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BMP9 in Acute Respiratory Distress Syndrome: Decades of BMP
Studies in Vascular Biology Paying Off?
Roughly 20 years ago, BMPR2 was found to be the causative
mutation for most heritable pulmonary arterial hypertension (PAH)
(1). This was surprising because until then, the BMP pathway was
thought to be extremely important in embryonic development, but it
did not yet have a known role in adults. The paradigm of reactivation
of developmental pathways in injury repair was not common. The
discovery of BMPR2 as the PAH gene thus drove two decades of
fascinating science about the role of BMP—and other developmental
pathways—in the injury repair process. These findings are now
starting to make their way to the clinic.

The original BMPR2mutations were primarily haploinsufficiency,
whichmeans there was still a functional pathway, but there just wasn’t
enough signaling through it. Why not just add more ligand?
Unfortunately, the answer to that was the BMP pathway does too
many things in too many places. Add ligand, and you might cause
heterotopic ossification; in blast injuries, and in fibrodysplasia
ossificans progressiva, the problem is too much BMP signaling (2).
Therefore, off-target effects made the approach of just adding ligand
apparently too dangerous to try.

For the last decade or so, theMorrell group out of Cambridge has
been working on a clever workaround to this—BMP9 (3, 4). Although
there are many ligands for BMPR2, BMP9 has two singular properties
that make it more suitable—and safer—for this purpose. First, most
BMP ligands are relatively short range; they are meant to impact cells
within a few dozenmicrons, not halfway across the body. BMP9, in
contrast, is primarily made in the liver and circulates (5); in fact, it is
the predominant circulating form of BMP ligand (6). Second, BMP9
does not signal through BMPRIa or BMPRIb, the more common type
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I receptor heterodimers for BMPR2, but rather Alk1 (7). Their work in
pulmonary hypertension preclinical rodent models supports the idea
that the exogenous BMP9 ligandmight be useful for treating human
disease (4), supported by the discovery of causal BMP9mutations in
patients with heritable PAH (8).

In this issue of Journal, Li and colleagues (pp. 1419–1430) show the
power of this approach, adapting findings originally produced for
pulmonary hypertension to acute respiratory distress syndrome (ARDS), a
muchmore commonproblem than PAH,with an estimated 190,000 cases
per year in theUnited States (9, 10). They show inmice that blocking
BMP9 leads to pulmonary vascular leak comparable to adding LPS,
that BMP9 regulates genes involved in endothelial cell integrity, and that
giving BMP9 tomice prevents vascular injury with inhaled LPS inmice.
Human relevancewas supported by data showing that BMP9 is reduced in
patients with sepsis, likely driven by an increase in neutrophil elastase,
which cleaves BMP9 and is increased in sepsis. Although the paper is brief,
it is worth diving into the details in the supplemental tables and figures,
with lists of BMP9-regulated genes in Tables E1 and E2 in the online
supplement, and some absolutely beautiful intravital confocalmicroscopy
showing dextran leak in blood vessels with andwithout anti-Bmp9
in Figure E1.

On the one hand, then, this article is important because it
represents the culmination of the promise of 20 years of basic research.
A genetic pathway once only of interest to developmental biologists, and
examined because of a rare disease, uncovers basic biology potentially
critical and therapeutically targetable in one of themost important
remaining problems in pulmonary clinical care, ARDS. On the other
hand, this article is important because this isn’t purely theoretical; 5
years ago, Cambridge spun out development of BMP9 as a clinical
target to a biotech company,Morphogen-IX, which has developed a
form of it, MGX292, which it expects to have in clinical trials soon (11).
Recent trials in ARDS have been disappointing, to say the least; proteins
and small molecules that showed great promise in preclinical models
have largely failed to bear out that promise in trials (12). Statins, b2-
adrenergic agents, keratinocyte growth factor, and aspirin have all failed
in the past decade. The power of this finding is that it may hit a central
control node, so far untargeted in ARDS, which is direct control of
pulmonary vascular endothelial homeostasis and barrier.

There are, of course, many reasons why this could yet fail. Lack of
BMP9, in actual patients, could be only one of many pathways
controlling endothelial barrier function and so fail to translate. There is
still some risk around BMP9 having off-target effects; for instance, it
apparently does still have tremendously high osteogenic activity (13),
whichmaymanifest slowly enough that it has not yet become apparent
in the animalmodels.With activities as diverse as stem cell
differentiation, osteogenesis, metabolism, neurogenesis, and regeneration
of joints, the potential for harmful off target effects is real. Even if there
are off-target effects when systemically delivered, theremay be work-
arounds involving targetingmethodologies or deliverymechanisms.

In all, the findings here lay the groundwork for the use of BMP
regulation to regulate barrier function in ARDS. This may be directly
translatable via MGX292, in which case translation will likely be
rapid, but if not, a better understanding of the molecular biology

regarding barrier function in inflammation is bound to have
significance in treating ARDS.�
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