
sensors

Article

Electrochemical DNA Sensor Based on Poly(Azure A) Obtained
from the Buffer Saturated with Chloroform

Anna Porfireva 1, Kseniya Plastinina 1, Vladimir Evtugyn 2, Yurii Kuzin 1 and Gennady Evtugyn 1,3,*

����������
�������

Citation: Porfireva, A.; Plastinina, K.;

Evtugyn, V.; Kuzin, Y.; Evtugyn, G.

Electrochemical DNA Sensor Based

on Poly(Azure A) Obtained from the

Buffer Saturated with Chloroform.

Sensors 2021, 21, 2949. https://

doi.org/10.3390/s21092949

Academic Editor: Alfredo de la

Escosura-Muñiz

Received: 31 March 2021

Accepted: 21 April 2021

Published: 22 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 A.M. Butlerov’ Chemistry Institute of Kazan Federal University, 18 Kremlevskaya Street,
420008 Kazan, Russia; Anna.Porfireva@kpfu.ru (A.P.); plastininak@bk.ru (K.P.); Yurii.Kuzin@kpfu.ru (Y.K.)

2 Interdisciplinary Center of Analytical Microscopy of Kazan Federal University, 18 Kremlevskaya Street,
420008 Kazan, Russia; Vladimir.Evtugyn@kpfu.ru

3 Analytical Chemistry Department of Chemical Technology Institute of Ural Federal University,
19 Mira Street, 620002 Ekaterinburg, Russia

* Correspondence: Gennady.Evtugyn@kpfu.ru

Abstract: Electropolymerized redox polymers offer broad opportunities in detection of biospecific
interactions of DNA. In this work, Azure A was electrochemically polymerized by multiple cycling
of the potential in phosphate buffer saturated with chloroform and applied for discrimination of
the DNA damage. The influence of organic solvent on electrochemical properties of the coating
was quantified and conditions for implementation of DNA in the growing polymer film were
assessed using cyclic voltammetry, quartz crystal microbalance, and electrochemical impedance
spectroscopy. As shown, both chloroform and DNA affected the morphology of the polymer surface
and electropolymerization efficiency. The electrochemical DNA sensor developed made it possible to
distinguish native and thermally and chemically damaged DNA by changes in the charge transfer
resistance and capacitance.

Keywords: Azure A; electropolymerization; electrochemical DNA sensor; electrochemical impedance
spectroscopy; DNA damage detection

1. Introduction

There is an urgent need in the development of simple and reliable analytical devices
for the detection of antioxidants, drugs, biomarkers, and toxic species required in medical
diagnostics and food safety assessment [1–5]. Although conventional instrumentation,
e.g., high performance liquid chromatography and capillary electrophoresis, offer quite
sensitive and selective analysis of most analytes mentioned, they are rather expensive,
time- and labor-consuming, and cannot provide necessary information in point-of-care
(POC) format [6,7]. Immunoassay techniques frequently used in hospitals have some
limitations related to the insufficient stability of antibodies and enzymes used as labels
in the ELISA protocols and to interfering matrix effects, especially in testing biological
liquids [8]. From other sensors utilized in determination of biologically active low molec-
ular compounds, DNA-based assay is considered as one of most promising due to high
variety of the species detected, higher stability of DNA oligonucleotides and aptamers
against proteins, and simpler detection mode [9,10]. In particular, DNA-based sensors have
been described for sensitive determination of antitumor drugs [11–14], reactive oxygen
species [15], and antioxidants [16–18]. Aptamer-based biosensors detect with very high
sensitivity mycotoxins, drugs, and cancer biomarkers [19–25]. Meanwhile, the detection of
the DNA (aptamer)-analyte interactions and its conversion into an analytical signal remain
a weak point of such biosensors. Traditional approaches require introduction of specific
labels and are time consuming, although the sensitivity of the analyte determination is
quite acceptable. Label-free biosensors utilize changes in permeability of the sensing layers
caused by analyte implementation and measured mostly by electrochemical impedance
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spectroscopy (EIS) [26,27]. However, unspecific adsorption of the sample components
affects the response of such biosensors, especially those based on Au able to form bonds
with biogenic thiols. Necessity in additional treatment of the surface to block naked parts of
the transducer not only complicates the biosensor assembling, but also decreases absolute
values of the signal recorded.

