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The Incomplete Glutathione Puzzle:
Just Guessing at Numbers and Figures?

Marcel Deponte

The phoenicians invented money—but why so little?
(Johann Nestroy)

Mother Nature invented glutathione—but why so much?

Abstract

Significance: Glutathione metabolism is comparable to a jigsaw puzzle with too many pieces. It is supposed to
comprise (i) the reduction of disulfides, hydroperoxides, sulfenic acids, and nitrosothiols, (ii) the detoxification
of aldehydes, xenobiotics, and heavy metals, and (iii) the synthesis of eicosanoids, steroids, and iron–sulfur
clusters. In addition, glutathione affects oxidative protein folding and redox signaling. Here, I try to provide an
overview on the relevance of glutathione-dependent pathways with an emphasis on quantitative data.
Recent Advances: Intracellular redox measurements reveal that the cytosol, the nucleus, and mitochondria
contain very little glutathione disulfide and that oxidative challenges are rapidly counterbalanced. Genetic ap-
proaches suggest that iron metabolism is the centerpiece of the glutathione puzzle in yeast. Furthermore, recent
biochemical studies provide novel insights on glutathione transport processes and uncoupling mechanisms.
Critical Issues: Which parts of the glutathione puzzle are most relevant? Does this explain the high intracellular
concentrations of reduced glutathione? How can iron–sulfur cluster biogenesis, oxidative protein folding, or
redox signaling occur at high glutathione concentrations? Answers to these questions not only seem to depend
on the organism, cell type, and subcellular compartment but also on different ideologies among researchers.
Future Directions: A rational approach to compare the relevance of glutathione-dependent pathways is to
combine genetic and quantitative kinetic data. However, there are still many missing pieces and too little is
known about the compartment-specific repertoire and concentration of numerous metabolites, substrates, en-
zymes, and transporters as well as rate constants and enzyme kinetic patterns. Gathering this information might
require the development of novel tools but is crucial to address potential kinetic competitions and to decipher
uncoupling mechanisms to solve the glutathione puzzle. Antioxid. Redox Signal. 27, 1130–1161.
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Introduction and Scope

Glutathione is a major thiol currency and pivotal
adapter molecule in metabolism. In contrast to tradi-

tional theories on nonenzymatic redox buffering, glutathione

exerts multiple functions far beyond the maintenance of a
reducing intracellular milieu (60). The versatility of glu-
tathione metabolism is reflected by at least five nonrelated
protein folds that have been optimized for glutathione in-
teraction and catalysis in the course of evolution. These
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glutathione-dependent proteins allow eukaryotes and many
prokaryotes to metabolize a plethora of electrophilic sub-
stances, for example, to cope with chemical challenges that
result from a glycolysis-driven aerobic lifestyle and the ex-
posure to xenobiotics (60). The flexible chemistry of glu-
tathione depends on its cysteinyl thiol group, whereas the
c-glutamyl peptide bond, as well as one positive and two
negative charges, facilitates its recognition by enzymes. The
repertoire of proteins and electrophiles that is considered to
play a role in glutathione metabolism is summarized in Table 1
and Figure 1 and will serve as a starting point for this review.
Among the multiple astonishing features of reduced glu-
tathione (GSH) is its millimolar concentration in many or-
ganisms (60, 153, 189, 196, 212, 217). Which processes
necessitate such a high concentration? On the contrary, how

are some reactions between electrophiles and GSH prevented
or, in other words, slowed down and kinetically uncoupled
under these conditions? Furthermore, which of the enzymatic
or nonenzymatic processes in glutathione metabolism are
really relevant in vivo? These questions are difficult to ad-
dress taking into account that (i) most of the genes encoding
the proteins in Table 1 can be successfully knocked out in
yeast and many other organisms and that (ii) noticeable
phenotypes often require combined gene deletions or extreme
chemical challenges (29, 60, 73, 105, 106, 119, 132, 163, 168,
184, 195, 240). A plausible explanation for the robustness of
glutathione metabolism is that cells use redundant metabolic
(backup) systems, for example, duplicated genes (297) or
cytosolic and mitochondrial thioredoxin (Trx)/Trx reductase
(TrxR) systems that can complement the loss of glutathione

Table 1. Overview of Glutathione-Dependent Enzymes

Protein Fold and family Glutathione-dependent functiona Refs.

GR Pyridine nucleotide
disulfide oxidoreductase
family

NADPH + H+ + GSSG /2 GSH + NADP+ (60)
� Link the NADPH pool with the thiol/disulfide pool
� Reduce GSSG and maintain high GSH concentrations

Grxb Thioredoxin superfamily � Catalyze thiol/disulfide exchange reactions
(e.g., deglutathionylations or the reduction
of ribonucleotide reductase)

(56, 60, 65, 97,
163, 214)

� Contribute to iron–sulfur cluster biosynthesis
� Play a regulatory role in iron and redox metabolism

PDIb Thioredoxin superfamily � Catalyze thiol/disulfide exchange reactions during
oxidative protein folding in the endoplasmic reticulumc

(8, 36, 209,
286)

� Reduce misfolded substrates of the ERAD pathwayc

� Act as redox regulator of other proteinsc

GPxb Thioredoxin superfamily ROOH + 2 R¢SH/R¢SS¢R + ROH + H2O (34, 35, 60,
273)� Reduce and detoxify hydroperoxides using Trx and/or GSH

� Act as redox sensor in signal transduction cascades
Prxb Thioredoxin superfamily ROOH + 2 R¢SH/R¢SS¢R + ROH + H2O (34, 60, 113,

238)� Reduce hydroperoxides using Trx, Grx, and/or GSH
� Act as redox sensor in signal transduction cascades

GSTb Thioredoxin superfamily
(or DsbA-liked)

� Conjugate and detoxify drugs, xenobiotics, etc. (30, 60, 117)
� Reduce hydroperoxides and/or disulfides
� Catalyze isomerizations (e.g., during

Phe/Tyr-degradation or steroid and eicosanoid metabolism)
� Exert regulatory functions by protein–protein interaction

MAPEGb MAPEG domain-
like fold

Membrane-associated proteins with divergent functions in
eicosanoid and glutathione metabolism:

(60, 135, 176)

� Catalyze conjugations and (hydro)peroxide reductions
� Catalyze eicosanoid isomerization and conversions

Glo1 Vicinal oxygen chelate
superfamily

� Convert and detoxify 2-oxoaldehydes (isomerase step) (60, 61, 129,
256, 270)� Can have regulatory or unknown functions

Glo2b b-lactamase fold
binuclear metallo-
hydrolase family

� Convert and detoxify 2-oxoaldehydes (thioesterase step) (60, 61, 129,
256, 270)� Hydrolyze alternative non-glutathione thioesters

� Can have regulatory or unknown functions

GSNORe Alcohol dehydrogenase
fold

� Catalyze the NAD+-dependent oxidation of formaldehyde (24, 173, 260)
� Catalyze the NADH-dependent reduction of GSNOf

� Might have regulatory functions

aPhysiological functions can differ significantly among isoforms and organisms.
bOrganisms often harbor several isoforms of these proteins.
cThe relevance of GSH and GSSG for these processes is not fully understood.
dThe a-helical domain of kappa class GST is inserted and not fused to the Trx domain.
eIdentical to class III alcohol dehydrogenase (ADH5) or GSH-dependent formaldehyde dehydrogenase.
fA similar activity was reported for NADPH-dependent human carbonyl reductase 1.
Glo1, glyoxalase 1; Grx, glutaredoxins; GPx, glutathione peroxidase; GR, glutathione reductase; GSNOR, GSNO reductase; GST,

glutathione transferase; PDI, protein disulfide isomerase; Prx, peroxiredoxin; ROOH, hydroperoxide; Trx, thioredoxin.
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reductase in the same compartment (11, 105, 109, 272). Gene
deletions can also trigger compensatory mechanisms that
alter the proteome, which might affect, for example, the
transport of metabolites or xenobiotics. Alternative expla-
nations for mild or absent knockout phenotypes could be that
some branches of glutathione metabolism in Figure 1 are
either apparently irrelevant for survival because of the cho-
sen experimental conditions, or are de facto irrelevant be-
cause of incorrect assumptions and concepts. How can we
discriminate between these scenarios?

