
Citation: Kim, S.; Jung, U.J.; Kim, S.R.

Role of Oxidative Stress in Blood–

Brain Barrier Disruption and

Neurodegenerative Diseases.

Antioxidants 2024, 13, 1462.

https://doi.org/10.3390/

antiox13121462

Academic Editors: Jannette

Rodríguez-Pallares and Ana

M. Munoz

Received: 29 October 2024

Revised: 22 November 2024

Accepted: 27 November 2024

Published: 28 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Role of Oxidative Stress in Blood–Brain Barrier Disruption and
Neurodegenerative Diseases
Sehwan Kim 1,2, Un Ju Jung 3,* and Sang Ryong Kim 1,2,4,*

1 School of Life Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea;
arputa@naver.com

2 BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University,
Daegu 41566, Republic of Korea

3 Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea
4 Brain Science and Engineering Institute, Kyungpook National University, Daegu 41404, Republic of Korea
* Correspondence: jungunju@naver.com (U.J.J.); srk75@knu.ac.kr (S.R.K.);

Tel.: +82-51-629-5850 (U.J.J.); +82-53-950-7362 (S.R.K.)

Abstract: Upregulation of reactive oxygen species (ROS) levels is a principal feature observed in the
brains of neurodegenerative diseases such as Parkinson’s disease (PD) and Alzheimer’s disease (AD).
In these diseases, oxidative stress can disrupt the blood–brain barrier (BBB). This disruption allows
neurotoxic plasma components, blood cells, and pathogens to enter the brain, leading to increased
ROS production, mitochondrial dysfunction, and inflammation. Collectively, these factors result in
protein modification, lipid peroxidation, DNA damage, and, ultimately, neural cell damage. In this
review article, we present the mechanisms by which oxidative damage leads to BBB breakdown in
brain diseases. Additionally, we summarize potential therapeutic approaches aimed at reducing
oxidative damage that contributes to BBB disruption in neurodegenerative diseases.

Keywords: neurodegenerative diseases; reactive oxygen species; oxidative damage; blood–brain
barrier; blood-derived protein

1. Introduction

Neurodegenerative brain diseases, including Alzheimer’s disease (AD), Parkinson’s
disease (PD), and Huntington’s disease (HD), are characterized by the progressive loss of
neurons and the deterioration of cognitive and motor functions [1–5]. Neurodegeneration
involves the progressive loss of neuronal structure and function, driven by mechanisms
such as protein aggregation, oxidative stress, mitochondrial dysfunction, and chronic neu-
roinflammation [6–8]. These processes, influenced by genetic and environmental factors,
disrupt cellular homeostasis and connectivity, leading to diseases such as Alzheimer’s and
Parkinson’s [9–11]. Among these mechanisms, oxidative damage has emerged as a critical
factor, with growing evidence highlighting its pivotal role in the pathophysiology and
progression of these disorders [12–23]. Oxidative stress occurs when there is an imbalance
between the production of reactive oxygen species (ROS) and the capacity of the body’s
antioxidant defenses to neutralize them [24,25]. In the context of neurodegenerative dis-
eases, the brain’s high oxygen consumption, abundant lipid content, and relatively low
antioxidant capacity make it particularly vulnerable to oxidative stress [25–27]. Excessive
production of ROS in the brain can lead to the oxidation of proteins, lipids, and nucleic
acids, resulting in cellular dysfunction and death [13–15,18,20,28]. Oxidative damage not
only directly contributes to neurotoxicity but also exacerbates disease progression by dis-
rupting critical cellular processes such as mitochondrial function, protein homeostasis, and
synaptic transmission [12–15,17,18,21,23,29–33]. Furthermore, oxidative stress is known
to activate various signaling pathways that promote inflammation, further amplifying
neuronal injury [16,19,22,30,34–36]. Due to the central role of oxidative damage in the
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etiology of neurodegenerative diseases, understanding the mechanisms by which ROS
contributes to neuronal degeneration is crucial [12,13,16,37]. This knowledge can inform
the development of therapeutic strategies aimed at reducing oxidative stress and mitigating
its harmful effects on the brain [12,13,16,37].

Oxidative damage is a critical factor in the pathophysiology of neurodegenerative dis-
orders, causing direct neuronal injury and disrupting the integrity of the blood–brain barrier
(BBB) [38–43]. The BBB, a highly selective barrier, protects the brain by blocking harmful
substances in the bloodstream while allowing essential nutrients to pass through [44–48].
High-density lipoprotein (HDL) plays a significant role in protecting the BBB from oxidative
stress by reducing inflammation and promoting the clearance of ROS [49–51]. Additionally,
HDL contributes to maintaining BBB integrity by regulating endothelial cell function and
reducing permeability to harmful substances [50,52]. Dysfunctional or insufficient HDL
exacerbates oxidative damage and compromises BBB integrity, further facilitating the en-
try of neurotoxic substances and inflammatory mediators into the brain [49–51]. Under
conditions of oxidative stress, primarily driven by ROS overproduction, the structural and
functional integrity of the BBB becomes severely compromised [38–43]. This disruption
allows blood-derived proteins, typically excluded from the brain parenchyma, to infil-
trate the central nervous system (CNS) [53–56]. Entry of these proteins into the brain can
have deleterious effects, as they can trigger neurotoxicity and promote neuroinflamma-
tion [53,54]. For instance, prothrombin, thrombin, prothrombin kringle-2 (pKr-2), and
fibrinogen, when present in the brain, can interact with neuronal and glial cells, exacerbat-
ing inflammatory responses [53,54,56–64]. This heightened inflammation can ultimately
lead to neuronal cell death, further contributing to the progression of neurodegenerative
diseases [53,54,60,63,64]. The influx of these blood-derived proteins not only contributes to
the progression of neurodegeneration but also establishes a vicious cycle of ongoing ox-
idative stress and inflammation, further compromising the BBB and accelerating neuronal
damage [54]. Understanding the mechanisms by which oxidative damage disrupts the
BBB and permits the entry of neurotoxic blood components into the brain is essential for
developing therapeutic strategies that preserve BBB integrity and mitigate the detrimental
effects of oxidative stress in neurodegenerative diseases.

