirabilis isolates with
different biochemical properties in the digestive tract of
L. sericata. Results also revealed that all the 14 studied isolates
were resistant to the seven antibiotics, including bacitracin,
colistin, erythromycin, streptomycin, tetracycline, trimethoprim,
and vancomycin. Susceptibility test findings of five antibiotics,
that is, ampicillin/sulbactam, cefotaxime, novobiocin, optochin,
and penicillin, were more diverse than other antibiotics
and ranged from susceptible and intermediate to resistant.
Susceptibility patterns were more noticeable in the salivary glands
(n = 6) and midgut (n = 8) isolates (Table 4).

Culture-Independent Identification of
Bacteria
A total of 121 chimera-free bacterial operational taxonomic units,
including 32 species, were identified in immature (n = 26) and
adult (n = 13) stages of L. sericata using metagenetic method.

Phylogenetic relationships of the uncultured bacteria, based on
∼800 bp of the 16S rRNA gene sequences, are illustrated in
Figure 2. The bacteria belonged to four phyla that include
Proteobacteria (81.82%), Firmicutes (10.74%), Bacteroidetes
(6.61%), and Actinobacteria (0.83%).

Eight species of bacteria detected in the eggs were C. freundii,
Clostridium perfringens, Lactobacillus curvatus, Lysinibacillus
parviboronicapiens, M. phaeus, Pseudomonas otitidis, Vagococcus
fluvialis, and Weissella koreensis. A number of 4, 11, and 15
bacterial species were found in the L1 to L3 stages, respectively. In
microdissected compartments of L3 (Supplementary Figure S1),
the DNAs of the Lactococcus garvieae and P. mirabilis were
identified in the salivary glands, and only P. mirabilis was found
in the crop. In addition, six, three, and two bacterial species were
detected in the foregut, midgut, and hindgut, respectively. Using
metagenetic analysis, most species of bacteria were observed in
the Malpighian tubules of L3 (n = 7). The species M. morganii
and Proteus hauseri were isolated from pupae, whereas eight and
three species of bacteria were isolated from male and female adult
flies, respectively. The detailed data are listed in Table 1.

DISCUSSION

This study was designed to investigate bacterial communities
associated with the life history of L. sericata using culture-
dependent and culture-independent methods. In particular,
the study investigated bacterial entrance/circulation routes in
blowfly, effects of food diets on the gut bacteria, identification of
bacteria in different parts of the gut, comparison of bacterial flora
of laboratory-reared and field-collected specimens, and bacteria
removal by larvae during MDT.

The results of this study reemphasized that L. sericata is
thoroughly connected to the bacteria because they feed and
breed only on organic materials undergoing decomposition
processes. We specified the presence of 21 and 32 species
of bacteria in L. sericata specimens using culture-dependent
and metagenetic methods, respectively. Both identification
techniques displayed their own pros and cons. While the former
generated useful data on the viable aerobic gut bacteria, the
latter detected intracellular/extracellular species of bacteria and
rapidly identified anaerobic ones with relatively smaller samples.
In fact, in the first approach, we lost many anaerobic bacteria
(which may be significant), but the second approach covered
this defect. The low volume of insect tissues and the length of
the 16S rRNA of the bacteria hindered the detection of bacteria
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FIGURE 1 | Maximum likelihood tree showing the phylogenetic relationships of ∼1,400 bp of the 16S rRNA gene sequences of 21 species obtained in this study
using culture-dependent method. The numbers at the branch points are bootstrap values based on 1,000 replicates. The cutoff values lower than 50% are not
shown. All species were classified into three phyla: (A) Proteobacteria, (B) Firmicutes, and (C) Bacteroidetes. The corresponding family taxa are indicated in the front
of branches.

by the conventional 16S rRNA-PCR; therefore, a pair of primers
was developed to utilize in the nested PCR assay. Hence, diverse
ranges of bacteria were successfully detected directly from the
desired tissues. It is well established that only a small percentage
of environmental microbes can be cultivated (Amann et al.,
1995). However, metagenetic methods are also varied in the
simplicity of extraction of nucleic acids from different bacterial
cell types (Head et al., 1998). In total, molecular techniques have
raised our knowledge of insect microbiota (Dillon and Dillon,
2004; Engel and Moran, 2013; Yun et al., 2014; Hammer et al.,
2015; Singh et al., 2015; Tomberlin et al., 2017).