The redox metabolism of organelles and cells predomi-
nantly depends on kinetic instead of thermodynamic con-
straints as emphasized previously (34, 60, 65, 87, 91). In
contrast to the frequently used concept of nonenzymatic re-
dox buffering, which is based on the Gibbs free energy of
redox reactions at equilibrium, cellular systems use enzymes
and work under steady-state conditions. Thus, reactions with
favorable thermodynamics might be physiologically irrele-
vant because of a lack of catalyst, whereas less favorable
reactions might occur because of a constant metabolic flux
and energetic coupling. It is therefore problematic to rely on

equilibrium-based redox potentials and to use the term ‘‘re-
dox buffer’’ to rank redox reactions in vivo. A better quan-
titative approach to judge the physiological relevance of a
glutathione-dependent reaction is to determine its rate and to
compare it with potentially competing reactions. The ratio
between the reaction rates of one and the same compound
with different partners then tells us whether a kinetic
competition is likely to occur. A very slow or absent reac-
tion also tells us whether a process is kinetically uncoupled
from glutathione metabolism, which is a prerequisite for the
accumulation or stability of an electrophile at high GSH
concentrations (e.g., of an iron–sulfur cluster or a protein
disulfide bond). Reaction rates are described by rate equa-
tions (13, 28, 250). For example, if electrophile ‘‘S’’ either
reacts in an irreversible bimolecular elementary reaction
with GSH (reaction 1) or as a substrate with an enzyme ‘‘E’’
that obeys Michaelis–Menten kinetics (reaction 2), rate
equations Eqs. 1 and 2 describe the concentration changes
of ‘‘S’’ and products ‘‘P’’ and ‘‘Q’’ over time:

[S]þ [GSH] /
k2

[P] (1)

FIG. 1. Electrophilic metabolites and substrates that are considered to play a role in glutathione metabolism.
Interaction sites between the electrophile and the thiolate group of glutathione (or the glutathione-dependent enzyme) are
indicated by arrowheads. Enzymes are listed in Table 1. See Ref. (60) for details on the enzymatic mechanisms.
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[S]þ [ 6E] /
kcat

[ 6E]þ [Q] (2)

v1¼
� d[S]

dt
¼ d[P]

dt
¼ k2[S][GSH] (eq: 1)

v2¼
� d[S]

dt
¼ d[Q]

dt
¼ kcat[E][S]

Kmþ [S]
(eq: 2)

The more competing compounds and enzymes are in-
volved, the more reaction rates have to be considered. Rate
equations have to be determined empirically. They depend on
the type of mechanism and the rate-limiting elementary re-
action (13). Eqs. 1 and 2 are suited for the description of many
biochemical reactions. Hence, potential kinetic competitions
in biochemical systems depend on rate constants and the
concentrations of the reaction partners (e.g., on the second-
order rate constant k2 and the concentration of GSH). To
address potential kinetic competitions in glutathione metabo-
lism, we need to gather information on the following factors,
which I will discuss in the subsequent sections. (i) The
compartment-specific metabolite and substrate repertoire, (ii)
the metabolite and substrate concentrations, (iii) kinetic pa-
rameters such as rate constants and Km values, (iv) the
compartment-specific enzyme repertoire, (v) the enzyme con-
centrations, and (vi) the enzyme mechanisms. The effects of
some of these factors—for example, the presence or absence of
a specific enzyme—are obvious, whereas other factors, such as
the enzyme mechanism, have more subtle consequences and are
easy to miss. The aim of this review is to point out the relevance
of the aforementioned factors on potential kinetic competitions
and to highlight the missing puzzle pieces for a complete un-
derstanding of glutathione metabolism. Furthermore, I will
apply these factors to discuss how processes such as redox
sensing, protein disulfide formation, and iron–sulfur cluster
binding could be kinetically uncoupled from glutathione-
dependent catalysis at physiological GSH concentrations.

Compartment-Specific Metabolite
and Substrate Repertoires

The electrophiles that are considered to play a role in glu-
tathione metabolism are extremely diverse and include sulfur-,
oxygen-, nitrogen-, carbon-, or iron-containing metabolites or
substrates (Fig. 1) (60). These compounds can be subdivided
into the following categories: (i) unknown, (ii) candidate, and
(iii) established electrophiles of glutathione metabolism. Be-
fore we start with these categories, we will first consider what
is known about the compartmentalization of glutathione itself.

Subcellular distribution and transport of glutathione

At the current stage, we cannot reject the null hypothesis
that there are subcellular compartments that do not utilize
glutathione, or, in other words, we cannot fully exclude that
some subcellular compartments lack GSH, glutathione dis-
ulfide (GSSG), or glutathione conjugates. GSH biosynthesis
takes place in the cytosol (167) and in chloroplasts (284).
Glutathione reductase (GR) uses NADPH to convert GSSG to
two molecules of GSH in the cytosol, the mitochondrial

matrix, and in chloroplasts (Table 1) (60). Thus, it is assumed
and partially shown that GSH, GSSG, and/or glutathione
conjugates are transferred from these to other compartments
by permeable pores, specific transporters, or vesicles (Fig. 2).

Pores between the cytosol and the corresponding organelle
include the nuclear pore complex (148), porin in the outer
mitochondrial membrane (150) and the transient translocation
pore in peroxisomes (182). Can glutathione freely diffuse
across these pores? The glutathione pool in the mitochondrial
intermembrane space was shown to equilibrate very rapidly
with the cytosol (150). This was also shown for the cytosol
and nucleus in yeast (58), whereas nuclear GSH was suggested
to accumulate in proliferating mammalian cells (98), contra-
dicting a free diffusion across the nuclear pore. Whether glu-
tathione enters peroxisomes across the translocation pore has
not been shown so far but has been hypothesized based on
the presence of the glutathione transferase (GST) kappa (7),
which is found in mitochondria and peroxisomes in a variety of
eukaryotes (60).

The inner mitochondrial membrane does not contain pores
and has a tightly controlled permeability. The GSH content in
the matrix of mammalian mitochondria was shown to par-
tially depend on a dicarboxylate carrier (catalyzing an anti-
port with inorganic phosphate) and a 2-oxoglutarate carrier
(catalyzing an antiport with 2-oxoglutarate) (Fig. 2) (15).
ABC transporters with a reported preference for GSSG
or glutathione conjugates include (i) diverse multidrug
resistance-associated proteins (MRP) in the plasma mem-
brane of mammals (15), (ii) Atm1 and its homologues in the
plasma membrane of bacteria and the inner mitochondrial
membrane (158, 245, 259), and (iii) yeast cadmium factor 1
(Ycf1) in the vacuole (162, 192). All these transporters are
ATPases and actively pump GSSG or glutathione conjugates
across the membrane. Furthermore, yeast can import GSH
(and also GSSG) with the help of the proton-coupled oligo-
peptide transporter Opt1 (Hgt1) (32, 210). Its homologue
Opt2 is found in peroxisomes and might export GSSG (76)
(yeast does not have a GST kappa isoform that could form
glutathione conjugates). Vesicular transport of GSH is as-
sumed to affect the organelles that pinch off from the se-
cretory pathway and their glutathione content could therefore
depend on the concentrations in the endoplasmic reticulum.
However, experimental evidence for the in vivo transport of
glutathione into subcellular compartments is in most cases
surprisingly scarce or absent (Fig. 2) (15, 272) (see also the
Glutathione Concentrations section).