In this review, we explore the mechanisms through which oxidative damage con-
tributes to the breakdown of the BBB in brain diseases. Furthermore, we discuss potential
therapeutic strategies designed to mitigate oxidative damage and prevent BBB disruption
in neurodegenerative diseases, emphasizing the critical role of BBB protection in preventing
further neuronal injury and slowing the progression of these brain disorders.

2. Features of Oxidative Stress in the Brain in Neurodegenerative Diseases

Oxidative stress is a hallmark feature of the brain in neurodegenerative diseases,
characterized by the excessive production of ROS that overwhelms the brain’s antioxidant
defenses [13,14,16,18,20,21,28]. This imbalance leads to widespread oxidative damage,
including lipid peroxidation, which destabilizes neuronal membranes, protein oxidation,
which results in the accumulation of toxic aggregates, and DNA damage, which triggers
cell-death pathways [35,65–70] (Figure 1). These processes contribute to the progressive loss
of neuronal function and structure [35,65–70]. Additionally, oxidative stress is closely linked
to the disruption of the BBB, further allowing harmful substances to penetrate the brain
and exacerbate neuroinflammation, thereby accelerating disease progression [38,71–73].

Oxidative stress is a pivotal driver and consequence of neurodegeneration, creating
a self-perpetuating cycle of cellular damage and disease progression [27,74]. It begins
with an overproduction of ROS that impairs the brain’s antioxidant defenses, disrupting
the balance critical for neuronal survival [26,27,75]. This imbalance results in oxidative
damage to key biomolecules: lipid peroxidation destabilizes neuronal membranes, impair-
ing synaptic signaling and producing toxic byproducts such as malondialdehyde (MDA)
and 4-hydroxynonenal (4-HNE), causing further damage [76–78]. Protein oxidation leads
to structural modifications, loss of function, and aggregation of pathological proteins,



Antioxidants 2024, 13, 1462 3 of 23

such as beta-amyloid in AD and alpha-synuclein in PD, which disrupt intracellular pro-
cesses and amplify neurotoxicity [79–81]. ROS also induces DNA damage, particularly
in mitochondrial DNA (mtDNA), which triggers cell-death pathways such as apoptosis
and necrosis [82,83]. Furthermore, oxidative stress compromises the BBB, increasing its
permeability to harmful substances and promoting neuroinflammation, which amplifies
oxidative damage through inflammatory cytokine release and glial activation [54,84–86].
Neurodegeneration exacerbates these processes by impairing mitochondrial function, in-
creasing ROS production, and weakening antioxidant defenses, thereby fueling a feedback
loop of oxidative stress, inflammation, and neuronal dysfunction [6]. This multifaceted
interplay underscores oxidative stress as a central mechanism in the onset and progression
of neurodegenerative diseases.
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Figure 1. Neurotoxicity by oxidative stress in the brain. Oxidative damage in the brain leads to
a cascade of detrimental effects. Lipid peroxidation destabilizes neuronal membranes, impairing
their fluidity and function, which disrupts synaptic signaling and neuronal communication. Protein
oxidation results in the formation and accumulation of toxic aggregates, such as amyloid plaques
and tau tangles, which are hallmarks of several neurodegenerative diseases. Additionally, oxidative
stress causes DNA damage, activating cell-death pathways like apoptosis. This cellular damage
not only contributes to neuronal loss but also amplifies neuroinflammation, further accelerating the
progression of neurodegenerative disorders. The figure was created using Biorender.com (Agreement
number: NS27EOZ0V8).

2.1. The Generation of ROS and Its Impact

In the brain, oxidative stress primarily arises from the excessive generation of ROS,
which are byproducts of normal cellular metabolism [35,67]. While mitochondria play a
critical role in ATP production, electrons can leak from the electron-transport chain during
oxidative phosphorylation and react with oxygen, forming ROS, which, if accumulated
in excess, can lead to cellular damage [67,68,87,88]. The brain, due to its high oxygen
consumption and metabolic activity, is particularly vulnerable to ROS generation [35,67].