Redox active polymers are frequently used in the development of label-free DNA
sensors [28,29]. Polymers, mostly obtained by electropolymerization, show high efficiency
of the DNA immobilization via electrostatic interactions and suppress undesired interac-
tions with interferences. Then, noncovalent interactions between the underlying redox
active support and biopolymer result in the changes of both electrostatic interactions and
permeability of the surface layer. Interaction with analyte molecules affects both param-
eters due to partial shielding of the charges and/or charge separation in the recognition
event. For this reason, monitoring of the redox activity of the polymers shows high sensi-
tivity toward specific DNA interactions. Thus, DNA sensors based on polyaniline [30–34],
polypyrrole [35–37], polythionine [38], and poly(neutral red) [15,39] have been described
and successfully used for the determination of intercalation, DNA damage, and detection
of hybridization with complementary DNA sequences. It should be noted that application
of such modifiers frequently limits the measurement conditions by pH region required
for redox signal recording (polyaniline) or by interference with reactive species able to
react with electrodes near the redox activity of appropriate polymers (polyphenothiazines).
Rather low selectivity of DNA intercalation monitoring was also reported [12,40].

Recently, we showed that polymerization of Azure B and proflavine followed by
adsorption of double-stranded DNA results in sensitive determination of anthracycline
drugs [40,41]. However, low solubility and aggregation of the dyes in solution and on
the electrode surface can affect their polymerization and sensitivity of their interaction
with DNA molecules. Meanwhile, electropolymerization from organic solvents seems less
appropriate for the DNA biosensors due to hydrophobicity of the polymer interphase and
difficulties in its compatibility with highly polar DNA molecules. Films polymerized from
organic solvents are normally denser than those deposited from aqueous solutions and con-
tain less water and small ions. This complicates charge transfer and redox signal generation
on the polymer–DNA interface. In this work, we propose to perform electropolymerization
in the presence of chloroform to improve the performance of the DNA sensor and increase
sensitivity of the signal toward anthracycline drugs. Low amounts of organic solvent
improve electropolymerization conditions due to higher solubility of the monomer while
not affecting implementation of DNA molecules in the growing polymer film.

2. Materials and Methods
2.1. Reagents

Azure A (dye content 80%), DNA from fish sperm, and chloroform were purchased
from Sigma (https://www.sigmaaldrich.com/ accessed on 11 January 2021). All the
working solutions were prepared using Millipore Q® water. Electrochemical measurements
were performed in 0.1 M phosphate buffer containing 0.1 M NaNO3 (pH 7.0). In the pH
dependence experiments, appropriate pH value was adjusted in the range from pH = 2.0 to
8.0 by adding 0.1 M HCl or NaOH. Saturation of the working buffer with chloroform was
performed by mixing in 4:1 volume ratio and stirring for 30 min. After phase separation,
the aqueous part was taken for the electropolymerization experiments.

2.2. Apparatus

Voltammetric measurements were performed at ambient temperature using a portable
bipotentiostat-galvanostat µStat 400 Metrohm DropSens (DropSens, S.L., Asturias Llanera,
Spain). EIS measurements were performed with the FRA 2 module of the potentiostat-
galvanostat AUTOLAB PGSTAT 302N (Metrohm Autolab b.v., Utrecht, Netherlands).

Three-electrode cells equipped with the glassy carbon electrode (GCE, 0.0167 cm2)
Pt stripe as auxiliary electrode and Ag/AgCl/3 M KCl reference electrode was used for

https://www.sigmaaldrich.com/
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cyclic voltammetry (CV) and EIS measurements. In the EIS experiments, the potential
frequency was varied from 100 kHz to 0.04 Hz, amplitude of the applied sine potential
was equal to 5 mV, and equilibrium potential was calculated as a half-sum of the peak
potentials recorded in a 0.01 M [Fe(CN)6]3−/4− pair as the redox probe. Measurements
were performed in 0.1 M phosphate buffer containing 0.1 M NaNO3. The impedance
parameters were calculated from the Nyquist diagram corresponding to the R(RC)(RC)
equivalent circuit using NOVA software (Metrohm Autolab b.v., Utrecht, Netherlands).