To explore the insect microbiota, applying both culture-
dependent and metagenetic methods would be worthwhile.
Results from both methods used in the present investigation
indicated that the majority of the identified bacteria (81%)
belonged to the Gammaproteobacteria. This result is in
agreement with those of a former study in which bacteria
associated with different life stages of L. sericata and Lucilia
cuprina were characterized using 16S rDNA 454 pyrosequencing

method (Singh et al., 2015). The aforementioned class of bacteria
comprises the laboratory model E. coli, human well-known
pathogens (e.g., Salmonella, Yersinia, Vibrio, and Pseudomonas),
and insect endosymbionts (Williams et al., 2010). These bacteria
generally display broad ranges of aerobicity, trophism, and
temperature adaptation (Scott et al., 2006). As a result, these
details should be taken into account when designing studies with
the aim of examining the whole microbiota.

In the first part of the study, the BHI broth medium
was employed for growing aerobic bacteria because it could
promote the growth of nutritionally fastidious and non-fastidious
bacteria from a variety of clinical and environmental sources.
Nonetheless, we encountered the swarming motility of Proteus
species that halts the growth of other bacteria on the solid
media. This motility was successfully arrested after hardening the
BHI agar medium by the elevation of agar concentration (up
to 4%). Up to now, ∼400 generations of L. sericata have been
reared in the NII; hence, the population has become genetically
homogeneous. To investigate the effects of this homogeneity
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FIGURE 2 | Maximum likelihood tree showing the phylogenetic relationships of ∼800 bp of the 16S rRNA gene sequences of 32 species obtained in this study using
culture-independent method. The numbers at the branch points are bootstrap values based on 1,000 replicates. The cutoff values lower than 50% are not shown.
All species were classified into three phyla: (A) Proteobacteria, (B) Firmicutes, (C) Actinobacteria, and (D) Bacteroidetes. The corresponding family taxa are indicated
in the front of branches.

and the location on the gut bacteria, the microbiota of field-
collected green and blue blowflies was set as a control. Although
the number of field collected (uncontrolled conditions) flies was
lower than laboratory-reared (controlled conditions) specimens,
four identical bacterial species with the dominance of P. mirabilis
were found in both environments (Tables 1, 2). This evidence

could be an emphasis on the presence of native microbiota in
the L. sericata.

The fact that what kinds of bacteria are removed from
a patient’s wound by the larvae during MDT has not been
investigated. By identifying L3 bacteria removed from patients’
wounds and earlier knowledge on the microbial background
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FIGURE 3 | Venn diagram of bacterial species associated with different life stages of Lucilia sericata arranged by the isolation method: culture-dependent (cream
circle) versus culture-independent (light green circle). Numbers in parentheses indicate the total number of species identified by each method. Numbers inside the
circles show unique/shared bacteria recognized by two identification methods. Venn diagram was created using VENNTURE program (Martin et al., 2012).

of specimens, it can be concluded that B. cereus, E. avium,
and W. chitiniclastica have been picked up by larvae from the
wounds (Table 3). Generally, B. cereus causes serious intestinal
or non-intestinal infections through the production of tissue-
destructive exoenzymes (Bottone, 2010). Enterococcus avium,
the most common enterococci in birds, is rarely associated
with human bacteremia (Na et al., 2012). Wohlfahrtiimonas
chitiniclastica, another source of bacteremia, has recently been
regarded as an emerging human pathogen (Schröttner et al.,
2017). This bacterium may be closely linked to the synanthropic
flies, for example, Wohlfahrtia magnifica, L. sericata, Chrysomya
megacephala, or Musca domestica (Schröttner et al., 2017). Based
on our knowledge, this is the first report on the isolation of
W. chitiniclastica directly from L. sericata larvae and indirectly
from a 90-year-old female patient with bed sore in Iran.

Literature reviews show that the most common bacterial
species associated with both decubitus and diabetic foot
infections include Staphylococcus aureus, Staphylococcus
epidermidis, Staphylococcus lugdunensis, P. mirabilis,
Pseudomonas aeruginosa, Enterobacter cloacae, E. faecalis,
and Finegoldia magna (Dana and Bauman, 2015; Jneid et al.,
2018). It is uncertain whether various strains of bacteria such

as P. mirabilis and E. faecalis, which are found in both chronic
wounds and larvae used in MDT, are similar, or the strains of
a given bacterium distributed in different compartments of the
digestive tract of L. sericata have the same biochemical properties.