Mitochondrial dysfunction is a common feature of neurodegenerative diseases, exacer-
bating ROS overproduction [67,68,87]. Under normal conditions, the ROS generated in the
mitochondria are effectively neutralized by the cells’ antioxidant defense systems [67,68,87].
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However, in neurodegenerative conditions, impaired mitochondrial function leads to in-
creased ROS generation and a diminished capacity to neutralize them, resulting in the
accumulation of ROS and elevated oxidative stress within brain cells [67,68,87]. ROS is
highly reactive and can cause damage to essential cellular components, including lipids,
proteins, and DNA [35,65–70]. Lipid peroxidation occurs when ROS attacks the polyun-
saturated fatty acids (PUFAs) in cell membranes, compromising membrane permeability
and structural integrity [67–69]. Due to the brain’s high lipid content, neuronal cells are
especially susceptible to this form of damage [67–69]. When the cell membrane is disrupted,
neurons lose their ability to function properly, eventually leading to cell death [35,65–70].

Iron plays a critical role in oxidative stress and neurodegeneration due to its unique re-
dox properties and involvement in cellular processes [89–91]. While essential for brain func-
tion, including oxygen transport and mitochondrial activity, dysregulated iron homeostasis
contributes significantly to oxidative damage in neurodegenerative diseases [89,92,93].
Iron acts as a catalyst in the Fenton reaction, where it reacts with hydrogen peroxide to
produce highly reactive hydroxyl radicals (•OH), leading to lipid peroxidation, protein
oxidation, and DNA damage [94–96]. These processes destabilize neuronal membranes,
promote toxic protein aggregates such as beta-amyloid in AD and alpha-synuclein in PD,
and trigger cellular death [80,97,98]. Furthermore, iron accumulation, which is commonly
observed in neurodegenerative conditions, disrupts mitochondrial function and increases
ROS production, further exacerbating oxidative stress [90,99,100]. Moreover, iron-induced
oxidative damage compromises the BBB, allowing harmful substances to infiltrate the brain
and intensify neuroinflammation, creating a vicious cycle of neuronal dysfunction and
degeneration [85,101,102].

2.2. Lipid Peroxidation

Primarily due to the high lipid content of neuronal membranes, lipid peroxidation rep-
resents one of the most harmful consequences of oxidative stress within the brain [103–105].
The brain is particularly vulnerable to this process because of its rich concentration of
PUFAs, which are essential components of neuronal cell membranes and are highly sus-
ceptible to attack by ROS [106,107]. When ROS reacts with these fatty acids, it initiates a
chain reaction that produces lipid peroxides, which compromises the structural integrity
and fluidity of the cell membrane [83,108]. The breakdown of cell membrane integrity
is a critical factor in neuronal dysfunction, as it disrupts normal cell-signaling pathways,
membrane permeability, and ion homeostasis [109,110]. This can ultimately lead to neu-
ronal cell death, further contributing to the neurodegenerative process [109,110]. Lipid
peroxidation not only damages membrane lipids but also generates toxic byproducts such
as MDA and 4-HNE, which play a significant role in propagating oxidative damage [111].
These lipid peroxidation products are particularly harmful because they can form adducts
with proteins and nucleic acids, leading to further impairment of cellular function [111].
For instance, MDA and 4-HNE can modify the structure of proteins through covalent
bonding, disrupting protein folding and enzymatic activity [107,111]. This contributes to
the accumulation of damaged and dysfunctional proteins, which is a hallmark of many
neurodegenerative diseases. Moreover, these byproducts can induce DNA damage, further
exacerbating cellular dysfunction and promoting neuronal cell death [111].

The cumulative effects of lipid peroxidation and its byproducts contribute to the pro-
gression of neurodegenerative diseases such as AD, PD, and amyotrophic lateral sclerosis
(ALS) [112,113]. As these oxidative reactions propagate, they create a vicious cycle of
membrane damage, disrupted cellular function, and neurotoxicity, all of which accelerate
neuronal degeneration and exacerbate the clinical manifestations of these diseases [19,114].

2.3. Protein Oxidation and Aggregation

Oxidative stress leads to the oxidation of proteins, resulting in the modification of
amino acid side chains, fragmentation of the protein backbone, and the formation of protein
aggregates [115–117]. In the brain, these oxidative modifications often cause the accumu-
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lation of misfolded proteins and aggregates [98,118,119]. Prominent examples include
amyloid-beta (Aβ) in AD and alpha-synuclein in PD [98,120]. These misfolded proteins
accumulate and form toxic aggregates, which are highly neurotoxic [98,121]. The presence
of these protein aggregates disrupts synaptic function and impairs critical cellular-signaling
pathways, leading to a decline in neuronal function [122,123]. As a result, neurons become
increasingly vulnerable, ultimately undergoing cell death, which significantly contributes
to the progression of neurodegenerative diseases [124,125]. Moreover, these aggregates are
not confined to a single cell but can spread pathologically throughout the brain, affecting
surrounding neurons and exacerbating the damage [124,125]. This process is central to the
pathophysiology of diseases where neuronal death and functional impairment of the brain
are key features [124,125]. Protein oxidation and aggregation, driven by oxidative stress,
play a crucial role in the progression of these diseases, accelerating the spread of pathology
across neuronal networks and worsening clinical symptoms [98,115,117,121].