Orphan proteins and unknown metabolites
and substrates

Considering the diversity of metabolites and proteins
in glutathione metabolism, it is not surprising that the
compartment-specific presence or identity of several of
the electrophiles in Figure 1 is unknown. For example,
the identification of true disulfide substrates of enzymatically
active dithiol glutaredoxins (Grx) is still ongoing. We are
only beginning to understand how important they are, for
example, how relevant the recently identified Grx substrates
sirtuin 1, CRMP2, or DJ-1 are for vascular and neuronal
development or degeneration (33, 99, 141). Likewise, phys-
iological substrates of several GST and MAPEG (membrane-
associated proteins with divergent functions in eicosanoid
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and glutathione metabolism) still remain to be identified,
even though there are a variety of established functions of
these enzymes in vertebrates, plants, and bacteria (Table 1
and Fig. 1) (5, 30, 60, 117). One probable reason for orphan
GST- and MAPEG isoforms without established physiolog-
ical substrates is that bacteria or eukaryotic model organisms
are usually grown in the absence of xenobiotics, which are
produced by competing microbes in real ecosystems. The ab-
sence of a growth defect for a knockout strain under optimized
or even axenic laboratory conditions can therefore result in an
underestimation of the true relevance of a potentially essential
GST- or MAPEG-dependent detoxification process. As re-
viewed previously (60, 61, 279), very little is also known about
the physiological substrates of insular glyoxalases 2 (Glo2),
which are sometimes found in mitochondria, plastids, or the
cytosol (29, 55, 281, 290) and have a hydrolase activity for
glutathione- and other thioesters in vitro (2, 280, 290). The
presence of such orphan proteins might point to novel meta-
bolic pathways. A recent study on isolated mammalian mito-
chondria revealed, for example, that glutathione can be taken
up as S-d-lactoylglutathione, which is subsequently hydro-

lyzed by Glo2 yielding GSH and d-lactate in the mitochondrial
matrix (Fig. 2) (9).

Other examples of orphan proteins without a defined
partner are found in the monothiol Grx repertoire of Sac-
charomyces cerevisiae: yeast has three monothiol Grx iso-
forms (ScGrx3–5) that are pivotal for iron homeostasis in the
mitochondrial matrix, the cytosol, and the nucleus (214, 241).
Two additional membrane-anchored monothiol Grx iso-
forms, termed ScGrx6 and ScGrx7, were identified in the
secretory pathway (132, 184). Both proteins are highly sim-
ilar and catalyze GSH-dependent thiol/disulfide exchange
reactions (23, 169, 183), but have no established substrates
in vivo. In contrast to ScGrx7, ScGrx6 also binds iron–sulfur
clusters in vitro (183) in analogy to ScGrx3-5 (161, 228,
302). Furthermore, radioactive iron ions were bound to the
catalytic cysteine of ScGrx6 after immunoprecipitation from
cell lysates (132). Taken together, these findings might point
to a role of ScGrx6 in iron metabolism. However, except for
calcium signaling (230) and the interdependent export of a
complex between the iron-oxidoreductase Fet3 and the
transporter Ftr1 (244, 262), nothing appears to be known

FIG. 2. Subcellular distribution and transport of glutathione. Pores, transporters, and established as well as hypothetical
glutathione contents are highlighted. Enzymes and metabolic pathways are omitted for clarity. Unknown transporters are
shaded in gray and suggested transport processes are highlighted by dotted arrows. Please note that the transporters might differ
among eukaryotes and that the pathways are partially based on in vitro data. For example, the carrier proteins for the import of
GSH into the mitochondrial matrix have been characterized in mammals but not in yeast and the import of S-d-
lactoylglutathione has been demonstrated for isolated rat mitochondria. GSX, sum of glutathione conjugates, GSOH, GSNO,
hemithioacetals, and so on; IMS, mitochondrial intermembrane space; 2-OG, 2-oxoglutarate; Pi, inorganic phosphate; SLG, S-
d-lactoylglutathione. For transporters and details, see the Subcellular Distribution and Transport of Glutathione section.
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about the relevance of the endoplasmic reticulum and the
Golgi complex for metal ion homeostasis or about the exis-
tence of nonheme iron ions in the secretory pathway.

Candidate proteins and substrates

Moving on from unknown metabolites and substrates, can-
didate proteins await us at the next level of uncertainty. Can-
didates are often identified after chemical labeling, affinity
chromatography, and/or mass spectrometry (54, 111, 133, 160,
200, 243, 247, 264, 267, 289). For example, numerous proteins
have cysteine residues that form intramolecular disulfide bonds
or that can undergo a glutathionylation, that is, form a mixed
disulfide bond with glutathione in vitro. The disulfide bonds
can be reduced again by Grx and such reversible thiol/disulfide
exchange reactions are used to capture and identify candidate
proteins (4, 163, 187, 243, 247, 264, 283). For many of these
candidates, however, it remains to be clarified whether and
how disulfide bond formation and glutathionylation occur
under physiological conditions (65) (see also the Kinetic
Competitions for GSSG and GSSR section). False-positive hits
can, for example, result from extreme nonphysiological treat-
ments with oxidants or from (unavoidable) protein-dependent
methodological pitfalls such as incomplete thiol blocking with
alkylating agents before or after cell lysis (102, 254, 296).

The situation is somehow similar regarding the repertoire of
potential protein sulfenic acids, which can be trapped and de-
tected using either a variety of dimedone-based chemical
probes (111, 200) or a genetically encoded probe that is based
on the transcription factor Yap1, which usually interacts with
the sulfenic acid of yeast glutathione peroxidase 3 (GPx3)
(267, 289). Proteomic screens also revealed numerous sets of
S-nitrosylated protein candidates, for example, from purified
rat mitochondria (49), HEK293 cell cultures (92), mouse liver
(71), or rat brain (68, 133). How S-nitrosothiols are generated
de novo is an ongoing matter of debate (175). Furthermore, it is
only known for a few of the S-nitrosylated protein candidates
whether they can be transnitrosylated or reduced by GSH, Trx,
or other thiol-containing proteins (24, 95, 173, 175). Because
of the versatile chemistry of sulfenic acids and S-nitrosylated
thiols, the experimental conditions—for example, the reduc-
tion of S-nitrosothiols with ascorbate—could be even more
critical than for thiol/disulfide couples and may result in false-
positive candidates (237).

Established metabolites and substrates

Reactive oxygen and nitrogen species. Established elec-
trophiles that are considered to play a role in glutathione me-
tabolism can be subdivided according to their source. It is
usually easier to determine the spatiotemporal distribution of
electrophiles with an enzymatic source. Nonenzymatic protein,
lipid, and metabolite radicals are, for example, supposed to be
randomly formed, whereas extracellular or phagosomal su-
peroxide anion (O2

�-) is generated by membrane-bound
NADPH oxidases (21). Other flavoenzymes can also produce
O2
�- and hydroperoxide (H2O2) in vitro (178, 179) and it often

remains to be shown which flavoenzyme significantly con-
tributes to the production of both electrophiles in the cytosol,
nucleus, mitochondria, peroxisomes, the endoplasmic reticu-
lum, or at the plasma membrane. For instance, the flavins in
complex I of bovine heart mitochondria as well as NADH
dehydrogenase II and sulfite reductase in Escherichia coli were

reported to be the major sources of O2
�- or H2O2 for these

electron transport chains (126, 154, 186). However, the contri-
bution of the latter two enzymes for the total generation of H2O2

in E. coli could be rather insignificant compared to autoxidation
processes of soluble flavoenzymes (126). A recent study in yeast
likewise indicates that cytosolic H2O2 levels do not depend on
autoxidation processes of the mitochondrial respiratory chain,
whereas changes in cytosolic H2O2 also affect the H2O2 levels
in the mitochondrial matrix (193). Other sources for H2O2 than
flavoenzymes are cytosolic and mitochondrial superoxide dis-
mutases (43, 125). Nitrogen monoxide (NO�) is produced by
NO synthases and reacts nonenzymatically with O2

�- to form
peroxynitrite (ONOO-) (38, 81).

Modified cysteine residues. Both H2O2 and ONOOH can
oxidize the thiol/selenol group of reactive cysteine/seleno-
cysteine residues to sulfenic/selenenic acid (35, 38, 60, 113,
238, 273). Proteins with such reactive residues include thiol-
dependent hydroperoxidases of the GPx and the peroxiredoxin
(Prx) family (Table 1), which form extremely short-lived
sulfenic/selenenic acids that are in some isoforms prefer-
entially reduced by GSH (35, 60, 89, 109, 261, 273).
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a
well-established example for a nonhydroperoxidase protein
with a physiologically relevant cysteine residue that is
susceptible to sulfenic acid formation, S-nitrosothiolation,
and reduction by GSH (120, 225). Protein S-nitrosylation
and denitrosylation of a reactive cysteine residue have also
been studied intensely for selected caspases but appear to
rather depend on the Trx and not the glutathione system as
reviewed previously (24, 175).