The first query is open and needs to be reflected in detail in
future studies. Commensals and pathogens do not concisely share
general invasion pathways in their hosts (Ivanov and Honda,
2012). Additionally, the host innate immune system has the
ability to recognize and to mount tolerogenic response against
commensals and inflammatory response against pathogens
(Round et al., 2010; Manicassamy and Pulendran, 2011). For
clarity, some studies have suggested that maggots may act
selectively against pathogenic microorganisms that are found in
chronic wounds and bacteria isolated directly from the larvae and
their ES (Jaklic et al., 2008; Bohova et al., 2014).

The numerous properties of a given bacterium distributed in
different parts of the digestive tract of L. sericata were responded
herein in part, by evaluating the susceptibility of P. mirabilis
isolates from different compartments of L3 to various antibiotics.
The results not only revealed the diversity in antibiogram
susceptibilities but also displayed more visibility of this pattern
in the salivary glands and midgut isolates than other isolates.
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FIGURE 4 | Bacterial families identified in the Lucilia sericata life cycle by two culture-dependent and culture-independent methods. Unclassified family includes
three strains of Wohlfahrtiimonas chitiniclastica.

TABLE 4 | Antibiogram profile of 14 strains of Proteus mirabilis isolated from the six compartments of third-stage larvae of Lucilia sericata.

Antibiotic/
Compartment

AMK AZM BAC CAZ CHL CIP CST CTX ERY IPM KAN MRP NB NEO OPT PEN PIP SAM STR TET TMP VAN

Foregut I S R S R I R S R I R S S I I I S S R R R R

I S R I R I R S R I R S S I I S S S R R R R

I S R S R S R S R I R S S I S R S I R R R R

I S R S R S R S R I R S S I S I S S R R R R

Salivary glands I S R S R S R S R I R S S I R I S S R R R R

I S R S R I R S R I R S S I R I S S R R R R

I S R S R I R S R I R S I I I I S S R R R R

I S R I R I R S R I R S I I S R S I R R R R

Midgut I S R S R I R S R I R S I I I I S S R R R R

I S R I R I R R R S R I R I I R I R R R R R

Hindgut I S R S R I R S R I R S S I I I S S R R R R

I S R S R I R S R I R S I I I I S I R R R R

Malpighian
tubules

I S R S I I R S R I I I I I I R S I R R R R

Tracheae I S R S I I R S R I I S S I I I S I R R R R

AMK, amikacin; AZM, azithromycin; BAC, bacitracin; CAZ, ceftazidime; CHL, chloramphenicol; CIP, ciprofloxacin; CST, colistin; CTX, cefotaxime; ERY, erythromycin; IPM,
imipenem; KAN, kanamycin; MRP, meropenem; NB, novobiocin; NEO, neomycin; OPT, optochin; PEN, penicillin; PIP, piperacillin; SAM, ampicillin + sulbactam; STR,
streptomycin; TET, tetracycline; TMP, trimethoprim; VAN, vancomycin; S, susceptible; I, intermediate; R, resistance.
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Thanks to extracorporeal digestion (Andersen et al., 2010), the
salivary glands in the L. sericata are the first parts of the food
canal to be in contact with the engorging environment, and
the midgut is a “hot spot,” where many microbes are actively
exchange their genetic materials, including antibiotic resistance
genes (Dillon and Dillon, 2004; Le Roux and Blokesch, 2018).
Knowledge of the sensitivity pattern of symbiotic bacteria, for
example, P. mirabilis, may be crucial in wound healing and
formulating rational antibiotic policy.

In insect populations, symbiotic bacteria could be acquired
horizontally or vertically and from surrounding environments
(Funkhouser and Bordenstein, 2013; Thompson et al., 2013).
Association of microbiota in food sources with necrophagous
flies has been considered in a few studies (Ahmad et al., 2006;
Banjo et al., 2006; Förster et al., 2007; Dharne et al., 2008).
In this study, six bacterial species were detected from food
supplies that may come into the life cycle of L. sericata; however,
only E. faecalis and S. marcescens kept circulation in all stages
via the transstadial transmission (Table 1). Other species of
bacteria may be obtained from conspecific flies. Enterococcus
faecalis is a Gram-positive and commensal bacterium of the
human/animal digestive tract (Berg, 1996; Ryan et al., 2003).
It can be an opportunistic pathogen causing serious infections,
namely, urinary tract infections, endocarditis, bacteremia, and
wound infections (Kau et al., 2005). This lactic acid bacterium
is frequently found in the small intestine of healthy humans
(Rôças et al., 2004), where it chiefly survives by the fermentation
of non-absorbed sugars (Murray, 1998). Enterococcus faecalis
additionally sprang up to exploit a variety of resources by
tolerating severe salt and alkalinity (Stuart et al., 2006). Similar to
its eukaryotic host, L. sericata, this bacterium has been provided
promising data for PMI estimation (Iancu et al., 2018), although
its role in the MDT and biology of L. sericata is unclear.