2.4. DNA Damage and Apoptosis

In the brain, ROS-induced oxidative stress can inflict severe damage on both nuclear
and mtDNA, leading to mutations, strand breaks, and activation of DNA-repair path-
ways [65–67,82,126]. However, the brain’s inherent limitations in DNA repair capacity
make it particularly susceptible to accumulating DNA damage [127,128]. In neurodegen-
erative diseases, persistent DNA damage overwhelms the repair mechanisms, causing
genomic instability and triggering apoptotic pathways [129,130]. When oxidative DNA
damage persists, it can lead to the activation of cell-death pathways such as apoptosis,
which is a programmed cell-death process [83,131,132]. Apoptosis is a key mechanism in
the progressive loss of neurons observed in diseases such as AD, PD, and ALS [124,131,133].
The inability to adequately repair DNA damage accelerates the degeneration of neurons,
further contributing to cognitive and motor dysfunction as these diseases advance [134,135].

This continuous cycle of DNA damage, inadequate repair, and apoptosis significantly
exacerbates neuronal loss, making oxidative DNA damage a critical driving force in the
pathogenesis of neurodegenerative diseases [136–138]. As neurons are irreplaceable, their
gradual loss due to ROS-induced apoptosis plays a central role in the overall progression
and severity of neurodegeneration [139,140].

3. BBB Disruption Caused by Oxidative Damage in the Brain

The BBB is a highly selective and protective structure that separates circulating blood
from the brain’s extracellular fluid, playing a crucial role in maintaining CNS homeosta-
sis [141,142]. Composed of endothelial cells, tight junction proteins, astrocytic end-feet,
and pericytes, it ensures the controlled passage of essential nutrients and specific molecules
into the brain while blocking potentially harmful substances [141–144]. However, the
integrity of the BBB is frequently compromised in neurodegenerative diseases, largely due
to oxidative damage caused by an imbalance between ROS overproduction and the brain’s
antioxidant defenses [45,46,145–147].

ROS, including superoxide anions, hydrogen peroxide, and •OH, is a highly reactive
byproduct of cellular metabolism, particularly within mitochondria [67,68,87,88]. In neu-
rodegenerative diseases, mitochondrial dysfunction leads to increased ROS production,
which directly impacts endothelial cells and tight junction proteins critical for maintaining
BBB integrity (Figure 2) [67,68,83,87,88,148–151]. ROS-induced lipid peroxidation desta-
bilizes the cellular membranes of endothelial cells, while oxidative modifications to tight
junction proteins such as claudin and occludin disrupt their function, increasing BBB perme-
ability (Figure 2) [38,143,148]. This allows neurotoxic substances, including blood-derived
proteins and inflammatory mediators, to infiltrate the brain, triggering neuroinflammation
and exacerbating neuronal damage [54,63]. Therefore, understanding how oxidative stress
compromises the BBB is essential for developing strategies to protect brain health and slow
the progression of neurodegenerative diseases.
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Figure 2. BBB disruption by oxidative stress in the brain. Oxidative stress compromises the integrity
of the BBB, playing a pivotal role in neurodegenerative diseases. Excessive ROS production induces
oxidative stress, which adversely affects endothelial cells and tight junction proteins essential for BBB
stability and selective permeability. Lipid peroxidation disrupts cell membrane integrity, weakening
barrier function, while oxidative modifications of tight junction proteins, such as claudins and
occludins, impair their regulatory capabilities. Consequently, the BBB becomes more permeable,
allowing neurotoxic substances, inflammatory mediators, and blood-derived proteins to infiltrate the
brain parenchyma. The figure was created using Biorender.com (Agreement number: FY27LOUENC).