Electrochemical quartz crystal microbalance (EQCM) measurements were performed
with the EQCM module of the CHI 440B instrument (CH Instruments, Inc. Austin, Texas,
USA) equipped with the EQCM chip (basic frequency 8 MHz, 0.205 cm2) and Au thin-
film electrodes.

Scanning electron microscopy (SEM) images of the electrode coatings were obtained
with a Merlin™ (Carl Zeiss AG, Oberkochen, Germany) high-resolution field emission
scanning electron microscope.

Atomic force spectroscopy (AFM) images of glassy carbon sheets covered with elec-
tropolymerized films were obtained with a Dimension FastScan (Bruker, Karlsruhe, Ger-
many) scanning probe microscope in the mode of quantitative nanomechanical mapping
using silicon probes “Bruker scanasyst air” (curvature radius ~2 nm) and k 0.4 N/m. Scan
rate was equal to 1 Hz within a 256 × 256 window. Image processing was performed with
the Gwyddion–Free SPM data analysis software.

2.3. Azure A Electropolymerization and DNA Sensor Assembling

Prior to the Azure A electropolymerization, the GCE electrode was mechanically
polished and cleaned with acetone and deionized water. Next, it was electrochemically
cleaned by repeated potential cycling in 0.1 M H2SO4 until the background current stabi-
lized. After that, it was immersed in 5 mL of the working buffer containing 0.2 mM Azure
A. In some experiments, phosphate buffer was saturated with chloroform, as described
above. The potential of the electrode was multiply cycled between −0.6 and 1.2 V with a
scan rate of 100 mV/s. The electrode was then washed with deionized water and working
buffer and dried in air at ambient temperature for 20 min. Codeposition of poly(Azure A)
and DNA was performed in a similar manner. DNA was added to the Azure A dissolved
in phosphate buffer to its final concentration of 0.2 mg/mL. Native, thermally denatured,
and oxidized DNA samples were tested in these experiments. Thermal denaturation was
performed by heating the DNA stock solution for 30 min at 95 ◦C followed by sharp cooling
in crushed ice for 5 min. Oxidatively damaged DNA was performed by its treatment with
the mixture of 0.9 mL of 4 mM CuSO4 and 1.3 µL of 30% H2O2 for 1 h.

3. Results
3.1. Electropolymerization of Azure A from Its Aqueous Solution

Azure A is a phenothiazine dye with a sterically hindered amino group from one side
of the phenothiazine core and primary amino group from the opposite side (Figure 1).
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Electropolymerization of Azure A resulted in specific changes of the peaks on cyclic
voltammograms (Figure 2) attributed to the deposition of redox active product on the
electrode surface. At first scan, a pair of reversible redox peaks related to the redox con-
version of the monomer appeared at about −0.17 and −0.22 V. In addition, an irreversible
oxidation peak of the cation radical formation was found at high anodic potentials (about
0.9 V). In the following cycle of the potential, a new pair of the redox peaks shifted to
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higher anodic potentials (−0.13 and 0.14 V) against monomer peaks appeared and started
growing (Figure 2a).
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Figure 2. (a) Multiple cyclic voltammograms recorded on the GCE in 0.1 M phosphate buffer containing 0.1 M NaNO3 and
0.2 mM Azure A, pH = 7.0; scan rate 100 mV/s. Red line corresponds to the bare GCE. Arrows indicate changes in the peaks
from the 1st to 20th cycle. (b) Single cycle recorded on the GCE covered with poly(Azure A) transferred in the same buffer
with no monomer dye.