In this study, S. marcescens were obtained from the food
supplies of adult flies, live larvae (L1–L3), and the corpse of
adult flies that were preserved for a long time. The bacterium
is generally known to be an entomopathogen, however; it can
be an opportunistic pathogen of plants, nematodes, and humans
(Grimont and Grimont, 2006). Infections of S. marcescens have
been reported in various flies, specifically apple maggot flies,
Rhagoletis pomonella (Lauzon et al., 2013); blowflies, L. sericata
(Meigen) (Parvez et al., 2016); fruit flies, Drosophila melanogaster
(Miest and Bloch-Qazi, 2008); house flies, M. domestica (L.)
(Parvez et al., 2016); stable flies, Stomoxys calcitrans (Castro et al.,
2007); and tsetse flies, Glossina species (Poinar et al., 1979). It
is also a well-adapted bacterium to L. sericata because it could
survive more than 2 years in the fly’s body. In a study, the survival
of ingested S. marcescens in house flies after electrocution was
found to be up to 5 weeks (Cooke et al., 2003). The way to enter
the insect host has been reported to determine the outcomes of
the S. marcescens infections (Sanchez-Contreras and Vlisidou,
2008). It has also been indicated that the protozoan parasite,
Leishmania mexicana, has the ability to protect sandfly host,
Lutzomyia longipalpis, from the bacterial pathogen, S. marcescens
(Sant’Anna et al., 2014). In this regard, we argue that the
S. marcescens found across the L. sericata gut in this study is
likely non-pathogenic or is supported by indigenous microbiota

(bacteria with profound effects on the anatomical, physiological,
and immunological development of the host) via colonization
resistance. Both ideas need to be investigated in future studies.

Our knowledge of how bacteria are circulated horizontally in
and vertically between the generations of L. sericata is limited.
In general, symbiotic bacteria need such circulation to maintain
their community within the host populations (Ferrari and Vavre,
2011). The results of our study found a number of bacteria e.g.,
Klebsiella species, Lactobacillus species, L. garvieae, M. morganii,
Providencia species, Pseudacidovorax intermedius, P. otitidis,
V. fluvialis, and Ventosimonas species that were present in two
or three stages of L. sericata, although they had an incomplete
transstadial transmission, and the sample size was insufficient
to trace bacteria in further stages. Nevertheless, others such
as E. faecalis, M. phaeus, Proteus species, P. vermicola, and
S. marcescens, which were present in most of the examined stages
(≤4), may have had a complete transstadial transmission. Among
bacteria with the transstadial transmission, those found in adults
are of particular importance for development or biological traits
as the reorganization of bacteria while passing immature to adult
stages occurs in pupal stage (Greenberg, 1968).

A number of 12 species of bacteria were found in eggs,
five species by culture-dependent, eight species via metagenetic
approach, and the species C. freundii by both methods. These
bacteria were presumably transferred to the offspring in the
ovary (transovarial) not across the eggs (transovum) because
eggs were surface sterilized using immersion either in 70%
ethanol or in 3% Lysol. Herein, we discuss that each transstadial
and transovarial transmission route of bacteria has its relative
significant for the circulation of bacteria within and between
populations. This observation contradicts Singh et al.’s (2015)
findings in which the transstadial transmission was more evident
than transovarial transmission. The reason for this discrepancy
may be due to different bacteria identification methods used and
the number or type of samples examined. The number of reads
and sequence lengths in the study of Singh et al. (2015) were
completely different from our study. These factors may influence
the identification of the bacteria at the lower levels of taxonomy
and thus the inference of the horizontal or vertical circulation of
the bacteria in the population of flies.

