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Abstract: Ultrasound (US) could become a standard of care imaging modality for the quantitative
assessment of femoral cartilage thickness for the early diagnosis of knee osteoarthritis. However, low
contrast, high levels of speckle noise, and various imaging artefacts hinder the analysis of collected
data. Accurate, robust, and fully automatic US image-enhancement and cartilage-segmentation
methods are needed in order to improve the widespread deployment of this imaging modality
for knee-osteoarthritis diagnosis and monitoring. In this work, we propose a method based on
local-phase-based image processing for automatic knee-cartilage image enhancement, segmentation,
and thickness measurement. A local-phase feature-guided dynamic-programming approach is used
for the fully automatic localization of knee-bone surfaces. The localized bone surfaces are used as
seed points for automating the seed-guided segmentation of the cartilage. We evaluated the Random
Walker (RW), watershed, and graph-cut-based segmentation methods from 200 scans obtained
from ten healthy volunteers. Validation against manual expert segmentation achieved a mean dice
similarity coefficient of 0.90, 0.86, and 0.84 for the RW, watershed, and graph-cut segmentation
methods, respectively. Automatically segmented cartilage regions achieved 0.18 mm localization
accuracy compared to manual expert thickness measurement.
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1. Introduction

Osteoarthritis (OA) of the knee joint is the most common type of arthritis in elderly people [1].
It occurs when the cartilage between the knee joints starts to degenerate and wears away. Due to this,
the bones of the joints glide closely against each other causing pain, lack of mobility between the joints,
and swelling. Early detection and improved monitoring is important for the treatment of OA.

Imaging plays an important role during OA detection and management. Currently, X-ray planar
radiography is the standard imaging modality used in clinical practice for diagnosing OA and
monitoring disease progression [2]. Osteophytes, subchondral cysts, and sclerosis, associated with
OA, can be identified from X-ray images. The most common evaluation of radiological OA is the
calculation of joint space width (JSW) [2]. The limitation of using X-ray radiography is that it is
insensitive to degeneration and lacks the visualization of soft-tissue interfaces such as the cartilage.
In order obtain a better understanding of the disease and its progression, various studies, including
the Osteoarthritis Initiative (OAI), have exploited Magnetic Resonance Imaging (MRI) for cartilage
examination. MRI provides a deeper understanding of early changes in the pathological processes
of knee joint. The spin-echo (SE) and gradient-recalled-echo (GRE) imaging sequences are used to
obtain morphological information. On the other hand, in order to obtain information about the
molecular composition of T2 cartilage mapping, the diffusion-weighted imaging (DWI) and delayed
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gadolinium enhanced MR imaging of the cartilage (dGEMRIC) sequences were utilized. Traditionally,
cartilage thickness, from MRI data, is manually measured by drawing a line between the cartilage
region and synovial space. In order to minimize inter- and intra-user variability, segmentation and
thickness-measurement computational methods were developed [3–12]. The routine clinical use of
MRI is limited, as it is expensive, has high scanning time, and limited accessibility.

In order to provide a cost-effective and real-time imaging alternative to MRI, ultrasound (US)
was investigated to diagnose and monitor cartilage degeneration [13–20]. When compared to MRI,
US is inexpensive, can be used to image the joints in multiple planes, is easily accessible, and allows
real-time assessment. In US scans, the cartilage region appears to be a monotonous hypoechoic band
lying between the soft-tissue interface and bone interface. In Reference [18], a study was carried out
to measure cartilage thickness using US, and it compared the results to MRI. Cartilage thickness was
assessed from the transverse, anterior, middle, and posterior medial femoral regions. Results showed
that US could be used as an alternative clinical tool to measure the relative thickness in posterior
and middle medial femoral regions. In another study [19], the authors validated US performance
for assessing cartilage thickness using arthroscopic grading as the gold standard. The cartilage was
assessed from the medial femoral condyle, sulcus of the femoral condyle, and lateral femoral condyle.
This study showed that US scans are a strong indicator of cartilage changes for the early diagnosis of
OA. In Reference [20], the authors assessed the deformation of medial femoral cartilage with loaded
and unloaded conditions. US scans were acquired in a resting condition (unloaded), and after walking
and running (loaded). The study showed that, after loading, there was cartilage deformation, and
these subtle changes were captured by US. Manual measurement and qualitative investigation remain
the main sources of analysis during OA assessment with US [18–20]. However, manual analysis of US
data is subject to large inter- and intra-user measurement errors.

As a means of decreasing inter- and intra-user measurement errors, various research groups have
focused on developing automated US image-enhancement and cartilage-segmentation methods for
accurate and robust cartilage-thickness measurement [21–23]. In Reference [21], the authors proposed
a new image-processing method, multipurpose beta optimized recursive bihistogram equalization
(MBORBHE), for the enhancement of the cartilage region from US images. The proposed framework
addresses the limitations of the traditional adaptive histogram method by preserving the information of
brightness shift, detail loss, and proper contrast enhancement. Successful cartilage-region enhancement
was achieved, but the proposed method also resulted in the enhancement of soft-tissue interfaces
that could affect cartilage segmentation and thickness measurement. Recently, a new computational
approach, termed as the locally statistical level-set method (LSLSM), was proposed for segmentation
or cartilage from 2D knee US data [22]. Segmentation results were validated against other level-set
methods, such as the local Gaussian distribution fitting (LGDF) model [24], and locally weighted
K-means variational level set (WKVLS) [25]. Quantitative evaluations achieved a mean dice similarity
coefficient (DSC) value of 0.91 ± 0.01. Although promising results were achieved, the proposed
LSLSM method requires postprocessing of the segmented images using connected component labeling.
Successful labeling can only be obtained if segmentation results do not have overlapping regions
with the soft tissue and bone interface around the cartilage region. Furthermore, cartilage-thickness
measurements were obtained by manual operation using the segmented regions. High levels
of noise, low-contrast cartilage scans due to suboptimal alignment of the US transducer with
respect to the imaged cartilage, different image-acquisition settings, and anatomical boundaries
appearing several millimeters in thickness hamper the success of previously proposed intensity and
gradient-based methods.

In order to provide a robust solution to some of these imaging conditions, in this work we propose
an intensity-invariant cartilage US image-enhancement and segmentation framework. During the first
stage, B-mode US images are enhanced using local-phase-based image features. During the second
stage, knee-bone surfaces are automatically localized from enhanced US images using a local-phase
image-feature-guided dynamic-programming approach. Localized bone surfaces are used as seeds for
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automatic segmentation. The final stage involves automatic mean cartilage thickness measurement.
We evaluated the performance of three different seed-based segmentation methods. A preliminary
study of this approach was reported in Reference [23]. In this paper, we extend our previous work by:
(1) validating the proposed framework on a larger dataset, (2) evaluating two additional segmentation
methods, and (3) developing an automated cartilage-thickness measurement method.