3.1. Lipid Peroxidation and Membrane Integrity in BBB Disruption

One of the critical mechanisms by which ROS disrupts the BBB is through the lipid per-
oxidation of the endothelial cell membranes, which are rich in PUFAs [43,152]. ROS initiates
lipid peroxidation, leading to the formation of lipid peroxides, which severely compromise
the structural integrity of the cell membranes [83,153]. ROS, particularly •OH, targets PU-
FAs in the endothelial cell membrane, initiating lipid peroxidation [154–156]. This process
generates lipid radicals, which interact with oxygen to form lipid hydroperoxides [77].
These hydroperoxides degrade into reactive aldehydes such as MDA and 4-HNE, which
covalently bind to proteins and DNA, disrupting cellular functions (Figure 3) [157–159].
This process destabilizes the lipid bilayer, which is essential for maintaining the barrier func-
tion of endothelial cells [83,153]. As the lipid bilayer breaks down, the physical structure
of the BBB is weakened, and the tight junctions between endothelial cells are compro-
mised [83,153]. Tight junction proteins, which play a key role in regulating the selective
permeability of the BBB, lose their integrity due to the breakdown of the lipid bilayer, result-
ing in increased BBB permeability [160–162]. This disruption allows potentially harmful
substances, such as neurotoxic molecules and inflammatory mediators, to pass through
the barrier and enter the brain [54,63]. The compromised membrane integrity from lipid
peroxidation thus results in the loss of BBB function, contributing to the progression of
neurodegenerative diseases by promoting neuroinflammation and accelerating neuronal
damage [152,163].
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Figure 3. Mechanisms of BBB breakdown caused by oxidative stress in the brain. ROS plays a critical
role in disrupting the BBB by targeting endothelial cells and tight junction proteins and activating
inflammatory pathways. ROS attack PUFAs in endothelial cell membranes, initiating lipid peroxida-
tion, which generates reactive aldehydes such as MDA and 4-HNE. These aldehydes covalently bind
to proteins and DNA, impairing cellular functions and increasing membrane permeability. Simulta-
neously, mitochondrial dysfunction amplifies ROS production as leaked electrons from the electron
transport chain form superoxide radicals, damaging mtDNA, reducing ATP synthesis, and triggering
apoptosis via cytochrome c release. ROS further destabilizes tight junction proteins, including oc-
cludin, claudin, and ZO-1, by oxidizing cysteine residues, disrupting disulfide bonds, and inducing
hyperphosphorylation through kinases such as PKC or by inhibiting phosphatases such as PP2A. This
leads to structural weakening and increased permeability of the tight junction complex. Additionally,
ROS activates matrix metalloproteinases (MMPs; e.g., MMP-9), which degrade tight junction proteins,
widening endothelial gaps. These changes allow harmful substances, including fibrinogen, thrombin,
and albumin, as well as inflammatory cytokines such as TNF-α and IL-6, to infiltrate the brain, thereby
intensifying neuroinflammation. The resulting activation of pathways such as NF-κB and MAPK
amplifies the release of inflammatory mediators and further ROS production, creating a vicious
cycle of oxidative stress, BBB damage, and neuronal dysfunction. Addressing these mechanisms
with targeted therapies, including antioxidants, anti-inflammatory agents, and metalloproteinase
inhibitors, could help protect BBB integrity and prevent neurodegenerative progression. The figure
was created using Biorender.com (Agreement number: LJ27LOY3MS).

3.2. Tight Junction Protein Modification by Oxidative Stress

Oxidative stress can induce modifications to these tight junction proteins, compromis-
ing their functions [38,162,164]. ROS can cause nitration and oxidation of tight junction
proteins, leading to their dysfunction and eventual degradation [165,166]. This oxida-
tive modification weakens the tight junctions, resulting in the loosening of the cell–cell
connections between endothelial cells [38,162,164]. ROS disrupts tight junction proteins
such as occludin, claudin, and ZO-1 through oxidative and post-translational modifica-
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tions, including the oxidation of cysteine residues that destabilize disulfide bonds and
protein interactions [167,168]. Additionally, they induce hyperphosphorylation of these
proteins via the activation of kinases such as protein kinase C or inhibition of phosphatases
such as PP2A, further weakening the structural integrity of the tight junction complex
(Figure 3) [167,168]. ROS also promotes the expression and activation of MMPs, particu-
larly MMP-9, which degrade occludin and claudin, widening intercellular gaps between
endothelial cells (Figure 3) [160,169]. These processes collectively increase BBB perme-
ability, enabling harmful substances to infiltrate the brain [170–172]. Consequently, the
paracellular pathway, which is typically tightly regulated, becomes more permeable, allow-
ing neurotoxic substances and other potentially harmful agents to pass through the BBB
and enter the brain parenchyma [54,63]. This increase in permeability contributes to the
initiation and exacerbation of neuroinflammation and promotes neuronal damage, playing
a significant role in the progression of neurodegenerative diseases [54,63]. Understanding
how oxidative stress leads to tight junction protein modification is crucial for developing
therapeutic strategies aimed at preserving BBB integrity and preventing the pathological
entry of harmful substances into the brain [54,63].

3.3. Endothelial Cell Apoptosis

Oxidative stress is a key factor that triggers apoptosis, or programmed cell death, in
endothelial cells [173–175]. Excessive production of ROS leads to oxidative damage that
overwhelms the cellular repair mechanisms, resulting in mitochondrial dysfunction and
the activation of apoptotic pathways [83,151,176]. ROS generated from the mitochondrial
electron transport chain (Complexes I and III) causes oxidative damage to mtDNA and
proteins, such as cytochrome c (Figure 3) [82,177]. Damaged mtDNA impairs mitochondrial
enzyme function, further increasing ROS production [32,178,179]. This creates a vicious
cycle, reducing ATP production and causing mitochondrial permeability transition, which
releases cytochrome c into the cytosol and triggers apoptosis (Figure 3) [180–182]. Mito-
chondrial damage caused by ROS not only depletes cellular energy but also creates a vicious
cycle of further ROS production, exacerbating the death of endothelial cells [176,183]. As
endothelial cells undergo apoptosis, the structural integrity of the BBB is severely com-
promised [176,183]. The loss of endothelial cells creates gaps in the BBB, through which
neurotoxic substances and inflammatory mediators can infiltrate the brain [54,63]. There-
fore, understanding how oxidative stress induces endothelial cell apoptosis is crucial for
developing therapeutic strategies aimed at protecting the BBB and preventing neuronal
damage in neurodegenerative conditions.