Transferred to the working buffer with no monomer, the GCE modified with the
poly(Azure A) demonstrated two pairs of the peaks on the cyclic voltammogram (Figure 2b).
For structurally relative Azure B, similar peaks were referred to the polymer and the
monomer entrapped in the growing polymer film [42]. Stability of the redox signals was
assessed for six electrodes modified by means of the same set of reagents. In ten consecutive
potential scans, changes in the redox peaks related to the poly(Azure A) were negligible,
whereas the oxidation peak current of the monomeric dye decreased by 20% and that of
the reduction peak current by 45%.

The slope of the bilogarithmic dependence of the peak current (Ip) on the scan rate (ν)
indicated diffusion control of the monomer oxidation (d(logIp)/d(logν) = 0.44 ± 0.02) and
mixed diffusion–adsorption control of the polymer conversion (0.84 ± 0.03 for oxidation
peak current and 0.81 ± 0.03 for reduction peak current).

Variation of the pH influenced the signals of monomeric and polymeric forms of
Azure A in a different manner (Figure S1, Supplementary Materials). Thus, oxidation peak
current of the monomeric dye was stable in acidic media and decreased when transferred
in the neutral and alkaline media. Oxidation peak current of the polymeric form regularly
decreased in the pH range from 3.0 to 7.0. In alkaline solution, the signal became higher. The
difference in the behavior of the monomer and polymer observed could be attributed to the
alternative reaction of the dyes with dissolved oxygen and pH-dependent accessibility of
the redox centers of the layer components toward this oxidant. The reduction peak current
of the monomeric dye increased with pH in acidic and neutral media and reached a flat
maximum at pH > 7.0. The appropriate peak of the polymeric form was pH independent.

Alternative chemical oxidation of reduced Azure A fragments by dissolved oxygen
was confirmed by appropriate experiments performed after oxygen removal by the nitrogen
(Figure S2, Supplementary Materials). Both anodic and cathodic peak currents increased
against those recorded in the presence of oxygen. The effect is more pronounced in acidic
media where the current shift was about 40%, while in neutral and basic media it was
about 25% and did not significantly depend on the pH value. The shape and position of
the peaks remained the same after the oxygen removal. Together with reproducibility of
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the peaks in a series of experiments performed with the same sensor, this means the nature
of the products obtained in chemical and electrochemical oxidation is the same.

The pH dependency of voltammograms obtained with the GCE covered with poly(Azure
A) in the working buffer with no monomer is illustrated in Figure 3. The peak currents are
insignificantly decreasing with the pH increase. The effect is more pronounced in basic
media and for cathodic peaks. Changes observed can be attributed to the influence of
protonation–deprotonation within the polymer film on the electron exchange between
reduced and oxidized forms of the dye, both in monomeric and polymeric forms.
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Figure 3. Cyclic voltammogram recorded on the GCE modified with poly(Azure A) in 0.1 M
phosphate buffer at different pH values; scan rate 100 mV/s.

Both peak potentials of the polymer in acidic media (pH = 2.0–6.0) and anodic peak
potential of the monomer depended linearly on the pH with the slope close to −59 mV/pH
indicating equal number of the hydrogen ions and electrons transferred. This coincides
well with the mechanism of Azure A electropolymerization proposed elsewhere for similar
conditions of potential scanning [43]. An appropriate reaction scheme is presented in
Figure 4. It involves the formation of cation radicals followed by their coupling and
stabilization by hydrogen ion release.
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The pH dependence of the reduction peak of the monomer showed a slope of
−73 mV/pH. This can be related to the pH-dependent alternative reaction of the monomer
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oxidation with dissolved oxygen or pH-caused changes in the accessibility of the monomeric
dye molecules toward electron exchange. It should be noted that the pH influence was
quite reversible and appropriate peak positions could be restored by the opposite pH shift
in the range studied (pH = 2.0–8.0). At higher pH, the polymer film becomes chemically in-
stable, probably due to oxidative decomposition, so that the peaks on the voltammograms
changed irregularly within the pH range studied.