2. Materials and Methods

2.1. Data Acquisition

Written consent was obtained prior to the collection of US scans. A total of 200 2D images from
10 healthy volunteers were collected during this study (20 scans per subject). The scans were acquired
using a Sonix-Touch US machine (Analogic Corporation, Peabody, MA, USA) with a 14–5 MHz linear
US transducer with a depth setting of 3.5 cm and image resolution of 0.15 mm. During the scans, the
knee was positioned at 90 deg of flexion, and the US transducer was placed transversely in line with
the medial and femoral condyle above the superior edge of the patella. Different scans of the cartilage
were obtained from both the left and right knee joints. An ultrasound technician with 20 years of
clinical experience collected all the data.

The proposed image-processing framework consists of four main subprocesses: (1) cartilage image
enhancement, (2) knee-bone localization for automatic seed initialization, (3) cartilage segmentation,
and (4) mean thickness computation (Figure 1).

Figure 1. Flowchart of proposed cartilage-segmentation and thickness-measurement method.

2.2. Cartilage Image Enhancement

The orientation of the US transducer with respect to the imaged knee surface and the 3D anatomy
of the knee affects the cartilage response profile in the acquired US data. If the transducer is perfectly
aligned, and attenuation from the soft-tissue interface is low, then the cartilage interface response
profile appears as a dominant ridge edge along the scan-line direction. However, due to the inaccurate
alignment of the US transducer, this response profile was degraded during data collection, which
affected consecutive image analysis. The first step in our framework involves the enhancement of the
low-intensity knee-bone surface and cartilage interface by performing image filtering in a frequency
domain similar to [26]:

USE(x, y) = ∑r ∑s[[ers(x, y)− ors(x, y)]− Tr]

∑r ∑s
√

e2
rs(x, y)− o2

rs(x, y) + ε
. (1)

Here, e(x, y) and o(x, y) represent the even and odd symmetric filter responses and are obtained
by filtering the B-mode US image, US(x, y), using a bandpass quadrature filter in the frequency
domain. r and s represent filter orientation and scale, respectively, and ε is a constant used to avoid
division by zero. Tr is a noise-dependent threshold calculated as a specified number of standard
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deviations above the mean of local energy distribution because of noise [27]. Tr is independently
calculated for each orientation.

For the enhancement of bone surfaces, only the absolute response values of odd- and even-filter
responses were used to obtain the phase-symmetry metric [27]. However, we were interested in the
enhancement of the cartilage response profile, which involves soft tissue and bone boundary. Therefore
in our proposed metric, defined in Equation (1), the absolute response values of odd- and even-filter
responses are not used. During this work, a 2D Log-Gabor filter is used as the bandpass quadrature
filter. The 2D Log-Gabor filter function is defined as [27]:

G(ω, φ) = exp[− (log(ω/ω0))
2

2(log(k/ω0))2 +
(φ− φ0)

2

2σφ
] (2)

In Equation (2), σφ = ∆φ/s evaluates angular bandwidth ∆Ω as, ∆Ω = 2× σφ

√
2× log2. ∆φ

denotes the angular separation between neighboring orientations. Figure 2 shows the enhanced
USE(x, y) image, where the bone–cartilage region is enhanced compared to the original B-mode
US image. Investigating the results, we can see that the proposed method provides general
enhancement results of the cartilage response profile, independent of image intensity. The enhanced
image, USE(x, y), is used as an input to the automated knee-bone surface-localization and
cartilage-segmentation method, which is explained in the next sections.

Figure 2. In vivo ultrasound (US) image enhancement: Top row: In vivo B-mode knee-cartilage US
image (US(x, y)). Bottom row: Enhanced knee-cartilage US image (USE(x, y)).

2.3. Knee-Bone Localization for Automatic Seed Initialization

2.3.1. Local-Phase-Based Bone Enhancement

The enhancement method, explained in the previous section, provides a general enhancement
method for soft-tissue, cartilage-region, and bone-surface response, where the intensity values for
all these regions are represented with high intensity values (Figure 2). Therefore, using enhanced
image USE(x, y) as an input to the dynamic programming approach results in the localization of
features that do not correspond to bone surface, resulting in wrong segmentation for the cartilage
region. To gain enhancement with minimum soft-tissue and cartilage interface, and more bone
representation, three image phase features (local-phase tensor(LPT(x, y)),local weighted mean phase
angle (LwPA(x, y)), and local-phase energy (LPE(x, y))), were calculated. LPT(x, y) is a tensor-based
local-phase feature-extraction method providing general enhancement, independent of the specific
bone edge response profile. LPT(x, y) is obtained using [26]:

LPT(x, y) =
√

T2
even + T2

odd × cos(φ). (3)
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In Equation (3) φ represents the instantaneous phase indicating the local contrast independently
of feature type, and Teven and Todd represent the symmetric and asymmetric feature responses that are
defined as [28]:

Teven = [H(USDB(x, y))] [H(USDB(x, y))]T ,

Todd = −0.5× ([∇USDB(x, y)]
[
∇∇2USDB(x, y)

]T
+ (4)[

∇∇2USDB(x, y)
]
[∇USDB(x, y)]T).

Here H, ∇, and ∇2 denote the Hessian, gradient, and Laplacian operations. USDB(x, y) is
obtained by masking the band-pass filtered USE(x, y) image with a distance map. The masking
operation results in the enhancement of bone surfaces located deeper in the image, as opposed to
soft-tissue artefacts closer to the transducer surface.

The LPE(x, y) and LwPA(x, y) image features are computed using monogenic signal theory.
The monogenic signal image, denoted as USM(x, y), [26,29] is formed by combining α-scale space
derivative quadrature band-pass (ASSD) filtered LPT(x, y) image and Riesz filtered component as:

USM(x, y) = [LPTB(x, y), LPTB(x, y)× h1(x, y), LPTB(x, y)× h2(x, y)]. (5)

In Equation (5), h1(x, y) and h2(x, y) represents the spatial domain vector valued Riesz filter.
LPTB(x, y), is bandpass filtered LPT(x, y) image. ASSD filters are used as bandpass filters, as they
have shown improved edge detection in US images [29,30]. LPE(x, y) and LwPA(x, y) are defined as:

LPE(x, y) = ∑
sc
|USM1(x, y)| −

√
US2

M2(x, y) + US3
M2(x, y); (6)

LwPA(x, y) = arctan ∑sc USM1(x, y)√
∑sc US2

M1 + ∑sc US2
M2(x, y)

. (7)

In Equation (7), sc represents the number of scales. LPE(x, y) denotes the underlying shape of the
bone boundary, and LwPA(x, y) preserves all the structural details of US image. The final local-phase
bone image (LP(x, y)) is obtained by combining all the three phase features as

LP(x, y) = LPT(x, y)× LPE(x, y)× LwPA(x, y). (8)

The combination of the three phase feature images results in the suppression of soft-tissue
interfaces while keeping bone surfaces more compact and localized (Figure 3). LP(x, y) is used for the
extraction of bone-shadow regions from the US data.