Protein disulfide bonds with extremely variable half-lives
are formed in the cytosol, endoplasmic reticulum, mito-
chondrial intermembrane space, and bacterial periplasm
by ribonucleotide reductase, 3¢-phosphoadenosine 5¢-
phosphosulfate reductase, GPx and Prx, flavoenzymes such
as Ero1 and Erv1, as well as ubichinon-dependent DsbB.
These substrates and processes have been extensively re-
viewed before (34, 36, 64, 65, 78, 95, 115, 149, 163, 187, 204,
238, 239, 273). Nonetheless, it is not always clear whether the
disulfide bond formation or reduction depends on glutathione
and several surprises might be ahead of us. One lesson learnt
from ribonucleotide reductase in mammals and E. coli is that
the overlap of the Trx and glutathione system can differ
among organisms (301). Another lesson learnt from oxidative
protein folding in mitochondria is that glutathione may also
interfere with processes that were not necessarily considered
to be a part of the glutathione puzzle: The formation of di-
sulfide bonds in the intermembrane space of mitochondria
was demonstrated to be catalyzed by the concerted action of
Mia40 and Erv1 (185), which suffice to reconstitute a func-
tional oxidoreductase system in vitro (269). It was only later
that GSH, in combination with Grx, was shown to affect and
potentially regulate the redox state of Mia40 and oxidative
protein folding in vitro and in vivo (26, 150, 151). Then again,
processes that were thought to be glutathione dependent often
lack experimental evidence. For example, for most thiol/
disulfide substrates in the endoplasmic reticulum, it remains
to be shown which substrate is processed by which protein
disulfide isomerase (PDI) and whether this process really
depends on GSH and/or GSSG in vivo (8, 170, 209).
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Another modification of cysteine residues is iron–sulfur
cluster binding. Protein-bound iron–sulfur clusters are as-
sembled in the mitochondrial matrix, the chloroplast, or the
cytosol. They are also found in the nucleus where they con-
tribute to iron sensing as well as DNA replication and repair
(17, 56, 94, 153, 194, 214, 241). Some of these iron–sulfur
clusters form a complex with the cysteine residues of glu-
tathione and Grx. Such clusters can be transferred to other
proteins or result in altered protein–protein interactions (17,
56, 164, 194, 214). At this point, it is interesting to note that
the oxidative damage of selected iron-containing proteins
appears to be the detrimental key event when E. coli is treated
with oxidants, because crucial enzymes are inactivated and
reactive iron ions, O2

�- or H2O2, are liberated (126, 145).
Even though iron metabolism of eukaryotes, particularly of
animals, is much more complex (75, 118), the integration of
the cellular iron and redox status also depends on a labile
iron–sulfur cluster, namely cytosolic aconitase/iron regula-
tory protein 1. Thus, similar biochemical principles likely
apply to oxidative challenges in E. coli and eukaryotes. This
hypothesis is also supported by kinetic data on the reactivity
of iron–sulfur clusters in vitro (40, 86, 116) and genetic
studies on iron metabolism in yeast (153, 194, 241, 285).
Please note that the initial damage of a rather small number of
susceptible (iron-containing) proteins is in contrast to com-
mon theories on oxidative stress, which predict a general
accumulation of damaged proteins as well as protein sulfenic
acids and disulfides (see also the Glutathione concentrations
and Applications and Examples sections).

Anabolites and toxic xenobiotics and catabolites. Little
is known about the intracellular spatiotemporal distribution
of 2-oxoaldehydes, which can damage proteins and nucleic
acids and are linked to numerous pathophysiological condi-
tions (85, 213, 232, 271). These electrophiles are detoxified
by Glo1 and Glo2 using GSH as a coenzyme (Table 1) (60,
129, 270). Because of the relevance of glucose-derived me-
thylglyoxal, it is usually assumed that 2-oxoaldehydes are
formed in the cytosol from where they can also diffuse into
the nucleus. However, the exact repertoire and distribution of
2-oxoaldehydes in different organelles have not been mapped
so far. Regarding the formation of the electrophilic lipid
peroxidation product 4-hydroxy-2-nonenal, several studies
have addressed the plasma membrane, the endoplasmic re-
ticulum, or the inner mitochondrial membrane (45, 257),
whereas no data seem to exist on other membranes and
compartments [e.g., peroxisomes, although the activation of
peroxisome proliferator-activated receptors by 4-hydroxy-2-
nonenal is well established (51)]. Advances in mass spec-
trometry might be suited to shed some light on this topic (257).

The turnover of the remaining electrophiles in Figure 1
depends on the cell type and localization of the corresponding
GST or MAPEG isoform. For example, the detoxification of
xenobiotics in the liver or in plant roots depends on a whole
set of compartment-specific GST isoforms (30, 60, 117).
Furthermore, you will look in vain for prostaglandin H me-
tabolism in yeast as opposed to GST S1-1-containing mast
cells (278) or prostaglandin E synthase-containing seminal
glands (205). Likewise, the GST A3-3-dependent isomeri-
zation of D5-androstene-3,17-dione will not take place in
erythrocytes in contrast to gonads and adrenal glands (138).

Thus, caution is advised when general statements about the
(ir)relevance of glutathione metabolism are made.

Summary I: metabolite and substrate repertoires

The current picture of the compartment-specific glu-
tathione metabolism is all but complete. In addition to well-
characterized enzyme/electrophile couples, there are many or-
phan proteins that point to unknown metabolites and substrates,
for example, in mitochondria, plastids, or the secretory path-
way. Advances in mass spectrometry and the development of
chemical and genetically encoded probes have recently led
to the identification of numerous candidate proteins with glu-
tathione or non-glutathione disulfide bonds, sulfenic acids, or
S-nitrosothiols. Many of these candidate proteins have to be
studied in more detail to exclude false-positive hits and to in-
vestigate if and how they are connected to glutathione meta-
bolism. Even for established electrophiles and glutathione
itself, the subcellular distribution and transport across mem-
branes are often nebulous and remain to be unraveled.

Metabolite and Substrate Concentrations

Glutathione concentrations

The concentration of GSH depends highly on the organ-
ism, cell type, and extra- or intrasubcellular compartment as
reviewed previously (60). Estimated cytosolic GSH con-
centrations in yeast are 13 mM as opposed to ‘‘total’’ glu-
tathione concentrations (i.e., GSH and GSSG) around 8 or
7 mM in mouse hybridoma or HeLa cells (Fig. 2) (124, 189,
212). The GSH concentration in some bacteria such as E.
coli could be as high as 20 mM (180, 217). Please note that
there seems to be no reliable data on the overall concen-
tration of all other glutathione-containing substances in
Figure 1 (see also the Electrophile Concentrations section).
The real total glutathione concentration—including not
only GSH and GSSG but also glutathionylated high- and
low-molecular-weight thiols, hemithioacetals, thioesters,
complexed iron–sulfur clusters, conjugated xenobiotics,
GSOH, and GSNO etc.—is apparently unknown.

The endoplasmic reticulum of HeLa cells was reported to
have an oxidizing half-cell reduction potential for GSH
around -0.21 V and to contain a calculated concentration of
more than 15 mM ‘‘total’’ glutathione (27, 189) [see Refs.
(60, 87) for a discussion of the half-cell reduction potential
E¢GSH]. Based on previous GSH and GSSG import experi-
ments with microsomal fractions (18), the authors therefore
suggested that GSH is imported into the endoplasmic reti-
culum where it is trapped as GSSG (Fig. 2) (189). The ele-
gance of this model is that two processes, namely GSH
oxidation and GSSG reduction, become uncoupled because
of a spatial separation and deviating enzyme repertoires. This
model is in clear contrast to a previous study suggesting the
import of GSSG into the endoplasmic reticulum (124). How
and to which degree GSH and GSSG are transported across
the endoplasmic reticulum is of fundamental relevance for
our understanding of oxidative protein folding (36) and is,
therefore, also a hot topic in yeast cell biology (272).