3.2. Electropolymerization of Azure A in the Buffer Saturated with Chloroform

Deposition of the poly(Azure A) film from the phosphate buffer saturated with chloro-
form (denoted below as poly(Azyre A)/Chl) showed similar peaks on the voltammogram.
The peak pairs related to the monomer were shifted to less cathodic potentials (−0.15 and
−0.20 V) against those previously described in phosphate buffer with no solvent. Ca-
thodic peaks on the reversed branch of cyclic voltammograms were much better resolved
(Figure 5). Shape of the same peaks recorded in the absence of the monomer (Figure 5b)
was less sensitive to the presence of organic solvent, assuming similar mechanism of the
electrode reactions. Meanwhile, the stability of the polymeric film obtained in the presence
of chloroform was higher than that of the film deposited in conventional conditions. The
reduction peak of the polymer was stable for at least 10 consecutive scans of the potential,
whereas anodic peak tended to decrease in the same series by 15%.
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Figure 5. (a) Multiple cyclic voltammograms recorded on the GCE in 0.1 M phosphate buffer containing 0.1 M NaNO3 and
0.2 mM Azure A and saturated with chloroform, pH = 7.0; scan rate 100 mV/s. Arrows indicate changes in the peaks from
the 1st to 20th cycle, blue line corresponds to bare GCE. (b) Single cycle recorded on the GCE covered with poly(Azure A)
transferred in the same buffer with no monomer dye.

In accordance with the dependence of the peak currents on the scan rate, redox con-
version of the monomeric dye was controlled by diffusion (d(logIp)/d(logν) = 0.53 ± 0.01
and 0.40 ± 0.02 for oxidation and reduction, respectively) whereas polymeric dye showed
mixed (adsorption–diffusion) control (d(logIp)/d(logν) = 0.80 ± 0.01 and 0.85 ± 0.02).

The pH dependence of the peak parameters on voltammograms recorded in the Azure
A solution saturated with chloroform are presented in Figure S3, Supplementary Materials.
In comparison with the peaks recorded in absence of organic solvent, monomer peak
currents were higher and those of the polymer coatings slightly lower.

Cyclic voltammograms recorded on the GCE modified with poly(Azure A)/Chl in
the absence of the monomeric dye in solution are presented in Figure 6. As in the case of
poly(Azure A), the peaks of the poly(Azure A)/Chl shifted to more cathodic potentials
with increasing pH values. The parameters of the Ep–pH dependencies are summarized in
Table S1. The slope of the Ep–pH dependence mostly corresponded to the equal number
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of the H+ ions and electrons transferred (−57 ± 2 mV/pH for the monomer oxidation,
−60 ± 0.4 mV/pH and −58 ± 0.3 mV/pH for the polymer oxidation and reduction).
The slope of the pH dependence of the monomer reduction peak was significantly higher
(−83 ± 0.3 mV/pH). The linearity of appropriate dependencies was broader than that of
the poly(Azure A) and covered the range of pH = 2.0–7.0.
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Figure 6. Cyclic voltammograms recorded on GCE covered with poly(Azure A/Chl), 0.1 M phosphate
buffer containing 0.1 M NaNO3; scan rate 100 mV/s.

3.3. DNA Implementation in Surface Layers

Implementation of DNA into the redox active polymer layer is commonly performed
by drop casting of the DNA solution [40] or addition of the DNA to the reaction media on
the electropolymerization stage [14,44]. Adsorption of native DNA added to the monomer
solution within the electropolymerization process led to the decrease of the currents on
voltammograms. Thermal denaturing and chemical oxidation of the DNA molecules with
reactive oxygen species further suppressed the currents recorded. Typical voltammograms
are presented in Figure S3, Supplementary Materials.

3.3.1. EQCM Measurements

The influence of the DNA addition to the Azure A electropolymerization was con-
firmed by EQCM measurements. The frequency of the quartz oscillation depends on the
mass deposited onto the electrode surface, in accordance with Sauerbrey Equation (1) [45].

∆ f = −
2 f 2

0 ∆m
A√ρqµq

= −C f ∆m (1)

where ∆f is the shift of the quartz resonance frequency, A the area of Au electrodes, ρq the
quartz density, µq shear modulus, f 0 fundamental resonance frequency of the quartz crystal,
Cf the sensitivity coefficient, and ∆m the surface mass change. Although Equation (1)
describes the deposition of the mass on the QCM surface in dry conditions, proportionality
of the frequency change to the mass deposited retained in liquids, although the sensitivity
of this dependency is about one half [46].