2.3.2. Bone-Shadow Enhancement

Acoustic bone-shadow information in US is important during bone imaging. Real-time feedback
of bone-shadow information can guide the clinician to a standardized diagnostic viewing plane
with minimal artefacts, and can provide additional information for bone localization. The proposed
bone-shadow region enhancement method is based on the confidence-map (CM) approach [31] using
an LP(x, y) image. The framework is modeled using US signal scattering and attenuation information
that are combined as [30]:

CMLP(x, y) = USA(x, y)BSE(x, y) + (1−USA(x, y))ρ (9)

In Equation (9), CMLP(x, y) is the CM image of local-phase bone image LP(x, y) obtained using
Reference [31]. USA(x, y) is the US signal-transmission map, ρ is an echogenicity constant of the
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tissue surrounding the bone. BSE(x, y) denotes the enhanced bone-shadow image. The USA(x, y) is
minimized using the below function:

λ

2
||USA(x, y)− CMLP(x, y)||22 + ∑

j∈x
||Wjo(Dj ∗USA(x, y))||1 (10)

Figure 3. Local-phase image bone features: (a) original B-mode US(x, y). (b) Enhanced US image
USE(x, y). (c) Local-phase tensor image (LPT(x, y)). (d) Local-phase energy image (LPE(x, y)).
(e) Local weighted mean phase angle image (LwPA(x, y)). (f) Local-phase bone image (LP(x, y)).
Red arrows point to extracted soft-tissue interfaces where enhancement was achieved.

Here, o represents elementwise multiplication, x is an index set, and ∗ is convolution operator.
Wj is a weighting matrix calculated as Wj(x, y) = exp(−|Dj(x, y) ∗ CMLP(x, y)|2). Dj is computed
using higher-order differential filters that enhance bone features in local regions while suppressing
image noise. BSE(x, y) is computed using USA(x, y) as:

BSE(x, y) = [(CMLP(x, y)− ρ)/[max(USA(x, y), ε)]δ] + ρ (11)

In Equation (11), δ is the tissue attenuation coefficient, and ε is a constant used to avoid division
by zero. Figure 4 displays various obtained BSE(x, y) images from corresponding B-mode US images.
Investigating BSE(x, y) images, we can see a clear separation between the soft-tissue interface and
shadow region with minimal intensity variations in both regions. Intensity values depict the probability
of a signal reaching the transducer imaging array if signal propagation started at that specific pixel
location. Furthermore, BSE(x, y) shows a clear transition from the soft-tissue interface to the bone
surface by depicting sharp intensity change between two interfaces (Figure 4). The BSE(x, y) and
LP(x, y) images are used during bone-surface localization, which is explained in the next section.

2.3.3. Bone-Surface Localization Using Dynamic Programming

Localization of the bone surface within a column s, denoted as BL(s), is achieved by minimizing
a cost function composed of two energy functions, internal energy (Eint(x, y)) and external energy
(Eext(x, y)). Eint(x, y) is determined by masking LP(x, y) image with BSE(x, y), which provides a
probability map of where the expected bone surface is located (Figure 5b). Eext(x, y) is obtained by
dividing the US image into three regions marked as the bone region, boneless region, and jump region,
i.e., the region between the two; these regions are defined as:
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Eext(i, j) =


ν|| dBL

ds ||
2 + ξ|| d2BL

ds2 ||2 + ς Bone region
JumpCost Jump region

νD2
1 + ξD2

2 Boneless region
(12)

Figure 4. Bone-surface localization results. Top row: B-mode in vivo US knee scans. Yellow arrows
show bone-shadow regions. Middle row: Enhanced bone-shadow image BSE(x, y) obtained by
processing B-mode US scans shown in top row. Soft-tissue interface, red color coding. Bone-shadow
regions, blue. Intensity values depict the probability of a signal reaching the transducer imaging
array if the signal propagation started at that specific pixel location. The transition region between
the soft-tissue and bone-shadow regions represent the expected bone-shadow interface. Bottom row:
Localized bone surfaces, shown in red, overlaid on the B-mode US scans.

In the above equation, ν and ξ are the weights of smoothness and curvature. ς is a negative
scalar to ensure bone connectivity. BL(s) is minimized using local-phase-based image guided dynamic
programming as:

BLmin(i, j) = Eint(i, j) + mink[BLmin(k, j− 1) + Eext(k, j)], (13)

Here, BLmin(i, j) denotes the minimum cost function moving from first column to the pixel in the
ith row and jth column, and k represents the row index of the image. During optimization, the index
of pixel k,j with its minima is stored in the following function: Indexmin(i, j) = argmink[BLmin(k, j−
1) + Eext(k, j)]. Localization of the bone surface is obtained by tracing back from the last column of the
US image using:

BLopt(s) =

{
NR + 1 s = NC

Indexmin[s + 1, BLopt(s + 1)] s = 1, ..., (NC− 1)
(14)

In Equation (14), BLopt is the optimized localization path where the energy-cost function is
minimized. The number of columns and rows of the B-mode US image are denoted as NC, and NR.
The last column and row in the US image are also indicated using NC and NR. The mean bone-surface
localization accuracy of this method was reported to be 0.26 mm [26]. Qualitative results of the
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localized knee-bone surfaces are displayed in Figures 4 and 5. In the next section, we explain how
these localized bone surfaces are used as seed points for automated cartilage segmentation.

Figure 5. Bone-surface localization. (a) In vivo B-mode US knee scan. Yellow arrow, bone-shadow
region. Enhanced bone-shadow image BSE(x, y). Soft-tissue interface, red color. Bone-shadow regions,
blue. Intensity values depict the probability of a signal reaching the transducer imaging array if the
signal propagation started at that specific pixel location. The transition region between the soft-tissue
and bone-shadow regions represent the expected bone-shadow interface. (b) Bone probability image.
(c) Bone, boneless, and jump regions. (d) Localized bone surface, shown in red, overlaid on original
B-mode US image.

2.4. Cartilage Segmentation

In this paper, we investigate three different seed-based segmentation methods, random walker
(RW), watershed, and graph-cut, as they showed better performance with prior shape knowledge.
RW segmentation is advantageous over the nonsmoothness of the boundaries (metrication error),
preference for shorter boundaries (shrinking bias), boundary length regularization, and number
of initial seeds [32–35]. Watershed is widely used in medical-image segmentation because of its
ease of use, lower computing time, and complete division of images with low contrast and weak
boundaries. The segmented results provide closed contours, thus eliminating postprocessing such as
contour joining [32,36–39]. The graph-cuts have also extensively been employed for medical-image
segmentation due to their accuracy and robustness [40,41]. Below, we first show how localized bone
surfaces, explained in the previous section, are used as initial seed points to segmentation algorithms.
Following this, we provide a brief explanation on each investigated segmentation method. During
the segmentation process, enhanced US data USE(x, y) are segmented. In order to investigate the
improvements achieved by using USE(x, y) images as an input to segmentation, we also performed
segmentation using the original B-mode US data.