It is now widely accepted that diets and other environmental
factors modulate the composition and metabolic activity of
human and animal gut microbiota (Conlon and Bird, 2015; Kers
et al., 2018; Ng et al., 2018; Zhang et al., 2018). The results of this
study highlighted more bacterial isolates/species in specimens
rearing on the sterile diets than non-sterile ones. Remarkably,
two key bacteria, P. mirabilis and S. marcescens, were shared
between two types of diets, which likely denote that it may be
unnecessary to sterilize the eggs used in MDT. In addition,
larvae specimens reared in the sterile diet did not ripen to L3,
or very small L3 was generated. This result has been verified in
other studies, and the immature stages of several fly species fail
to develop in the substrates lack bacteria (Schmidtmann and
Martin, 1992; Zurek et al., 2000).

In this study, the effect of feeding status on the bacterial
load of L. sericata was investigated. In hematophagous insects
such as sand flies, the protein-rich bolus of the blood normally
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causes the rapid growth of gut bacteria, and when absorption is
accomplished, most bacteria were defecated with blood remains
(Maleki-Ravasan et al., 2015). However, in our study, the
number of bacterial isolates detected in the guts of unfed larvae
was three times as large as in the fed larvae. The presence
of food in the intestinal tract of larvae probably acts as a
physical barrier to bacterial growth, and after the digestion and
excretion process, nutrients became available to bacteria, thereby
stimulating their growth. Microbial competition immediately
comes to an end with the elimination of transient/invading
bacteria and the regeneration of native microbiota. The species,
such as P. mirabilis, S. marcescens, E. faecalis, M. morganii,
and P. urinalis, which were found in the unfed state of the
microdissected compartments, implies the resident gut bacteria.
Although a more precise methodology is needed, these results
indicate that the digestive process increases the number of native
bacteria than other bacteria.

Among the three studied larval instars, most bacterial species
were recovered from L3 and may be due to both the greater
nutritional activity of L3 and the detailed study of its gut
compartments. The culture-dependent method revealed the
highest number of bacterial species in the salivary glands,
while the metagenetic approach exposed the highest number
of bacterial species in the Malpighian tubules. For the bacteria
identified in both compartments, the metagenetic results were
similar, and only the culture-dependent result was different,
because live bacteria were detected only in the second method.
These findings appear to be rational, because in the L. sericata,
salivary glands are tissues directly contacted with the food surface
bacteria, and Malpighian tubules are excretory organs where
live/dead bacteria must be repelled out of the body. Likewise,
the occurrence of P. mirabilis isolates in tracheal tubes highlights
the potential role of bacteria in insect development as indicated
in mosquitoes (Coon et al., 2017) and presumably in immunity
through swarming motilities that suppress the growth of other
bacteria. As a result, bacteria in the digestive/respiratory systems
of larvae of blowflies assist in the breakdown of food and sustain
the immune hemostasis, as indicated by Ivanov and Honda
(2012) and Tomberlin et al. (2017).

Adult blowflies are regularly in contact with carrion (Pechal
and Benbow, 2016), wounds on animals (Sanford et al., 2014),
feces (Mann et al., 2015; Brodie et al., 2016), and even
pollen-rich composite flowers (Brodie et al., 2015a). These
resources are important for the courtship and mating behavior,
obtaining nutrition required for oogenesis, or supporting the
development of offspring (Tomberlin et al., 2017). Certain
bacteria, including Providencia rettgeri, M. morganii, P. vulgaris,
and P. mirabilis, are the initial colonizers of infested wounds,
and olfactometer tests using bovine blood containing these
bacteria showed that their by-products/degradation results in
MVOCs that attract blowflies to colonize in those substrates.
Although these bacteria had individually been attractive to the
flies, their combination was reported to be more effective, and
the cultures of P. rettgeri were found to be the most attractive
ones (Eddy et al., 1975). Other results specified that MVOCs from
five individual species (K. oxytoca, P. mirabilis, P. vulgaris, P.
rettgeri, and Providencia stuartii) were responsible for attracting

more females, resulting in more oviposition than MVOCs
from E. cloacae, Enterobacter sakazakii, and Serratia liquefaciens
(Chaudhury et al., 2010). Furthermore, the interkingdom
swarming signals from a P. mirabilis isolated from the salivary
glands of L. sericata and their influence on blowfly in access to the
new hosts/environments have been explored carefully (Ma et al.,
2012; Tomberlin et al., 2012; Liu et al., 2016). The components
of MVOCs from bacterial origin, which regulate the activation
responses of blowflies, have been determined as dimethyl
disulfide, dimethyl trisulfide, ethanethiol, indole, isobutylamine,
p-cresol, phenol, phenylacetic acid, phenylacetaldehyde, and
skatole (Dethier, 1948; Richardson, 1966; Grabbe and Turner,
1973; Erdmann and Khalil, 1986; Chaudhury et al., 2014).
However, the type of volatiles that these bacteria produce and
the manner in which flies respond appear to be bacterium- or
strain-specific, as indicated by Brodie et al. (2014).