In Figure 7, cyclic voltammograms and sensograms are presented for the first
(Figure 7a,c,e) and tenth (Figure 7b,d,f) cycles of the potential scanning. In the first scan,
well-resolved peaks of the monomeric form (anodic and cathodic peaks M in the A area
of the potentials) are present on the cyclic voltammogram together with an irreversible
anodic peak initiating polymerization in the C area. Sensograms indicate adsorption of
the oxidized form and desorption of the reduced forms of the dye in the A area, which
correspond to appropriate shifts of the frequency. In the B area, insignificant changes of
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the resonance frequency can be found in the absence of DNA, except for a small decrease
related to the gold oxidation. In the presence of the DNA, the mass deposited in the B area
increases due to electrostatic accumulation of the DNA molecules. In the C area, frequency
significantly decreases due to formation of the polymeric form of the dye. It should be
noted that DNA adsorbed in the B area negatively affects the polymer deposition due
to partial blocking of the electrode surface. The morphology of the sensograms exert a
negative trend due to continuing accumulation of the polymer film to the tenth potential
scan (Figure 7b,d,f). On voltammograms recorded at the tenth scan, the signals related to
the polymer form of the dye appeared (P signals in the A and B areas), indicating redox
activity of the film. Meanwhile, the response of the monomeric forms retains conversion to
the waves because of the overlapping signal.

The influence of chloroform and DNA on the polymerization is quantified in Figure 8.
The effect is well pronounced in the whole range of the potential scans and is higher for a
large number of cycles and the experiments with the DNA addition. The results obtained
are well reproducible and show deviation of the frequency change of about 3.5% for six
independent EQCM chips modified with the same set of reagents.

It should also be noted that the concentration of the DNA shown in Figures 7 and 8
corresponds to the maximal DNA influence. Lower quantities added do not significantly
alter the EQCM parameters while larger ones result in significantly higher deviation of
the signals. The increase in the number of potential scans that follow is complicated by
lower reproducibility of the results, very long duration of the experiment, and occasional
resonance quenching due to overloading of its surface.
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Figure 7. Cont.
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Figure 7. Cyclic voltammograms (black) and sensograms (blue) recorded on the QCM chip in 0.1 M phosphate buffer
containing 0.1 M NaNO3, pH = 7.0 (a,b), in the presence of chloroform (c,d), and in the presence of chloroform and
0.2 mg/mL DNA (e,f).
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3.3.2. Scanning Electron and Atomic Force Microscopy

As was established by SEM, electropolymerization of Azure A results in formation
of a uniform film with cellular pore structure and roundish defects appearing as dimples
with an average diameter of about 40 nm (Figure 9).
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Figure 9. SEM images of the GCE surface covered with Azure A electropolymerized from phosphate buffer (a,c), in the
presence of 0.2 mg/mL DNA (b,d), and in the absence (a,b) and presence of CHCl3 (c,d). Twenty cycles of polymerization.

The addition of DNA to the monomer solution with no CHCl3 makes the layer denser.
Additionally, a new kind of defect with spiral or roundish boundaries appeared with an
average size of 70 nm. All types of defects with no respect to their size show internal
fine crystalline structure. Similar images obtained in phosphate buffer saturated with
chloroform indicated formation of the films with a more even surface and smaller domains,
some of which were amalgamated in elongated structures.

Additional information on the structure of the poly(Azure A) and poly(Azure A)/Chl
films was obtained using AMF (Figure 10).
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Figure 10. AFM 3D models of the films on the GCE surface covered with Azure A electropolymerized from phosphate
buffer (a,c), in the presence of 0.2 mg/mL DNA (b,d), and in the absence (a,b) and in the presence of CHCl3 (c,d); twenty
cycles of polymerization. Root mean square values (e) and distribution of heights over the 10 × 10 µm2 region for the
polymers deposited from the buffer and that with addition of DNA (+DNA), saturated with chloroform (+Chl), and that
containing both DNA and chloroform (+DNA + Chl) (f).