2.4.1. Seed Initialization

The ideal seed points for the above mentioned segmentation methods must lie inside the region
and should be near the center of the region of interest. The distance from the foreground seed pixel to its
neighboring pixels should be small enough to allow continuous growing. Automatically extracted bone
surfaces are used as initial seeds for automatic cartilage-segmentation algorithms. In Reference [42]
mean cartilage knee thickness, obtained from 11 cadavers using a surface probe, had a range from 1.69
to 2.55 mm (Mean: 2.16 ± 0.44 mm). Therefore, mean knee-cartilage thickness value, denoted as MKT,
was used to automatically initialize the seeds for the validated segmentation algorithms.

For the RW segmentation algorithm, background regions were initialized by translating localized
bone surfaces 2×MKT toward the bone-shadow region and the soft-tissue region above the cartilage.
Foreground regions were initialized by translating localized bone surface MKT÷ 2 toward the cartilage
region in the direction of the US transducer. For the watershed algorithm, internal markers were
initialized with the translation of MKT÷ 2, and the external marker was initialized on the localized
bone surface and with the translation of 2 × MKT above the cartilage region. For the graph-cut
algorithm, foreground seeds were marked by translating the localized bone surfaces by MKT ÷ 2 and
background seeds, with the translation of 2×MKT above and below the cartilage region. The obtained
cartilage segmentations using the initialized seed values were qualitatively validated in ten US scans
obtained from one of the volunteer subjects (Subject 1), and were were kept constant throughout
quantitative validation.
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2.4.2. Random-Walker Image Segmentation

In RW, the input image is represented as graph G = (V, E), where V corresponds to pixels and
E are the edges connecting each pair of adjacent pixels [33]. Edges are weighted based on the pixel
intensities and gradient values such that the edge with the highest gradient value is weighted more.
Weighted function wij is given as:

wij = exp(−β(gi − gj)
2); ∀(i,j) = 1 · · ·N; i 6= j. (15)

Here, gi and gj are the pixel intensities at each pixel vi and vj, and β is a constant parameter used
to normalize square gradients (gi − gj)

2. The user labels pixels as foreground and background, and
each unlabeled pixel releases a random walk, which is classified based on the probability values of each
unlabeled pixel reaching the labeled pixel. The probability for each unlabeled pixel xU is calculated as:

(LU + γIU)xU = −BTxS + γλ. (16)

where L represents the Laplacian of the graph, I is the identity matrix, x is the probability vector of
each pixel, λ is an optional vector of prior probabilities weighted by γ, and U, S denotes unlabeled
and labeled seeds.

2.4.3. Watershed Image Segmentation

In the watershed algorithm, the gray image is transformed as a topographic relief. The objective
of watershed transform is to find the ‘catchment basins’ and ‘watershed ridge lines’ that divide the
neighboring catchment basin in the image [38]. In a traditional watershed algorithm, a hole is punched
in each of the local minima of the relief, and the entire topography is flooded from below the relief by
letting the water through the hole rising at a uniform rate. When the rising water in the catchment
basin is about to merge, a dam is built around the basin to stop the merging. These dam boundaries
corresponds to the dividing lines of watershed.

A marker-controlled watershed algorithm is an enhancement of the traditional watershed
algorithm which defines a marker and a segmentation function for efficient segmentation of objects
with boundaries expressed as ridges. Markers are placed as an internal marker (foreground) associated
with the region of interest, and external marker (background) associated with the backgrounds.
In traditional watershed, the catchment basin of image function f is defined as Xhmax obtained after the
recursion of the following function:

Xhmin
= Thmin

( f )

Xh+1 = MINh+1 ∪ IZTh+1( f )(Xh), hmin ≤ h < hmax
(17)

In the above equation, Xhmin
is the set of points of image I, Th is the threshold, MINh+1 is the

union of all regional minima at h + 1, I is a 2D grayscale image with values in interval [hmin, hmax].
In a marker-based watershed, we impose minima to image function f at specific locations denoted as
Markers (M). New image function g is defined as

g(p) =

{
hmin−1 i f p ∈ M

f (p) otherwise
(18)

Here, p represents the pixel co-ordinates, and hmin−1 represents a new value dedicated to initial
markers. The new recursion function is given as

Xhmin−1
= Thmin−1

(g)

Xh+1 = IZTh+1(g)(Xh), hmin−1 ≤ h < hmax
(19)
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2.4.4. Graph-Cut Image Segmentation

The graph-cut segmentation algorithm [40] is similar to the RW, where the input 2D image is
represented as an undirected graph G = (V, E), defined as the set of nodes and of undirected edges
(E), where each pair of the connected node is represented by a single edge e = (p, q) ∈ E. The graph
consists of two special terminal nodes S(source), and T(sink) that represents the foreground and
background labels. Each edge e ∈ E is assigned non-negative weight we. The cut divides the nodes
between the terminals where s− t is a subset of edges C ∈ E, such that terminals S and T are separated
as G = (V, E/C). The cost of cut is given as the sum of weights on edges, which is represented as

|C| = ∑
e∈C

we (20)

2.5. Automatic Cartilage-Thickness Computation

In order to automatically measure cartilage thickness, we calculate the Euclidean distance map
from the segmented cartilage region. The distance values corresponding to the automatically extracted
cartilage boundary were averaged for the final thickness calculation. This analysis was repeated
for manually segmented and all automatically segmented cartilage regions during quantitative
validation. We also performed a second manual operation by drawing a normal line between the
cartilage–bone interface and the synovial space on original B-mode US images at ten different points
and the mean thickness was computed for each B-mode US image (Figure 6). Figure 6 shows an
example distance-map image, and the extracted cartilage boundary used during thickness calculation.

Automatically segmented cartilage regions and thickness values were compared with manual
segmentation and thickness measurements provided by an expert ultrasound technician. Segmentation
validation was obtained by calculating DSC. Automatically computed thickness values were compared
with manually measured expert thickness values. We also provide quantitative and qualitative results
if B-mode US data were used as input to segmentation methods rather than the enhanced USE(x, y)
image. The proposed method was implemented in MATLAB R2017a software package, and ran on a
3.40 GHz Intel R© CoreTM i7-4770 CPU, 16 GB RAM Windows PC.