In this survey, a number of 16 and 3 bacterial species
identified were from the adult flies reared in the insectary
and those captured from the field, respectively. Providencia
vermicola and Ventosimonas species were found to be dominant
bacteria in males and females, respectively. Bacteria in the genus
Providencia are pathogens of many organisms, including humans
and insects (Galac and Lazzaro, 2011). Initially, P. vermicola had
been isolated from an entomopathogenic nematode, Steinernema
thermophilum (Somvanshi et al., 2006); later, its pathogenic
effects were approved in silkworm Bombyx mori (Zhang et al.,
2013) and fruit fly D. melanogaster (Galac and Lazzaro, 2011).
Moreover, it has been revealed that this bacterium is resistant
to the L. sericata larval excreta/secreta (Jaklic et al., 2008).
Recently, a member of the Gammaproteobacteria, Ventosimonas
gracilis, has been isolated from Cephalotes varians ant guts, which
represent a new family, genus, and species (Lin et al., 2016). In
our study, the DNA of this obligate aerobic bacterium was found
in female flies.

Some bacterial communities may have large influence on the
life history of insects (Gurung et al., 2019). A notable instance
is the necrophagous beetle, Nicrophorus vespilloides, in which
there is a potential metabolic cooperation between the host and
its microbiota for digestion, detoxification, and defense, which
prolong from the beetle’s intestine to its nutritional substrates
(Vogel et al., 2017). However, the direct role of the bacteria
associated with L. sericata has not adequately been addressed in
the literature either in fly ecology or in MDT process. Conversely,
the effects of larval ES on bacteria related to wounds (but not
bacteria isolated from non-sterile larvae) had been considered to
be antibacterial, antibiofilm, and boosting antibiotics (Jaklic et al.,
2008; Cazander et al., 2009, 2010a,b).

CONCLUSION

The complexity of the molecules, enzymes, and AMPs involved
in MDT makes it impossible to separate the wheat from the chaff
and to determine the exact roles of each larval and symbiotic
partner. Consequently, the first and critical step in this context
is identification of bacteria present in different compartments
of the L. sericata. Here, we reacknowledge using conventional
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cultivation and advance molecular techniques that L. sericata
is associated with bacteria both in different gut compartments
and different developmental stages. Various factors, including
diets, feeding status, identification tool, gut compartment,
and life stage, governed the bacterial species. However, the
most prevalent species was Gammaproteobacterium P. mirabilis
with different biochemical properties especially in the salivary
glands and midgut isolates. Moreover, we argued that each
transstadial and transovarial transmission routes of bacteria
have its relative significance within and between L. sericata
populations. Nevertheless, bacteria such as E. faecalis, M. phaeus,
Proteus species, P. vermicola, and S. marcescens that have
transstadial transmission are more important, representing the
lack of adverse effect of the larval ES on these resident bacteria.
The findings of this study are planned to pave the way for
further research in the role of each bacterial species/strain in
the insect ecology, as well as in antimicrobial, antibiofilm, anti-
inflammatory, and wound healing activities.
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FIGURE S1 | Micro-dissected compartments of the digestive tract of third-stage
larvae of Lucilia sericata. (A) foregut (showing mouth hooks, unexpanded crop,
and two tubular salivary glands), (B) a full feed crop; (C) crop immediately after
food discharge; (D) one out of four Malpighian tubules; (E) trachea and tracheoles.

FIGURE S2 | Front and up view of a diabetic patient’s foot underwent maggot
debridement therapy.

FIGURE S3 | A large bed sore before and at the time of maggot
debridement therapy.

FIGURE S4 | Biochemical differentiation of Shigella species (right) and Escherichia
coli (left) with identical 16S rRNA gene sequences through EMB medium.

TABLE S1 | Characteristics of the representative 16S rRNA gene sequences of 21
bacterial species identified from Lucilia sericata using Culture-dependent method.

TABLE S2 | Characteristics of the representative 16S rRNA gene sequences of 32
bacterial species identified from Lucilia sericata using
Culture-independent method.
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