Regarding basal GSSG concentrations outside the endo-
plasmic reticulum, noninvasive redox measurements with
genetically encoded fluorescent probes revealed in a variety
of organisms that the cytosol, the nucleus, peroxisomes, and
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mitochondria are extremely reducing environments with
E¢GSH values between -0.30 and -0.32 V, which translate
into nanomolar GSSG concentrations (248). For example, a
calculated concentration around 0.2 lM GSSG was estimated
for the cytosol in yeast (192). If GR is so efficient to maintain
99.99% of ‘‘total’’ glutathione in a reduced state, why do so
many cells and subcellular compartments contain so much
glutathione? A commonly used argument is that GSH and
thiol-containing proteins nonenzymatically buffer H2O2 and
other hydroperoxides. However, as emphasized previously
(87, 90, 273), such an explanation is based on an extremely
unfavorable kinetic competition with hydroperoxidases. We
will evaluate this competition as an example at the end of the
review once we have gathered the missing parameters.

Deletion of GR in yeast resulted in an increase of the cy-
tosolic GSSG concentration of only about one order of
magnitude to *2–3 lM. Excess GSSG (>99%) was trans-
ported into the vacuole so that the cytosol remained a highly
reducing compartment (Fig. 2). A rapid ABC transporter-
mediated export into the vacuole was also observed for wild-
type yeast cells that were challenged with oxidants (192).
Whether the export of GSSG on oxidative challenge is a
common principle in biology still needs to be tested. Further
documented examples include perfused rat liver and the bile
duct (1) as well as astrocyte cell cultures (122). An export of
GSSG from malaria parasites was also suggested (12) but was
detected without thiol blocking agents in contrast to a sub-
sequent study that revealed the export of GSH (19).

A rapid recovery of cytosolic E¢GSH values after oxidative
challenge has been observed within seconds or a few minutes
in a variety of cell types (248), only some of which contain a
vacuole. The short-term disturbance of the redox state in-
dicates a temporary change of metabolic flux and not a static
accumulation of GSSG in contrast to false equilibrium-based
assumptions as emphasized previously (87). Because the de
novo synthesis of GSH cannot rapidly compensate altered
E¢GSH values, the fast recovery has to be attributed to altered
GSSG concentrations. There are four hypothetical competing
scenarios for the rapid removal of GSSG after oxidative
challenge: (i) ATP-driven export of GSSG as observed in
yeast, (ii) rapid reduction of GSSG by GR as supported by
in vitro kinetics and genetic experiments, (iii) enzymatic
glutathionylation of proteins yielding RSSG and GSH, and
(iv) nonenzymatic glutathionylation of proteins. We will try
to evaluate this potential kinetic competition as an example at
the end of the review (the Kinetic Competitions for GSSG
and GSSR section). The question on the intra- or extracellular
fate of GSSG cannot be overemphasized because it is fun-
damental for the ongoing discussion on the origin of protein
disulfide bonds and whether physiological challenges with
oxidants results in a general protein oxidation and glu-
tathionylation (65, 87, 97, 252).

Electrophile concentrations

Even for the established metabolites and substrates in
Figure 1, there is rather limited or no information on their
spatiotemporal distribution and compartment-specific con-
centration because of a lack of quantitative noninvasive de-
tection methods (e.g., for xenobiotics in the cytosol, nucleus,
mitochondria, peroxisomes, or endoplasmic reticulum). Some
metabolites such as O2

�- or H2O2 can be measured in situ

by chemical trapping (43) and/or by fluorescent dyes, but
these probes lack specificity and are in most cases not ra-
tiometric so that signals highly depend on the concentration
of the probe (293). In contrast, genetically encoded H2O2

sensors that are based on redox-sensitive fluorescent proteins
are ratiometric but also measure only changes instead of
absolute concentrations (248). One noninvasive method for
the quantitative detection of H2O2 was reported decades ago
by Sies and colleagues and is based on the spectral properties
of the catalase reaction intermediate ‘‘compound I’’ (see the
Differences Between Ping-Pong and Sequential Kinetic
Patterns section) (43, 211, 252, 253). (Whether genetically
encoded catalase in combination with different targeting
sequences would allow the measurement of absolute H2O2

concentrations in a variety of organelles might be interesting
to follow up.) Physiological steady-state concentrations of
H2O2 in mammalian cells, yeast, and E. coli were also cal-
culated using formation and degradation kinetics. Estimated
and calculated values appear to be rather low and range from
1 nM H2O2 at basal steady-state conditions to 0.5–0.7 lM
during nonlethal oxidative challenge (43, 193, 211, 249, 263).
A basal steady-state concentration around 1 nM was also cal-
culated for ONOO- (38, 81). The concentration of O2

�- in
E. coli could be as low as 0.2 nM, which translates into only 0.1
molecules per cell but does not reflect the extreme metabolic
flux, that is, the continuous rapid formation and removal of
O2
�- (104, 126, 127). Models on human erythrocytes sug-

gested even lower steady-state concentrations of H2O2 and
O2
�- around 50 pM and 0.5 pM, respectively (140).
Other metabolites, such as 2-oxoaldehydes, glutathione

esters, and eicosanoids, are often detected with or without
derivatization after cell lysis (217, 233, 288). These invasive
methods cannot discriminate between subcellular compart-
ments because of extensive sample homogenization before
the quantitative analysis, for example, by high-performance
liquid chromatography or mass spectrometry (288). Never-
theless, calculated 2-oxoaldehyde concentrations in mamma-
lian cells were reported to vary between 0.1 and 1 lM for
glyoxal and between 0.5 and 5 lM for methyglyoxal (232,
233). A similar steady-state concentration of 4 lM was mod-
eled for methylglyoxal in yeast (177). Methylglyoxal is con-
verted to S-d-lactoylglutathione (60, 256, 270). The calculated
physiological steady-state concentration of this hemithioacetal
in E. coli was lower than 50lM and shown to only increase
above this value when cells were treated with exogenous me-
thylglyoxal (217). Human leukemia cells were reported to
contain 59 pmol S-d-lactoylglutathione per 106 cells (181),
which roughly translates into a concentration around 0.1 mM
based on an estimated cytosol volume of 0.5 pl.

Optimized protocols to overcome disadvantages of inva-
sive methods have been developed for the ratiometric de-
tection of protein disulfides. For example, the physiological
redox state can be ‘‘frozen’’ and labeled with alkylating
agents before quantification by Western blotting, autoradio-
graphy, or mass spectrometry (84, 160, 254, 296). The con-
centration of a protein in its thiol and disulfide form might be
subsequently estimated from the signal ratio, provided there
is sufficient information on protein localization, molecule
number per cell, and the corresponding compartment volume
(Table 2). A similar arithmetical approach can be used to
estimate the concentration of specific iron–sulfur cluster-
containing proteins if there are data from activity assays or
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radioactive iron-labeling and immunoprecipitation experi-
ments (194, 241). For example, activity measurements in
E. coli revealed for aconitase-bound iron–sulfur clusters a
calculated concentration around 10 lM (145).

Summary II: metabolite and substrate concentrations

Basal cytosolic concentrations of H2O2 and GSSG are
probably in the nanomolar concentration range in contrast to
low micromolar methylglyoxal concentrations and millimolar
GSH concentrations. The compartment-specific concentra-
tions of most of the potential and established electrophiles in
Figure 1 as well as the concentrations of glutathione conjugates
often remain to be determined. This is also the case for

NADPH and the extracytosolic concentrations of GSH and
GSSG. The development of novel, preferentially noninvasive
metabolomic methods is therefore crucial for our understanding
of glutathione metabolism. However, how do substrate con-
centrations affect the glutathione metabolism? To answer this
question, we will have to consider some aspects in enzymology.