Parameter settings: The Log-Gabor filter was designed using the filter parameters provided
in Reference [27]. LPT(x, y) images were calculated using the filter parameter values defined in
Reference [28]. Bone-shadow enhancement was achieved using λ = 2. Tissue echogenicity constant ρ

was chosen as 90% of the maximum intensity value of CMLP(x, y) image. η = 2, β = 90, and γ = 0.03
were set as constant to obtain CM(x, y) and CMLP(x, y) images. For bone localization, ν = 50, ξ = 100,
ς = 0.15, Jumpcost = 0.8, D1 = D2 = 1 were set as constant values [26]. The parameters for bone-surface
localization and bone-shadow enhancement were previously validated on 150 US scans collected from
7 subjects. Therefore, we did not change these parameters and adapted the same values reported in
Reference [26]. During qualitative and quantitative analysis, all parameter values mentioned in this
section were kept constant.
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Figure 6. Cartilage-thickness measurement. (a) Example manual thickness measurement using
10 anatomical landmarks obtained by drawing a normal line between cartilage–bone interface and the
synovial space, shown with yellow arrows. (b) Automatically segmented cartilage. (c) Distance map
obtained from the segmented image shown in (b). Red pixels, cartilage boundary, used during the
calculation of mean cartilage thickness. White rectangle, zoomed-in region for improved display.

3. Results

3.1. Cartilage-Segmentation Qualitative Results

Qualitative results of the automatically segmented cartilage regions using the three different
automatic segmentation methods and the manual expert segmentations are shown in Figure 7.
Investigating the results, we can infer that the RW algorithm yielded better cartilage segmentation,
whereas the watershed and graph-cut algorithms are limited by over- and undersegmentation for
various cartilage sections. Figure 8 shows the qualitative results of cartilage segmentation obtained
when the original B-mode images were used as an input to the segmentation methods. Qualitative
results show that the RW algorithm yielded better cartilage segmentation, whereas watershed and
graph-cut were limited by oversegmentation. Comparing the qualitative results, shown in Figures 7
and 8, we can see the improvements achieved in segmentation quality when using the enhanced US
images USE(x, y) as an input to the investigated segmentation methods.

Figure 7. Top row: Qualitative results of automatically segmented cartilage when using USE(x, y) as
input to the segmentation method, overlaid on the expert manual segmentation (red: false negative,
magenta: false positive, white: true positive): (a) Manual segmentation overlaid with random-walker (RW)
segmentation. (b) Manual segmentation overlaid on watershed segmentation. (c) Manual segmentation
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overlaid on graph-cut segmentation. Bottom row: Automatically segmented cartilage region overlaid
on original B-mode US data: (d) Cartilage region segmented using RW method. (e) Cartilage region
segmented using watershed method. (f) Cartilage region segmented using graph-cut method.

Figure 8. Top row: Qualitative results of automatically segmented cartilage using B-mode US data as
an input to the segmentation method, overlaid on expert manual segmentation (red: false negative,
magenta: false positive, white: true positive): (a) Manual segmentation overlaid with RW segmentation.
(b) Manual segmentation overlaid on watershed segmentation. (c) Manual segmentation overlaid on
graph-cut segmentation. Bottom row: automatically segmented cartilage region overlaid on original
B-mode US data: (d) Cartilage region segmented using RW method. (e) Cartilage region segmented
using watershed method. (f) Cartilage region segmented using graph-cut method.

3.2. Cartilage-Segmentation Quantitative Results

Average computational time for segmentation using RW, watershed, and graph-cut was 11.08
(±0.2), and 10.53 and 11.51 (±0.3) seconds, respectively. These computation times include the required
time for the image-enhancement and bone-surface localization steps.

Table 1 shows the mean DSC for all three different segmentation algorithms investigated during
this work. Overall, the RW method obtained a higher mean DSC value compared to the watershed
and graph-cut segmentation algorithms. The mean DSC was 0.90, 0.86, and 0.84 for the RW, watershed,
and graph-cut methods, respectively (Table 1).

In Table 1, we also report the average recall, precision rates, and F-scores for the three different
segmentation methods. RW achieved the the best performance compared to the other two methods.
When using original B-mode US data as an input to the segmentation methods, the DSC decreased to
0.79, 0.65, and 0.76 for the RW, watershed, and graph-cut methods, respectively (Table 1). The lower
F-score, precision, and recall values further suggest that the algorithm returned less relevant results as
compared to the enhanced US images (USE(x, y)).

Table 1. Quantitative validation of segmentation results. Dice similarity coefficient (DSC), precision,
and recall rates for the investigated segmentation methods when using enhanced (USE(x, y)) and
B-mode US (US(x, y)) data as input to the segmentation methods.

Quantitative results when using enhanced US image USE(x, y).

Method
DSC

Mean ± SD Precision Recall F-score
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Table 1. Cont.

RW 0.90 ± 0.01 0.88 0.92 0.86
Watershed 0.86 ± 0.04 0.82 0.91 0.86
Graph-cut 0.84 ± 0.03 0.81 0.87 0.84

Quantitative results when using B-mode US image US(x, y).

Method
DSC

Mean ± SD Precision Recall F-score

RW 0.79 ± 0.1 0.80 0.80 0.79
Watershed 0.65 ± 0.2 0.60 0.78 0.66
Graph-cut 0.76 ± 0.09 0.72 0.82 0.76

3.3. Cartilage-Thickness Measurement Quantitative Results

Table 2 shows the mean and standard deviation for computed cartilage thickness. The results
indicate that the RW segmentation algorithm is more reproducible to manual-segmentation results as
compared to the watershed and graph-cut methods. Quantitative results also indicate that there is a
0.15 mm difference between the obtained thickness measurements using manual landmark selection
and manual segmentation. This difference also shows that there is a variation in manual measurements.
This is an expected result due to manual labeling of US data being an errorprone procedure.

Table 2. Quantitative results for automatic cartilage-thickness measurement.

Method Image Mean ± SD (mm)

Manual measurement Original B-mode 2.95 ± 0.66
Automatic measurement Manual Segmentation 3.1 ± 0.68

RW Segmentation 3.14 ± 0.46
Watershed Segmentation 3.23 ± 1.21
Graph-cut Segmentation 3.78 ± 0.35

The Bland–Altman plots shown in Figure 9 display a comparison of cartilage thickness obtained
by manual anatomical landmark selection from B-mode US data and the thickness values computed
using the investigated methods, as well as the measured thickness from manually segmented cartilage
regions. The mean error, difference between the manual landmark-based thickness calculation„ and all
investigated thickness computations, were −0.15 mm (±0.11 mm), −0.18 mm (±0.45 mm), −0.28 mm
(±1.36 mm), and −0.83 mm (±0.49 mm) for the manual segmentation, RW, watershed, and graph-cut
methods, respectively. Investigating Table 2 and Figure 9, we could identify that the automatic
RW-based cartilage-thickness method achieved the closest thickness-measurement results from the
investigated automatic methods to the manual landmark-based thickness measurement.