3.4. Inflammation and Oxidative Stress

The disruption of the BBB caused by oxidative damage often initiates a secondary
wave of neuroinflammation, further exacerbating the progression of neurodegenerative
diseases [16,152,184]. Once the BBB is compromised, blood-derived proteins, immune
cells, and other inflammatory mediators infiltrate the brain, triggering an amplified in-
flammatory response [54]. This infiltration leads to the activation of resident immune
cells, such as microglia and astrocytes, which release pro-inflammatory cytokines and
additional ROS [54,59]. The sustained activation of these glial cells creates a vicious cy-
cle where ongoing inflammation further increases ROS production, causing additional
oxidative damage to neuronal and glial cells [185–187]. The NF–κB pathway is initiated
by the degradation of IκBα, enabling NF-κB to translocate to the nucleus and promote
the transcription of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, which
further damage endothelial cells and disrupt tight junction proteins (Figure 3) [188–190].
Simultaneously, ROS activates MAPKs such as p38 and JNK, increasing the expression of
inflammatory mediators and MMPs, which accelerate BBB breakdown (Figure 3) [191,192].
Additionally, ROS stimulates microglial activation, leading to the release of more ROS, RNS,
and cytokines. This creates a feedback loop that intensifies BBB disruption and neuroin-
flammation (Figure 3) [152,193,194]. This cycle perpetuates BBB disruption, allowing even
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more neurotoxic substances to enter the brain, thus fueling inflammation and oxidative
stress [152,195]. This dynamic interaction between inflammation, oxidative stress, and
BBB breakdown contributes significantly to the progression of neurodegenerative diseases
such as AD and PD and underscores the importance of targeting both oxidative stress and
inflammation in therapeutic strategies [56,144,196].

ROS-induced endothelial and tight junction damage disrupts the BBB, allowing inflam-
matory mediators and additional ROS-generating substances to enter the brain [152,160,197].
This exacerbates oxidative stress and neuroinflammation [16,114]. The infiltrated substances
and activated immune cells amplify ROS production, worsening BBB damage and perpet-
uating the pathological cascade seen in neurodegenerative diseases [172,198,199]. Thus,
breaking this cycle is crucial for maintaining BBB integrity and mitigating neuroinflamma-
tion and neuronal damage [152,172,198].

4. Disruption of the BBB Due to Oxidative Damage Facilitates the Influx of
Blood-Derived Proteins into the Brain

Once the BBB is compromised, blood-derived proteins such as prothrombin, thrombin,
pKr-2, and fibrinogen can infiltrate the brain parenchyma [54,63]. The presence of these pro-
teins in the brain is abnormal and triggers a cascade of pathological events [53,54,63,64,200].
One of the most significant consequences is the activation of microglia, the brain’s resi-
dent immune cells, which play a central role in the inflammatory response [53,54,63,64].
A study by Kim et al. (2023) specifically highlights how blood-borne proteins induce
microglial activation upon entering the brain [54]. For instance, prothrombin and thrombin
are involved in blood coagulation, but their increased expression in the brain, especially
in AD, suggests a role in neurodegeneration [58,200]. Thrombin is known to activate
microglia, promoting the release of pro-inflammatory cytokines and leading to oxidative
stress, inflammation, and neuronal death [57,58]. It also contributes to Aβ accumulation
and tau hyperphosphorylation, exacerbating AD pathology [54,62]. pKr-2 is a fragment
released during prothrombin activation and has been shown to induce neuroinflammation
through microglial activation without directly causing neuronal toxicity [54,60,61,63,64].
Moreover, pKr-2 overexpression leads to excessive neuroinflammation and neuronal death
via activation of TLR4 transcription factors such as PU.1 and p-c-Jun [64]. Controlling
pKr-2 overexpression has been suggested as a potential therapeutic approach to mitigate
neuroinflammation and cognitive decline [54,63]. Fibrinogen plays a key role in blood
clotting but has been found to cross the BBB in neurodegenerative diseases, contributing
to neuroinflammation and synaptic damage [53,62]. It activates microglia, promotes the
removal of synaptic spines, and is linked to vascular damage and BBB breakdown in
AD [144,201,202]. Fibrin, a derivative of fibrinogen, accumulates in the brain and worsens
Aβ deposition, accelerating the progression of AD [62]. Other blood-derived proteins
such as albumin, immunoglobulins, and plasminogen also infiltrate the brain through a
compromised BBB, triggering microglial activation and contributing to neuroinflammation
and neurodegeneration [54,152,184]. MMPs, particularly MMP-9, and proteins such as
HMGB1 have also been implicated in BBB breakdown, highlighting the need for further
research into these pathways as potential therapeutic targets for AD [184,203,204].

The combined effects of these blood-derived proteins lead to a vicious cycle of in-
flammation and oxidative stress, further accelerating neurodegenerative disease progres-
sion [54,63,64]. Understanding the mechanisms by which oxidative damage disrupts
the BBB and facilitates the entry of blood-derived proteins into the brain is crucial for
developing therapeutic strategies to mitigate BBB disruption, neuroinflammation, and
neurodegeneration.