The Relevance of Kinetic Constants

Difference between true and apparent
kcat and Km values

Enzymes are characterized by their kinetic constants, the
kcat and Km values, as exemplified in Eq. 2 (28, 250). The true

Table 2. Estimated Concentrations of Redox- and Glutathione-Dependent Enzymes in Yeast

Protein/gene Essential? Localization

Estimated concentrationa

(100) (152) (48)

GR/GLR1 Nob (106, 153, 192, 195, 216) Cyt, Nu?, MM (215) 0.44 lM 1.5 lM 18 nM

Grx1/GRX1 Nob (72, 73, 151, 168, 192) Cyt, Nu? 0.18 lM 6.5 lM 27 nM
Grx2/GRX2 Nob (72, 73, 168, 192, 240) Cyt, MM, IMS (151, 223) 2.1 lM 2.3 lM 3.4 nM
Grx3/GRX3 Nob (194, 231, 240) Cyt, Nu (188) 0.65 lM 0.30 lM 6.8 nM
Grx4/GRX4 Nob (194, 231, 240) Cyt, Nu (166) 0.46 lM 0.14 lM —
Grx5/GRX5 Nob (240, 241) MM (241) 10 lM 17 lM 0.5 lM
Grx6/GRX6 No (132, 184) ER and cis-Golgi (132, 184) 3.9 lM 4.1 lM 0.19 lM
Grx7/GRX7 No (132, 184) cis-Golgi (132, 184) — 35 lM 0.38 lM
Grx8/GRX8 No (73) Cyt (123) 40 nM 0.16 lM —

Gto1/GTO1 No (20) Per (20) — — —
Gto2/GTO2 Nob (20) Cyt (20) 0.12 lM 37 nM —
Gto3/GTO3 Nob (20) Cyt (20) — — —
Gtt1/GTT1 No (20, 47, 52) ER-associated (47) — 0.74 lM —
Gtt2/GTT2 Nob (20, 47, 52) ? — — —
Ure2/URE2 Nob (292) Cyt (74) 0.49 lM 71 nM 14 nM

TR1/TRR1 Nob (274) Cyt 20 lM 4.2 lM 0.12 lM
TR2/TRR2 Nob (221) MM (221) 0.69 lM 0.94 lM —

Trx1/TRX1 Nob (72, 274) Cyt 0.59 lM 17 lM 69 nM
Trx2/TRX2 Nob (72, 274) MM 1.2 lM 7.0 lM 0.16 lM
Trx3/TRX3 No (221) MM (221) 1.7 lM 25 lM —

GPx1/GPX1 No (14, 208) Per (208) — 1.3 lM —
GPx2/GPX2 No (14, 130) Cyt, Nu? (123) 0.12 lM 1.2 lM 24 nM
GPx3/GPX3 Nob (14, 59, 130) Cyt (123) 0.56 lM 2.3 lM 9 nM

Tsa1/TSA1 Nob (42, 219, 298) Cyt (219) 26 lM 12 lM 0.51 lM
Tsa2/TSA2 Nob (219, 298) Cyt (219) 0.33 lM 0.18 lM —
Ahp1/AHP1 Nob (157, 219, 298) Cyt (219) 1.1 lM 31 lM 1.3 lM
nTPx/DOT5 No (41, 219, 298) Nu (219) 0.76 lM 1.7 lM 17 nM
mTPx/PRX1 No (109, 219, 222, 298) MM (219) 7.5 lM 30 lM 0.18 lM

Cta1/CTA1 Nob (50, 107, 227) Per, MM (227) 0.69 lM — —
Ctt1/CTT1 Nob (50, 107, 227) Cyt (123) 22 nM 0.13 lM —
Sod1/SOD1 Nob (25, 285) Cyt, Nu, IMS (265) 31 lM 71 lM 0.23 lM

Glo1/GLO1 No (128) Cyt 0.18 lM 0.56 lM —
Glo2/GLO2 No (29) Cyt (29) 0.95 lM 0.53 lM 26 nM
Glo4/GLO4 No (29) MM (29) — 0.18 lM —

ADH5/ADH5 No Cyt (123) 0.58 lM 0.71 lM 23 nM

aThe concentration was calculated based on protein abundances from Refs. (48, 100, 152) as summarized in the Saccharomyces Genome
Database (www.yeastgenome.org). Molecules per cell were divided by the Avogadro constant and the estimated compartment volume.
Averaged cell and organelle volumes are based on Ref. (277): whole cell, 50 fl (lm3); cytosol, 25 fl; nucleus, 4 fl; vacuole, 4fl; mitochondria,
1 fl; endoplasmic reticulum, 0.5 fl; peroxisomes, 0.5 fl; cis-Golgi, 0.2 fl. Compartment volumes were combined for dual localized proteins.

bCombined gene deletions resulted in synthetic lethality.
Cyt, cytosol; ER, endoplasmic reticulum; IMS, mitochondrial intermembrane space; Nu, nucleus; MM, mitochondrial matrix; Per, peroxisomes.
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kcat value or turnover number of an enzyme indicates
how many molecules of substrate are metabolized by a
single enzyme molecule per second at saturating substrate
concentrations (molsubstrate · molenzyme

-1 · s-1). Thus, the SI
unit of the kcat value is ‘‘s-1’’. If an enzyme uses more than
one substrate, which is the case for most of the enzymes in
Table 1 that catalyze a glutathione-dependent conversion of
an electrophile, the reaction rate can also depend on more
than one substrate concentration. Using the Cleland notation,
reaction 3 describes a general ping-pong mechanism with two
substrates and two products, a covalently modified enzyme
species ‘‘F’’ as a reaction intermediate, and the two enzyme–
substrate complexes ‘‘ESA’’ and ‘‘FSB’’. Several of the re-
actions in Table 1 can be described by this or very similar
schemes. (However, there are also glutathione-dependent
enzymes that catalyze sequential instead of ping-pong reac-
tions, e.g., many GST and MAPEG isoforms.)

(3)

Enzyme species ‘‘E’’ can only react with the first substrate
and species ‘‘F’’ can only react with the second substrate.
Thus, the substrates never encounter each other and the re-
action can be subdivided into two half-reactions, which is a
perfect mechanism to kinetically uncouple two processes (as
outlined in the Molecular Lego: Uncoupling Mechanisms
Using Modular Enzymes section). If the initial reaction ve-
locity n0 is determined and no backward reaction takes place,
the half-reactions can be described by sequence 4a and 4b.

[E]þ [SA] Ð
k1

k� 1

[ES] /
k2

[F]þ [P] (4a)

[F]þ [SB] Ð
k3

k� 3

[FS] /
k4

[E]þ [Q] (4b)

1

v0

¼ KmA

Vmax

1

[SA]
þ KmB

Vmax

1

[SB]
þ 1

Vmax

(eq: 3)

KmA¼
k� 1þ k2

k1

KmB¼
k� 3þ k4

k3

The rate equation for reaction 4 is best to grasp in its
double reciprocal form (Eq. 3). The term 1/[SB] can be ne-
glected at a very high concentration of the second substrate so
that the kinetic relevance of reaction 4a is analyzed (because
the enzyme is predominantly present as species ‘‘E’’). The
same is true at a very high concentration of the first substrate
and the analysis of the kinetic relevance of species ‘‘F’’ and
reaction 4b. Under these conditions, Eq. 3 is mathematically
identical to the double reciprocal form of Eq. 2 and the kcat

value can be theoretically calculated from the maximum re-
action velocity (kcat = Vmax/[E]). However, enzyme kinetics
often cannot be measured at such high substrate concentra-
tions. The obtained constant is therefore an apparent kcat

value (kcat
app) at a defined nonsaturating substrate con-

centration as exemplified for the ping-pong kinetics in
Figure 3A. The true kcat value is usually extrapolated from a

number of kcat
app values using a so-called secondary plot (28,

250), as shown in Figure 3B. Please note that the true kcat

value can be a combination of the rate constants k2 and k4 of
reaction 4, provided they are rate limiting. This is, however,
not necessarily the case as outlined below.

The Km value is the substrate concentration at which the half-
maximum reaction rate is reached. The unit of the Km value is
‘‘M’’. Changes of substrate concentrations below the Km value
have a more drastic impact on the reaction rate than altered
substrate concentrations far above the Km value (e.g., the
change of the reaction rate between 0 and 0.5 mM substrate in
Figure 3A is much larger than the change between 1.5 and 2 mM
substrate). Hence, it is important to know the physiological
substrate concentration to estimate its effect on the reaction rate
of a specific enzyme–substrate couple. Apparent Km values
(Km

app) are obtained if another substrate is present at a non-
saturating concentration (or if the pH value or a salt concen-
tration is not optimal). Km and Km

app values can reflect the
affinity of an enzyme for its substrate. This is the case when the
conversion of the enzyme–substrate complex to product is
much slower than the unproductive dissociation of the complex.
In other words, a lower KmA value indicates a higher affinity for
the first substrate of reaction 4, provided that k2 is much smaller
than k-1 (Km* k-1/k1). The same is true for the second substrate,
provided that k4 is much smaller than k-3 (28, 250).