A paired t-test between manual landmark-based cartilage-thickness measurements and
measurement obtained from manual segmentation, RW, watershed, and graph-cut segmentation
methods at a 5% significance level achieved p values as shown in Table 3 (first row). Investigating
the results, we can see that the measurements have significant differences. A reason for this can
be attributed to the difference between the number of used landmarks, 10 during this work, and
the number or pixels corresponding to the boundary of the segmented cartilage. In order to
investigate this, we performed a second significance analysis. The same t-test was performed between
thickness measurement obtained from the manual segmentation and measurements obtained from
RW, watershed, and graph-cut segmentation methods. The achieved p values are shown in Table 3
(second row). Results show that the RW and watershed thickness values have no significant difference.
Statistical-significance results between the three automatic-segmentation methods using a paired t-test
with 5% significance achieved p values < 0.05, showing that there is significant difference.
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Table 3. Statistical significance results between manual and automated cartilage-thickness measurements.

Manual Segmentation RW Watershed Graph Cut

Manual landmark-based segmentation 0.02 0.001 0.004 0.000003
Manual Segmentation Not Applicable 0.57 0.2 0.00002

Figure 9. Bland–Altman plots for thickness comparison obtained with the (a) manual thickness
computation, (b) RW, (c) watershed, and (d) graph-cut methods.

4. Discussion and Conclusions

Knee-cartilage region segmentation and thickness analysis from 2D US scans has potential for
the clinical assessment of cartilage degeneration, a clinical indication used for OA diagnosis and
monitoring. We presented a fully automatic and accurate method for cartilage image enhancement,
segmentation, and thickness measurement from 2D US data. Quantitative evaluations demonstrated
that there was no significant agreement between manual landmark-based cartilage-thickness
measurement, and thickness measured from manually segmented cartilage regions. During this
work, we evaluated three different segmentation methods. The overall qualitative and quantitative
results indicate that, between the RW, watershed, and graph-cut algorithms, RW segmentation is
more consistent with the manual results. Quantitative evaluations showed that there is no significant
agreement between manual landmark-based cartilage thickness measurement, and thickness measured
from manually segmented cartilage regions. This further proves the manual segmentation process of
US data is an errorprone procedure. Furthermore, manual measurements and segmentations were
performed by a single experienced US technician. Intra- and inter-user variability errors need to
be evaluated in order to fully understand the challenges involved during the manual segmentation
process. In order to fully overcome the errors introduced during the manual segmentation of US
data, gold-standard thickness measurements obtained from an MRI scan should be investigated.
Furthermore, thickness calculations were performed using the distance function. A more accurate
thickness computation method is the star-line-based method proposed in Reference [43], which we
aim to investigate as part of our future work.

The proposed framework requires bone-surface translation to mark the initial seeds for the
segmentation algorithm. The seeds were translated on the basis of prior shape knowledge of healthy
cartilage and were kept constant for the whole dataset during validation. The method will still
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be successful for segmenting cartilage from subjects with slight-to-moderate OA with thinned (but
connected) cartilage. For segmenting broken cartilages associated with severe OA, automatic seed
initialization might be problematic. However, since seed extraction is based on the localization of
knee-bone surfaces, the seed-selection process is not affected by the severity of the OA. More in-depth
analysis is necessary in order to assess the full clinical usability of the proposed work for segmenting
cartilage regions from OA patients.

The quality of cartilage segmentation depends on the collected image data and seed initialization
for the segmentation algorithm. As US is user-dependent modality, an important consideration while
evaluating articular cartilage is the inclination and the positioning of the US transducer on the proper
plane. During data collection, specific attention was given to collect clinically adequate knee scans.
In the future, we plan to develop methods based on deep learning for automatic adequate scan plane
selection. In order to improve accuracy and robustness, we plan to extend our work for processing 3D
US scans. Recently, medical-image segmentation methods based on deep-learning theory have had
successful results. Further comparison of deep-learning-based segmentation methods is required in
order to assess the full potential of the proposed framework.

In this work, we were interested in the development of a general cartilage enhancement and
segmentation method that could be applied to any B-mode US image collected from a standard US
machine or point-of-care US device for widespread applicability in a standard clinical setting. In recent
years, researchers have been looking into designing segmentation or enhancement methods based
on extracted information from raw radio-frequency (RF) US data. Although access to RF data is only
available in dedicated research machines, it appears that RF signal information could provide important
information about the cartilage and should be further investigated. Elastography and shear-wave
elastography (SWE) has also been investigated for imaging cartilage [44,45]. In Reference [44],
the authors mention that strain mapping cartilage regions using a static compression method is
challenging, and optimization of the technique is required. For SWE, generation and measurement of
mechanical waves in cartilage tissue is problematic [46]. Commercially available US machines with
SWE imaging capabilities are optimized to detect Young’s modulus values less than 0.3 MPa, which is
less than the required limit for imaging cartilage [46]. Therefore, the new wave of propagation models
should be investigated in order for SWE to be successfully employed for cartilage imaging.

Author Contributions: P.D. was responsible for methodology, software, validation, data collection, qualitative
and quantitative visualization, and writing—original-draft preparation. I.H. was responsible for conceptualization,
methodology, writing—original-draft preparation, supervision, and project administration.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Braun, H.J.; Gold, G.E. Diagnosis of osteoarthritis: Imaging. Bone 2012, 51, 278–288. [CrossRef]
2. Roemer, F.W.; Crema, M.D.; Trattnig, S.; Guermazi, A. Advances in imaging of osteoarthritis and cartilage.

Radiology 2011, 260, 332–354. [CrossRef]
3. Aprovitola, A.; Gallo, L. Knee bone segmentation from MRI: A classification and literature review.

Biocybern. Biomed. Eng. 2016, 36, 437–449. [CrossRef]
4. Pedoia, V.; Li, X.; Su, F.; Calixto, N.; Majumdar, S. Fully automatic analysis of the knee articular cartilage

T1ρ relaxation time using voxel-based relaxometry. J. Magn. Reson. Imaging 2016, 43, 970–980. [CrossRef]
[PubMed]

5. Kashyap, S.; Zhang, H.; Rao, K.; Sonka, M. Learning-Based Cost Functions for 3-D and 4-D Multi-Surface
Multi-Object Segmentation of Knee MRI: Data From the Osteoarthritis Initiative. IEEE Trans. Med. Imaging
2018, 37, 1103–1113. [CrossRef]

6. Fujinaga, Y.; Yoshioka, H.; Sakai, T.; Sakai, Y.; Souza, F.; Lang, P. Quantitative measurement of femoral
condyle cartilage in the knee by MRI: Validation study by multireaders. J. Magn. Reson. Imaging 2014,
39, 972–977. [CrossRef]

http://dx.doi.org/10.1016/j.bone.2011.11.019
http://dx.doi.org/10.1148/radiol.11101359
http://dx.doi.org/10.1016/j.bbe.2015.12.007
http://dx.doi.org/10.1002/jmri.25065
http://www.ncbi.nlm.nih.gov/pubmed/26443990
http://dx.doi.org/10.1109/TMI.2017.2781541
http://dx.doi.org/10.1002/jmri.24217


J. Imaging 2019, 5, 43 16 of 17

7. Swamy, M.M.; Holi, M.S. Knee joint articular cartilage segmentation, visualization and quantification using
image processing techniques: A review. Int. J. Comput. Appl. 2012, 42, 36–43.