DNA addition to the monomer solution decreased total roughness of the film surface
and height deviation within the scan window. The number of peaks on the surface de-
creased, but their square became larger. In the presence of chloroform and absence of DNA,
holes appeared in the film instead of peaks. Most interesting, they were decorated with a
kind of oval embankment so that the height difference was maximal near the pores. Cross
lines visible on all the AFM images belong to the scratches formed during mechanical pol-
ishing of the glassy carbon sheets used for AFM measurements. Probably, the formation of
the holes can be related to the dissolution of a part of Azure A aggregates caused by organic
solvent. Combination of electrostatic accumulation with negatively charged DNA and
disaggregation of dye molecules resulted in formation of a more complex landscape in the
case of simultaneous influence of chloroform and DNA on the electropolymerization stage.

3.3.3. Electrochemical Impedance Measurements

EIS is a powerful tool for electrochemical measurements that provides valuable in-
formation on the surface layer assembly and its influence on the electron transfer at the
electrode interface. In this work, EIS measurements were made in an equimolar mixture of
0.01 M [Fe(CN)6]3− and [Fe(CN)6]4– ions as redox probe. Three types of DNA, i.e., native
DNA, DNA chemically oxidized by the Cu2+/H2O2 mixture, and thermally denatured
DNA, were tested. Mechanism and conditions for the model DNA damage were estab-
lished elsewhere [15,47,48]. Figure 11 shows the Nyquist diagrams obtained with the layers
obtained in various conditions. Bode diagram (frequency dependence of the phase angle)
is presented in Figure S5 (Supplementary Materials) for various polymer coatings.

As seen in Figure 11b, the introduction of damaged DNA molecules in the growing
polymer film increases the radius of the high frequency semicircle. This makes it possible
to recognize DNA damaging factors in real sample assay.

Interpretation of the EIS data was made using the equivalent circuit earlier proposed
for the electrode coated with the porous film (Figure 12) [49,50].
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Figure 12. Equivalent circuit for the assessment of EIS parameters.

Here, capacitance of the intact coating is represented by the constant phase element
(CPE) Q1. R1 (pore resistance) is related to the ion conducting paths in the film formed in
electropolymerization. The interface between the electrolyte in the internal film filling and
the electrode is modeled by double-layer capacitance (CPE Q2) in parallel with a kinetically
controlled charge-transfer reaction (R2). The exponent of the constant phase element (n)
has been assessed from the Equation (2)

Z =
1

(jω)nQ
(2)

where Z is impedance, Q is the CPE, ω is angular frequency of a sinusoidal signal, and j2 =
−1. The factor n is an adjustable parameter. When n differs from 1, the behavior of the system
is mostly attributed to the surface heterogeneity [51]. When n = 1, the CPE represents an ideal
capacitor. Here, n1 and n2 are related to the Q1 and Q2 CPE in equivalent circuit presented in
Figure 12. The results of the EIS data fitting are presented in Table 1.

Electropolymerization of Azure A in the presence of chloroform shows a lower n
factor indicating higher porosity of the film. This coincides well with the AFM data.
Deposition of the polymer in the presence of DNA makes the film smoother due to partial
filling of the pores with the biopolymer molecules. As a result, factor n increases together
with the R2 values. The charge transfer resistance R1 increases threefold after DNA
entrapment. Damaged DNA molecules, being more flexible, decrease this parameter but
do not significantly alter R2 values. The effect is less pronounced for the coating obtained
in the presence of organic solvent because of higher pore dimensions and lower influence
of the DNA molecules on the EIS parameters. Observation changes in the resistance makes
it possible to distinguish DNA damaging factors.
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Table 1. EIS parameters obtained for poly(Azure A)–DNA assembling in various conditions of DNA treatment (average ±
S.D. for six electrodes).