Infinite kcat and Km values

The two enzyme–substrate complexes ‘‘ESA’’ and ‘‘FSB’’
are supposed to accumulate in scheme 3 and to reach a steady-
state concentration according to the classical Michaelis–
Menten theory. However, many glutathione-dependent
enzymes, including several hydroperoxidases and Grx, have
infinite true kcat and Km values and cannot be saturated even
at very high substrate concentrations (Fig. 3B) (23, 69, 89, 96,
97, 108, 224, 273, 300). In mathematical terms, these en-
zymes can be defined by unusual steady-state concentrations
of ‘‘ESA’’ and ‘‘FSB’’ that tend to be zero. Dalziel established
for such kinetics an elegant version of Eq. 3 (Eq. 4) (57),
which can be used to describe the kinetics of many GPx and
Prx as well as some Grx (22, 89, 90, 273). In this version, kA

and kB are the rate constants of both half-reactions. (Using
Vmax = kcat[E], Eq. 4 can be derived from Eq. 3 by multipli-
cation with [E] so that the terms Km[E]/kcat[E] are reduced to
the kinetic constants kA

-1 and kB
-1. The term 1/Vmax in Eq. 3

is zero in this special case because of the infinite kcat value.)

[E]

v0

¼ 1

kA[SA]
þ 1

kB[SB]
(eq: 4)

Two mechanistic scenarios for infinite kcat and Km values
have been previously discussed for the oxidative and reduc-
tive half-reactions of GPx, Prx, and Grx (90, 97, 273). (i) Rate
constants k2 and k4 in reaction 4 are not rate limiting. This is
the case when the enzyme and substrate form a very short-
lived complex with such an optimized interaction that the
product is immediately formed once the substrate is bound. If
the half-reactions are irreversible, kA and kB in Eq. 4 are
identical to the second-order rate constants k1 and k3 of re-
action 4a and 4b, respectively (see also the Second-Order
Rate Constants section). (ii) There is no enzyme–substrate
complex that can accumulate in accordance with the classical
Michaelis–Menten theory, because there is no enzyme–
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substrate interaction except for the catalytic event as shown
in scheme 5 (57, 97, 273).

(5)

Scenarios (i) and (ii) with and without an enzyme–
substrate complex can be discriminated using substrate ana-
logs and products that could act as inhibitors. Absence of an
inhibition points to the absence of an enzyme–substrate
complex as previously emphasized for Grx catalysis (97).
The oxidative half-reaction of GPx and Prx—that is, the
irreversible reduction of hydroperoxides—probably occurs
without a real enzyme–substrate complex, which makes sense
considering the size of H2O2 and the rapid turnover of struc-
turally diverse hydroperoxide substrates (35, 89, 273). The
reversible reduction of glutathionylated substrates by Grx was
also suggested to occur without an enzyme–substrate complex
(97) because many Grx are poorly inhibited by S-
methylglutathione or l-c-glutamyl-l-a-aminobutyrylglycine
(ophthalmic acid) (22, 96, 97, 258, 268). Nevertheless, Grx
require two distinct glutathione interaction sites for catalysis
(22), and several partially conserved residues (22, 60) pre-
sumably confer specificity for the c-glutamyl moieties of the
glutathione disulfide substrate (GSSR) and GSH substrate
(77, 224, 234, 258). The situation is similar to the reductive
half-reaction of glutathione-dependent GPx, which have partially
conserved glutathione-binding sites but are poorly inhibited by
GSSG (60, 88, 273). For oxidized GPx, an enzyme–substrate
complex is supposed to be formed (273). A hit-and-run
mechanism involving specific glutathione-interacting residues
was also suggested for Glo2, which works with a sequential
Theorell-Chance and not a ping-pong mechanism (60, 280).

Regardless of the true mechanism of these glutathione-
dependent enzymes, it is important to note that even enzymes
with infinite true kcat and Km values can have an apparent
saturation behavior (Fig. 3A). This becomes understandable
considering that enzymes with a ping-pong mechanism al-
ternate between species ‘‘E’’ and ‘‘F’’ as shown in scheme 3.
If one substrate is present at a limiting concentration, only a
fraction of the enzyme becomes available for the other sub-
strate resulting in an apparent saturation. What are the im-
plications regarding the interpretation of apparent Km and kcat

values? The interpretation of Km
app and kcat

app of enzymes
with infinite kinetic parameters depends on the investigated
protein and requires thorough kinetic analyses at different
substrate and inhibitor concentrations. As recently shown in a
comparative study on wild-type and mutant Grx from yeast
and Plasmodium falciparum (22), lowering the concentration
of the first substrate lowered the Km

app value for the second
substrate because of a decreased steady-state concentration of
species ‘‘F’’ (and not because of a higher substrate affinity).
Likewise, the kcat

app value was lowered reflecting that fewer
molecules of species ‘‘F’’ were available for the turnover of
the second substrate. Please note that the ratio kcat

app/Km
app is

correlated with the second-order rate constant of the reaction
and should therefore remain constant (as outlined in the
Second-Order Rate Constants section and illustrated by the
parallel lines in the Lineweaver–Burk plot in Fig. 3A).

Second-order rate constants

Infinite true kcat and Km values provide rather limited in-
formation on the reactivity of a catalyst. They are sometimes
detected for extremely efficient catalysts as well as for lousy
enzyme–substrate couples (e.g., when the wrong substrate is
analyzed in vitro). Enzymes with infinite true kcat and Km

values, such as many GPx, Prx, or Grx, are therefore often
characterized by their second-order rate constant or by their

FIG. 3. Effect of variable substrate concentrations on GSH-dependent enzyme kinetics. In this example, the enzyme
‘‘E’’ uses a ping-pong mechanism to convert the electrophilic substrate ‘‘S.’’ The shown patterns are typical for Grx-
catalyzed reductions of glutathionylated disulfide substrates, yielding a thiol and GSSG (GSH + RSSG/RSH + GSSG).
Similar patterns are found for selected GPx or Prx that catalyze the GSH-dependent reduction of hydroperoxides. (A) The
normalized reaction rates for variable concentrations of ‘‘S’’ at four different constant concentrations of GSH are plotted
directly according to the Michaelis–Menten theory (left panel) and in double reciprocal form according to the Lineweaver–
Burk theory (right panel). The data can be usually fitted using the Michaelis–Menten equation (with kcat

app and Km
app values

replacing kcat and Km as shown in Eq. 2), yielding hyperbolic and linear curves in the direct and double reciprocal plot,
respectively. The parallel lines in the Lineweaver–Burk plot are indicative for the ping-pong mechanism with the constant
slope Km

app/kcat
app. (B) The apparent kinetic parameters at different GSH concentrations from panel A are analyzed in a

(double reciprocal) secondary plot. Linear fits for enzymes with infinite kcat and Km value pass through the origin (enzyme
A). The true Km and kcat value of other enzymes can be calculated from the x- and y-axis intercepts, respectively (enzyme
B). The reciprocal slope of the linear fit corresponds to a second-order rate constant k2, in this case for the reaction between
the glutathionylated enzyme ‘‘F’’ and GSH.
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kcat
app and Km

app values. For the second-order rate constant,
enzyme and substrate are treated as regular chemicals that
react in a bimolecular elementary reaction according to Eq. 1.
The value for k2 in Eq. 1 (or kA according to Eq. 4) can be
determined from the reciprocal slope of secondary plots
(Fig. 3B). Similar values are often obtained for the catalytic
efficiency (kcat

app/Km
app). Please note that the Michaelis–

Menten Eq. 2 can be simplified for [S] << Km, yielding a rate
equation that is, from a mathematical point of view, identical
to Eq. 1 (kcat

app/Km
app = k2).