8. Solloway, S.; Hutchinson, C.E.; Waterton, J.C.; Taylor, C.J. The use of active shape models for making
thickness measurements of articular cartilage from MR images. Magn. Reson. Med. 1997, 37, 943–952.
[CrossRef] [PubMed]

9. Pakin, S.K.; Tamez-Pena, J.G.; Totterman, S.; Parker, K.J. Segmentation, surface extraction, and thickness
computation of articular cartilage. In Medical Imaging 2002: Image Processing; International Society for Optics
and Photonics: San Diego, CA, USA, 2002, Volume 4684, pp. 155–167.

10. Maurer, C.R.; Qi, R.; Raghavan, V. A linear time algorithm for computing exact Euclidean distance transforms
of binary images in arbitrary dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 2003, 25, 265–270. [CrossRef]

11. Mlejnek, M.; Vilanova, A.; Groller, M.E. Interactive thickness visualization of articular cartilage.
In Proceedings of the Conference on Visualization’04, Austin, TX, USA, 10–15 October 2004, pp. 521–528.

12. Heuer, F.; Sommers, M.; Reid, J.; Bottlang, M. Estimation of cartilage thickness from joint surface scans:
Comparative analysis of computational methods. ASME-PUBLICATIONS-BED 2001, 50, 569–570.

13. Naredo, E.; Acebes, C.; Möller, I.; Canillas, F.; de Agustín, J.J.; de Miguel, E.; Filippucci, E.; Iagnocco, A.;
Moragues, C.; Tuneu, R.; et al. Ultrasound validity in the measurement of knee cartilage thickness.
Ann. Rheum. Dis. 2008, 68, 1322–1327. [CrossRef]

14. Myers, S.L.; Dines, K.; Brandt, D.A.; Brandt, K.D.; Albrecht, M.E. Experimental assessment by high frequency
ultrasound of articular cartilage thickness and osteoarthritic changes. J. Rheumatol. 1995, 22, 109–116.

15. Mathiesen, O.; Konradsen, L.; Torp-Pedersen, S.; Jørgensen, U. Ultrasonography and articular cartilage
defects in the knee: An in vitro evaluation of the accuracy of cartilage thickness and defect size assessment.
Knee Surg. Sports Traumatol. Arthrosc. 2004, 12, 440–443. [CrossRef]

16. Aisen, A.M.; McCune, W.J.; MacGuire, A.; Carson, P.L.; Silver, T.M.; Jafri, S.Z.; Martel, W. Sonographic
evaluation of the cartilage of the knee. Radiology 1984, 153, 781–784. [CrossRef]

17. Grassi, W.; Lamanna, G.; Farina, A.; Cervini, C. Sonographic imaging of normal and osteoarthritic cartilage.
In Seminars in Arthritis and Rheumatism; Elsevier: Amsterdam, The Netherlands, 1999; Volume 28, pp. 398–403.

18. Schmitz, R.J.; Wang, H.M.; Polprasert, D.R.; Kraft, R.A.; Pietrosimone, B.G. Evaluation of knee cartilage
thickness: A comparison between ultrasound and magnetic resonance imaging methods. Knee 2017,
24, 217–223. [CrossRef]

19. Saarakkala, S.; Waris, P.; Waris, V.; Tarkiainen, I.; Karvanen, E.; Aarnio, J.; Koski, J. Diagnostic performance
of knee ultrasonography for detecting degenerative changes of articular cartilage. Osteoarthr. Cartil. 2012,
20, 376–381. [CrossRef]

20. Harkey, M.; Blackburn, J.; Davis, H.; Sierra-Arévalo, L.; Nissman, D.; Pietrosimone, B. Ultrasonographic
assessment of medial femoral cartilage deformation acutely following walking and running. Osteoarthr. Cartil.
2017, 25, 907–913. [CrossRef]

21. Hossain, M.B.; Lai, K.W.; Pingguan-Murphy, B.; Hum, Y.C.; Salim, M.I.M.; Liew, Y.M. Contrast enhancement
of ultrasound imaging of the knee joint cartilage for early detection of knee osteoarthritis. Biomed. Signal
Process. Control. 2014, 13, 157–167. [CrossRef]

22. Faisal, A.; Ng, S.C.; Goh, S.L.; Lai, K.W. Knee cartilage segmentation and thickness computation from
ultrasound images. Med. Biol. Eng. Comput. 2018, 56, 657–669. [CrossRef]

23. Desai, P.R.; Hacihaliloglu, I. Enhancement and automated segmentation of ultrasound knee cartilage for
early diagnosis of knee osteoarthritis. In Proceedings of the 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4–7 April 2018; pp. 1471–1474.

24. Wang, L.; He, L.; Mishra, A.; Li, C. Active contours driven by local Gaussian distribution fitting energy.
Signal Process. 2009, 89, 2435–2447. [CrossRef]

25. Li, C.; Huang, R.; Ding, Z.; Gatenby, J.; Metaxas, D.N.; Gore, J.C. A level set method for image segmentation
in the presence of intensity inhomogeneities with application to MRI. IEEE Trans. Image Process. 2011,
20, 2007. [PubMed]

26. Hacihaliloglu, I. Localization of bone surfaces from ultrasound data using local phase information and
signal transmission maps. In International Workshop and Challenge on Computational Methods and Clinical
Applications in Musculoskeletal Imaging; Springer: Cham, Switzerland, 2017; pp. 1–11.