5. Therapeutic Approaches for Protecting the BBB by Inhibiting Oxidative Damage

Antioxidants play a crucial role in protecting BBB integrity by counteracting the dam-
aging effects of oxidative stress [143,196,205]. By mitigating lipid peroxidation, protein
oxidation, and DNA damage, antioxidants help preserve BBB permeability and prevent the
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infiltration of neurotoxic blood-derived substances into the brain [150,206]. This protective
effect reduces the activation of neuroinflammatory pathways and the progression of neu-
rodegenerative diseases such as AD and PD [207–209]. Enhancing antioxidant defenses
through dietary intake, pharmacological agents, or upregulation of endogenous antioxidant
systems offers a promising strategy to protect the BBB and combat the deleterious effects of
oxidative stress in the CNS [27,38,143].

Antioxidants act by neutralizing ROS, thereby preventing the oxidative modification
of cellular components such as lipids, proteins, and DNA within endothelial cells. By
doing so, antioxidants help maintain the structural integrity of the BBB and reduce the
entry of harmful substances into the brain [143,210]. Among the most studied antioxidants
are N-acetylcysteine (NAC), resveratrol, vitamin E, and alpha-lipoic acid, each of which
has demonstrated significant potential in strengthening the BBB in preclinical models of
neurodegenerative diseases [211,212].

NAC is a potent antioxidant that serves as a precursor to glutathione, one of the
brain’s most important endogenous antioxidants [211,212]. By boosting glutathione levels,
NAC enhances the brain’s ability to neutralize ROS and reduce oxidative stress [211,212].
One study has shown that NAC can inhibit lipid peroxidation and prevent oxidative
degradation of tight junction proteins such as occludin and claudin, both of which are
critical for maintaining BBB integrity [213]. Furthermore, NAC has been shown to attenuate
microglial activation—a major driver of neuroinflammation—thereby breaking the cycle
of oxidative stress and inflammatory damage [214,215]. This dual action of NAC, both
in protecting the BBB and in reducing inflammation, makes it a promising candidate for
neuroprotective therapy.

Another potent antioxidant, resveratrol, is a naturally occurring polyphenol found in
grapes, berries, and red wine [216–218]. Resveratrol has garnered attention for its ability to
inhibit NADPH oxidase, an enzyme responsible for generating ROS in the brain [219,220].
By inhibiting this enzyme, resveratrol reduces ROS production and prevents oxidative
damage to the BBB [219,220]. Additionally, resveratrol modulates the expression of tight
junction proteins, helping to preserve the selective permeability of the BBB [221,222]. In
neurodegenerative models, resveratrol has also been shown to reduce the production of
pro-inflammatory cytokines such as TNF-α and IL-6, thus protecting the brain from neu-
roinflammatory cascades that exacerbate neuronal damage [223–225]. Moreover, resveratrol
has been linked to the promotion of autophagy, a process that helps clear damaged cells
and proteins, which can further protect against oxidative damage [226].

Vitamin E, a well-known fat-soluble antioxidant, has been extensively studied for
its role in protecting cell membranes from oxidative damage [227,228]. By preventing
lipid peroxidation, vitamin E helps stabilize endothelial cell membranes, reducing BBB
permeability [229]. In experimental models, vitamin E has been shown to reduce oxidative
stress within the CNS and enhance the expression of tight junction proteins, thus restoring
BBB integrity [229,230]. The ability of vitamin E to reduce the infiltration of neurotoxic
proteins such as fibrinogen and thrombin into the brain has been linked to decreased
neuroinflammation and improved cognitive outcomes in animal models of AD [54,229,230].

Alpha-lipoic acid is another powerful antioxidant that has been shown to protect
both lipid and aqueous environments in the brain [231,232]. It works by scavenging ROS,
promoting glutathione regeneration, and reducing oxidative stress in endothelial cells [231].
Studies have demonstrated that alpha-lipoic acid can preserve tight junction integrity [231]
and reduce neuroinflammation by inhibiting nuclear factor-kappa B (NF-κB) signaling,
a key pathway involved in the production of pro-inflammatory cytokines [233]. This
antioxidant not only protects the BBB but also reduces neuronal damage by preventing
the overactivation of astrocytes, which are major contributors to the chronic inflammation
observed in neurodegenerative diseases [233,234].

The role of antioxidants in neuroprotection goes beyond simply neutralizing
ROS [26,235,236]. By reducing oxidative stress, antioxidants help prevent the secondary
wave of damage caused by glial cell activation [34,186,237]. In conditions where the BBB is
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compromised, blood-derived proteins infiltrate the brain and activate microglia, leading
to increased ROS production and further inflammation [54,63]. This creates a vicious
cycle where oxidative stress and neuroinflammation feed into each other, accelerating
BBB disruption and neurodegeneration [86,114]. By breaking this cycle, antioxidants help
protect not only the BBB but also neurons and synapses from further damage [238]. We also
recently reported that supplying water with caffeine, which may offer potential benefits in
reducing ROS in the brain, can enhance the preservation of the BBB in an animal model
of AD, resulting in neuroprotective effects through anti-inflammatory responses in the
CNS [53,54,60,63,64].