Coating Content n1 R1, Ω Q1, µF n2 R2, Ω Q2, µF

poly(Azure A) 0.64 ± 0.02 2119 ± 390 15.1 ± 2.9 0.78 ± 0.07 16,996 ± 2440 2.43 ± 0.71
poly(Azure A)–DNA 0.76 ± 0.04 6022 ± 738 2.00 ± 0.40 0.64 ± 0.05 24,670 ± 4292 7.64 ± 1.46

poly(Azure A)–thermally damaged DNA 0.66 ± 0.05 1436 ± 465 4.79 ± 0.90 0.67 ± 0.04 25,683 ± 2893 5.52 ± 0.98
poly(Azure A)–oxidatively

damaged DNA 0.74 ± 0.10 507 ± 77 4.51 ± 1.4 0.67 ± 0.04 24,776 ± 1740 5.29 ± 1.12

poly(Azure A)/Chl 0.56 ± 0.11 1245 ± 343 6.75 ± 1.90 0.69 ± 0.03 20,751 ± 2057 2.47 ± 0.60
poly(Azure A)/Chl–DNA 0.62 ± 0.03 4029 ± 284 7.12 ± 1.63 0.74 ± 0.05 35,641 ± 2131 2.74 ± 1.04

poly(Azure A)/Chl–thermally
damaged DNA 0.57 ± 0.08 1264 ± 288 7.14 ± 2.03 0.70 ± 0.05 29,722 ± 1188 4.40 ± 0.79

poly(Azure A)/Chl–oxidatively
damaged DNA 0.67 ± 0.04 942 ± 502 4.89 ± 1.0 0.65 ± 0.04 39,354 ± 4420 6.73 ± 0.97

4. Discussion

The results obtained showed significance of chloroform for the performance of the
DNA sensor based on the Azure A polymerization products. Although the saturated
buffer solution contained very small quantities of chloroform (0.8%), the polymer films
obtained showed significant changes in their parameters important for sensing specific
DNA reactions. In the presence of chloroform, the morphology of the surface layer was
fully changed: instead of small peaks, regular pores were observed in the absence of DNA.
Introduction of DNA in the reaction media containing organic solvent also affected the
surface film by partial filling of one pore and unusual decoration of other pores with oval
reeds. Although the surface was generally flattened, these changes increased adsorption
capability of the polymer, as followed from the SEM/AFM experiments. The effect of chlo-
roform can be explained by partial disaggregation of the monomeric dye molecules onto the
growing polymer film and by changes in the hydrophilicity of the surface important for the
interactions with the DNA molecules. The efficiency of electropolymerization controlled
by the mass changes confirmed the positive effect of chloroform on the deposition of the
polymeric form of the dye, both in the absence of DNA and together with the entrapped
biopolymer. The mechanism of chloroform influence coincides well with the results of EIS
assessment of the capacity and charge transfer resistance that reflect charge separation and
efficiency of the ferri-/ferrocyanide transfer through the polymeric film. The advantages of
possible application of the DNA sensor developed are shown in the example of discrimi-
nation of native and thermally and chemically damaged DNA by their influence on the
EIS parameters. Being negligible for traditional electropolymerization, they demonstrated
remarkable difference in the case of the coating deposited in the presence of chloroform.
This offers new opportunities for the design of electrochemical DNA sensors that can be
used in extreme media, including organic solvents, and for providing reliable information
on the biochemical interactions with DNA implemented in the surface layer.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/s21092949/s1, Figure S1: The pH dependence of the anodic and cathodic peak currents of the
monomer and polymer of poly(Azure A); Figure S2: Cyclic voltammograms recorded on the GCE
covered with poly(Azure A) in the presence of dissolved oxygen and after its removal; Figure S3:
The pH dependence of the anodic and cathodic peak currents of the monomer and polymer of
poly(Azure A) saturated with chloroform; Figure S4: Cyclic voltammograms recorded on GCE in
0.1 M phosphate buffer containing 0.1 M NaNO3 and that saturated with chloroform in the presence
of 0.2 mM Azure A and 0.2 mg/mL native and thermally denatured and chemically oxidized DNA.
Figure S5: The dependence of the phase angle (ϕ, ◦) on the potential frequency obtained with the
GCE covered with poly(Azure A) in various conditions. Table S1: The pH dependence of the peak
potential of the poly(Azure A) film obtained on GCE.
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