27. Hacihaliloglu, I.; Abugharbieh, R.; Hodgson, A.J.; Rohling, R.N. Bone surface localization in ultrasound
using image phase-based features. Ultrasound Med. Biol. 2009, 35, 1475–1487. [CrossRef]

http://dx.doi.org/10.1002/mrm.1910370620
http://www.ncbi.nlm.nih.gov/pubmed/9178247
http://dx.doi.org/10.1109/TPAMI.2003.1177156
http://dx.doi.org/10.1136/ard.2008.090738
http://dx.doi.org/10.1007/s00167-003-0489-x
http://dx.doi.org/10.1148/radiology.153.3.6387794
http://dx.doi.org/10.1016/j.knee.2016.10.004
http://dx.doi.org/10.1016/j.joca.2012.01.016
http://dx.doi.org/10.1016/j.joca.2016.12.026
http://dx.doi.org/10.1016/j.bspc.2014.04.008
http://dx.doi.org/10.1007/s11517-017-1710-2
http://dx.doi.org/10.1016/j.sigpro.2009.03.014
http://www.ncbi.nlm.nih.gov/pubmed/21518662
http://dx.doi.org/10.1016/j.ultrasmedbio.2009.04.015


J. Imaging 2019, 5, 43 17 of 17

28. Hacihaliloglu, I.; Rasoulian, A.; Rohling, R.N.; Abolmaesumi, P. Local phase tensor features for 3-D
ultrasound to statistical shape+ pose spine model registration. IEEE Trans. Med. Imaging 2014, 33, 2167–2179.
[CrossRef]

29. Belaid, A.; Boukerroui, D. α scale spaces filters for phase based edge detection in ultrasound images.
In Proceedings of the 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), Beijing, China,
29 April–2 May 2014; pp. 1247–1250.

30. Hacihaliloglu, I. Enhancement of bone shadow region using local phase-based ultrasound transmission
maps. Int. J. Comput. Assist. Radiol. Surg. 2017, 12, 951–960. [CrossRef]

31. Karamalis, A.; Wein, W.; Klein, T.; Navab, N. Ultrasound confidence maps using random walks.
Med. Image Anal. 2012, 16, 1101–1112. [CrossRef]

32. Bozkurt, F.; Köse, C.; San, A. Comparison of seeded region growing and random walk methods for vessel
and bone segmentation in CTA images. In Proceedings of the 2017 IEEE 10th International Conference on
Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 30 November–2 December 2017; pp. 561–567.

33. Grady, L. Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1768–1783.
[CrossRef] [PubMed]

34. Collins, M.D.; Xu, J.; Grady, L.; Singh, V. Random walks based multi-image segmentation: Quasiconvexity
results and gpu-based solutions. In Proceedings of the 2012 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), Providence, RI, USA, 16–21 June 2012; pp. 1656–1663.

35. Sinop, A.K.; Grady, L. A seeded image segmentation framework unifying graph cuts and random walker
which yields a new algorithm. In Proceedings of the 2007 IEEE 11th International Conference on Computer
Vision (ICCV 2007), Rio de Janeiro, Brazil, 14–21 October 2007; pp. 1–8.

36. Roerdink, J.B.; Meijster, A. The watershed transform: Definitions, algorithms and parallelization strategies.
Fundam. Inform. 2000, 41, 187–228.

37. Jia-xin, C.; Sen, L. A medical image segmentation method based on watershed transform. In Proceedings of
the 2005 IEEE Fifth International Conference on Computer and Information Technology (CIT 2005), Shanghai,
China, 21–23 September 2005; pp. 634–638.

38. Lefèvre, S. Knowledge from markers in watershed segmentation. In Proceedings of the International
Conference on Computer Analysis of Images and Patterns, Vienna, Austria, 27–29 August 2007; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 579–586.

39. Hamarneh, G.; Li, X. Watershed segmentation using prior shape and appearance knowledge. Image Vis.
Comput. 2009, 27, 59–68. [CrossRef]

40. Boykov, Y.Y.; Jolly, M.P. Interactive graph cuts for optimal boundary & region segmentation of objects in ND
images. In Proceedings of the 2001 Eighth IEEE International Conference on Computer Vision (ICCV 2001),
Vancouver, BC, Canada, 7–14 July 2001; Volume 1, pp. 105–112.

41. Chen, X.; Udupa, J.K.; Bagci, U.; Zhuge, Y.; Yao, J. Medical image segmentation by combining graph cuts
and oriented active appearance models. IEEE Trans. Image Process. 2012, 21, 2035–2046. [CrossRef] [PubMed]

42. Shepherd, D.; Seedhom, B. Thickness of human articular cartilage in joints of the lower limb.
Ann. Rheum. Dis. 1999, 58, 27–34. [CrossRef] [PubMed]

43. Liu, Y.; Jin, D.; Li, C.; Janz, K.F.; Burns, T.L.; Torner, J.C.; Levy, S.M.; Saha, P.K. A robust algorithm
for thickness computation at low resolution and its application to in vivo trabecular bone CT imaging.
IEEE Trans. Biomed. Eng. 2014, 61, 2057–2069. [PubMed]

44. Ginat, D.T.; Hung, G.; Gardner, T.R.; Konofagou, E.E. High-resolution ultrasound elastography of articular
cartilage in vitro. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine
and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 6644–6647.

45. Niu, H.; Liu, C.; Li, A.; Wang, Q.; Wang, Y.; Li, D.; Fan, Y. Relationship between triphasic mechanical
properties of articular cartilage and osteoarthritic grade. Sci. China Life Sci. 2012, 55, 444–451. [CrossRef]
[PubMed]

46. Xu, H.; Chen, S.; An, K.N.; Luo, Z.P. Near field effect on elasticity measurement for cartilage-bone structure
using Lamb wave method. Biomed. Eng. Online 2017, 16, 123. [CrossRef] [PubMed]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TMI.2014.2332571
http://dx.doi.org/10.1007/s11548-017-1556-y
http://dx.doi.org/10.1016/j.media.2012.07.005
http://dx.doi.org/10.1109/TPAMI.2006.233
http://www.ncbi.nlm.nih.gov/pubmed/17063682
http://dx.doi.org/10.1016/j.imavis.2006.10.009
http://dx.doi.org/10.1109/TIP.2012.2186306
http://www.ncbi.nlm.nih.gov/pubmed/22311862
http://dx.doi.org/10.1136/ard.58.1.27
http://www.ncbi.nlm.nih.gov/pubmed/10343537
http://www.ncbi.nlm.nih.gov/pubmed/24686226
http://dx.doi.org/10.1007/s11427-012-4326-7
http://www.ncbi.nlm.nih.gov/pubmed/22645088
http://dx.doi.org/10.1186/s12938-017-0417-9
http://www.ncbi.nlm.nih.gov/pubmed/29084547
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Materials and Methods
	Data Acquisition
	Cartilage Image Enhancement
	Knee-Bone Localization for Automatic Seed Initialization
	Local-Phase-Based Bone Enhancement
	Bone-Shadow Enhancement
	Bone-Surface Localization Using Dynamic Programming

	Cartilage Segmentation
	Seed Initialization
	Random-Walker Image Segmentation
	Watershed Image Segmentation
	Graph-Cut Image Segmentation

	Automatic Cartilage-Thickness Computation

	Results
	Cartilage-Segmentation Qualitative Results
	Cartilage-Segmentation Quantitative Results
	Cartilage-Thickness Measurement Quantitative Results

	Discussion and Conclusions
	References