Previous studies have provided evidence of the neuroprotective potential of antiox-
idants. Preclinical research has shown that NAC and alpha-lipoic acid reduce BBB per-
meability and prevent oxidative damage to tight junction proteins in AD models, while
resveratrol reduces pro-inflammatory cytokines and inhibits microglial activation in PD
models [220,239,240]. Clinically, NAC demonstrates cognitive improvement in patients
with mild cognitive impairment, and vitamin E delays functional decline in AD pa-
tients [241–243]. Alpha-lipoic acid offers benefits in reducing oxidative stress biomarkers
and improving quality of life in conditions such as multiple sclerosis and diabetic neuropa-
thy [244,245]. However, challenges such as limited bioavailability, poor BBB penetration,
and lack of disease specificity remain. Therefore, ongoing efforts focus on developing
nanotechnology-based delivery systems and combination therapies to overcome these
limitations and enhance the therapeutic efficacy of antioxidants [246–248].

Despite their benefits, antioxidants can have side effects. NAC is generally well-
tolerated but may cause gastrointestinal discomfort or nausea in some individuals. Resver-
atrol, while effective, has limited bioavailability, and high doses may lead to headaches or
dizziness [249]. Vitamin E, in high doses, poses risks of pro-oxidant effects and bleeding
disorders, and alpha-lipoic acid may occasionally cause skin irritation or mild nausea [250].
These side effects are well-documented in the literature and are supported by data from the
Drugs.com database, which consolidates reliable information on drug safety and efficacy.

Combining antioxidants with complementary mechanisms of action can significantly
enhance therapeutic efficacy [251–253]. For example, a combination of NAC and alpha-
lipoic acid can boost glutathione levels and address inflammation simultaneously [212,254].
Similarly, resveratrol and vitamin E may work synergistically to reduce ROS production
and stabilize endothelial membranes [255,256].

Beyond simply neutralizing ROS, antioxidants play a pivotal role in disrupting the
self-perpetuating cycle of oxidative stress and neuroinflammation [16,19,27]. This cycle,
characterized by BBB disruption and neuronal damage, accelerates the progression of
neurodegenerative diseases [172,198,257]. Interventions such as caffeine supplementa-
tion have shown promise in complementing antioxidant therapy by preserving BBB in-
tegrity and mitigating inflammatory responses in the CNS [63,258]. A structured approach
to antioxidant-based therapies focuses on efficacy, safety, and synergistic combinations,
providing a comprehensive strategy to protect the BBB, reduce neuronal damage, and
effectively combat neurodegenerative diseases.

To overcome the limited bioavailability of antioxidants such as resveratrol, vitamin E,
and alpha-lipoic acid, various strategies have been developed to enhance absorption, stability,
and delivery efficiency [232,259,260]. Nanotechnology-based systems, such as nanoparti-
cles, liposomes, and solid lipid nanoparticles, encapsulate these antioxidants to improve
their stability and facilitate efficient delivery to target tissues, which includes crossing the
BBB [261,262]. Lipid-based delivery systems, including nanoemulsions and nanostructured
lipid carriers, enhance solubility and gastrointestinal absorption, particularly for fat-soluble
antioxidants such as vitamin E and resveratrol [263,264]. Chemical modifications, such as
methylation of resveratrol or esterification of vitamin E, increase their metabolic stability and
bioavailability [259,265,266]. In addition, advanced drug formulations, such as transdermal
patches and mucosal sprays, provide alternative routes for systemic delivery, bypassing first-
pass metabolism [267]. Co-administration with bioavailability enhancers, such as piperine, or
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combining antioxidants with complementary mechanisms of action, such as alpha-lipoic acid
with vitamin E or resveratrol, can amplify therapeutic effects [268–270]. Additionally, gene-
and protein-based delivery systems offer innovative approaches for targeted delivery and
sustained therapeutic activity [271–273]. Overall, these strategies address limited bioavail-
ability and increase the therapeutic potential of antioxidants for preventing and treating
neurodegenerative diseases and conditions linked to oxidative stress.

6. Conclusions

Oxidative damage plays a pivotal role in disrupting the BBB, significantly contributing
to the pathogenesis of neurodegenerative diseases by promoting neuroinflammation and
neuronal injury through the influx of blood-derived proteins into the brain (Figure 4).
Understanding the mechanisms by which oxidative damage undermines BBB integrity is
crucial for developing targeted therapeutic strategies. Protecting the BBB from oxidative
damage and preventing the entry of neurotoxic blood-derived proteins holds promise for
slowing the progression of neurodegenerative diseases and improving patient outcomes.
However, there are limitations such as poor bioavailability and lack of disease specificity.
Emerging strategies, including nanotechnology-based delivery systems and combination
therapies, aim to overcome these barriers, enhancing the efficacy and applicability of
antioxidants in combating neurodegenerative diseases. Ultimately, a deeper comprehension
of these processes will aid in the design of innovative interventions that could mitigate the
detrimental effects of oxidative stress on the CNS, enhancing the quality of life for those
affected by these debilitating conditions.
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thrombin, pKr-2, and fibrinogen can penetrate the brain parenchyma. A critical outcome of this
process is the activation of microglia by these blood-derived proteins, which are important mediators
in neuroinflammatory responses and abnormal protein accumulation. The interaction of these
events consistently contributes to a harmful cycle of inflammation and oxidative stress, which
intensifies and accelerates the progression of neurodegenerative diseases. The figure was created
using Biorender.com (Agreement number:KA27LP17CZ).
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