The second-order rate constant k2 and the catalytic effi-
ciency have the unit ‘‘M-1s-1’’ and are highly suited to di-
rectly compare the reactivity of potentially competing
molecules. Some of the values used in the Applications and
Examples section are listed in Table 3. For example, the
second-order rate constant for the reaction between super-
oxide dismutase and O2

�- is *2 · 109 M-1s-1, which is about
10 million times faster than the second-order rate constant for
the nonenzymatic reaction between GSH and O2

�- around
200 M-1s-1 (82, 142). Likewise, second-order rate constants
for the reaction between hydroperoxidases and H2O2 are
often between 105 and 107 M-1s-1, which is again up to 10
million times faster than the second-order rate constant for
the nonenzymatic reaction between GSH and H2O2 around 1

M-1s-1 (35, 273, 275, 295). It is important to note that the rate
constant of GSH is similar to other low-molecular-weight
thiols (295). Even the active site cysteines of Trx and other
enyzmes have similar second-order rate constants (235, 263).
One exception to the slow sulfenic acid formation in non-
hydroperoxidases is the redox-sensitive cysteine residue of
GAPDH with an intermediate rate constant of 100 M-1s-1 at
pH 7 and 0�C (165). The higher reactivity of GAPDH de-
pends on the protonation of the generated hydroxyl ion,
which is a very poor leaving group (225). The latter property
explains the relative stability of H2O2 and its low reactivity
with other enzymes that contain a cysteine thiolate residue
[see Refs. (34, 91, 111, 263) for further rate constants of
protein thiols]. Thus, taking only the rate constants into ac-
count, superoxide dismutases and hydroperoxidases clearly
outcompete the cysteine residues of GSH or regular proteins
for the reduction of O2

�- or H2O2 (34, 91, 142, 263, 294). The
kinetics of these established electrophiles provides good ex-
amples for the relevance of rate constants. At this point it is
important to note that rate constants, for example, of disulfides
and sulfenic acids, can be extremely variable and depend on
multiple factors such as the protein environment (60, 65, 111,
198, 201). Furthermore, even when the rate constants of po-
tentially competing reactions have been determined, they are

Table 3. Selected Rate Constants and Catalytic Efficiencies

Reaction Catalyst?
Rate constant

or kcat
app/Km

app value Reference

GSH + O2
�- + H+/GS� + H2O2 Nonenzymatic *200 M-1s-1 (142)

2 O2
�- + 2 H+/O2 + H2O2 Nonenzymatic 2 · 105 M-1s-1 (93)

2 O2
�- + 2 H+/O2 + H2O2 Superoxide dismutase 2 · 109 M-1s-1 (82)

GS� + NO�/NO2
�/GS-/GSNO/NO2/SG�- Nonenzymatic *109 M-1s-1 (38, 147)

GSH + H2O2/GSOH + H2O Nonenzymatic 0.87 M-1s-1 (295)
GSH + H2O2/GSOH + H2O Ure2 84 M-1s-1 (16)
GAPDHred + H2O2/GAPDHox + H2O GAPDH *(2–11) · 102 M-1s-1 (165)
Grxred + H2O2/Grxox + H2O mGrx2 7.7 · 103 M-1s-1 (80)
Grxred + H2O2/Grxox + H2O hGrx2 2.5 · 104 M-1s-1 (80)
Grxred + H2O2/Grxox + H2O ScGrx1 5.3 · 104 M-1s-1 (52)
Grxred + H2O2/Grxox + H2O ScGrx2 2.6 · 104 M-1s-1 (52)
Prxred + H2O2/Prxox + H2O Tsa1 2.2 · 107 M-1s-1 (207)
Prxred + H2O2/Prxox + H2O Tsa2 1.3 · 107 M-1s-1 (207)
GPxred + H2O2/GPxox + H2O Mammalian GPx1/3 (4–5) · 107 M-1s-1 (89, 273)
Prxred + H2O2/Prxox + H2O Prx2 108 M-1s-1 (174)

GSH + HSA(SOH)/HSA(SSG) + H2O Nonenzymatic 2.9 M-1s-1 (276)
Cys(SH) + Cys(SOH)/CysSSCys + H2O Nonenzymatic >105 M-1s-1 (199)
2 GSH + GPx(SeOH)/GPx(SeH) + GSSG Mammalian GPx1/3/4 (0.6–4) · 105 M-1s-1 (273)
Trxred + GPx/Prx(SOH)/GPx/Prx(SH) + Trxox Other GPx *104-106 M-1s-1 (273)

LMW(SH) + RSSG/LMW(SSG) + RSH Nonenzymatic 0.01–200 M-1s-1 (23, 198, 266)
Grx(SH) + Cys(SSG)/Grx(SSG) + Cys hGrx1 7.0 · 105 M-1s-1 (96)
GSH + Grx(SSG)/Grx(SH) + GSSG hGrx1 9.9 · 104 M-1s-1 (96)
Grx(SH) + Cys(SSG)/Grx(SSG) + Cys hGrx2 1.0 · 105 M-1s-1 (96)
GSH + Grx(SSG)/Grx(SH) + GSSG hGrx2 6.3 · 103 M-1s-1 (96)
Grx(SH) + BSA(SSG)/Grx(SSG) + BSA PtGrxS12 8.0 · 105 M-1s-1 (300)
GSH + Grx(SSG)/Grx(SH) + GSSG PtGrxS12 2.5 · 104 M-1s-1 (300)
Grx(SH) + GSSG/Grx(SSG) + GSH SsGrx1 7.1 · 105 M-1s-1 (234)
Grx(SH) + Cys(SSG)/Grx(SSG) + Cys ScGrx7 (7.3–9.7) · 105 M-1s-1 (22)
GSH + Grx(SSG)/Grx(SH) + GSSG ScGrx7 (2.5–4.7) · 105 M-1s-1 (22)
Grx(SH) + Cys(SSG)/Grx(SSG) + Cys PfGrxC32S/C88S 1.4 · 106 M-1s-1 (22)
GSH + Grx(SSG)/Grx(SH) + GSSG PfGrxC32S/C88S 1.2 · 105 M-1s-1 (22)

Fd + Grx[2Fe2S2(GS)2]/Fd[2Fe2S2] + Grx +2 GSH PtGrxS14 3.3 · 102 M-1s-1 (17)
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not sufficient to judge a competition as outlined in The Re-
levance of the Enzyme Concentration section.

Summary III: the relevance of kinetic constants

Second-order rate constants and kcat
app/Km

app values are
highly suited to directly compare the reactivity of enzymes
and other potentially competing molecules. Km

app and kcat
app

values are useful to estimate the rate of an enzyme-catalyzed
reaction under physiological conditions, for example, at
nonsaturating substrate concentrations. Even enzymes with
infinite true kcat and Km values can have an apparent satura-
tion behavior. To compare potentially competing reactions,
we have to know both, the physiological substrate concen-
trations and the kinetic constants.

The Relevance of the Enzyme Repertoire

Within the past decades, the localization of numerous
glutathione-dependent enzymes has been determined in a
variety of organisms. Thus, it is well known in which sub-
cellular compartment most of these proteins are (Table 2),
although dual protein targeting complicates the situation and
seems to be a quite common feature in glutathione metabo-
lism (35, 55, 60, 70, 144, 171, 191, 215, 223). However, there
are still some blind spots and missing pieces. These include
glutathione transporters (Fig. 2) as well as the tissue- and
organelle-specific distribution of several of the Grx and GST
isoforms in plants and animals.

Many low-molecular-weight electrophiles such as di-
sulfides, hydroperoxides, and xenobiotics are metabolized by
seemingly redundant enzymes within a single organism.
Some of the redundancy can be explained by overlapping but
nonidentical substrate preferences or by the compartmental-
ization of eukaryotic cells. However, even prokaryotes as
well as selected compartments of eukaryotes harbor multiple
enzymes with similar or identical substrate preferences. I will
illustrate this again for the hydroperoxidases, simply because
there is much more information on these enzymes than on the
other proteins that are listed in Table 1. Three major families
of hydroperoxidases (GPx, Prx, and catalases) are found in
parallel in many prokaryotic and eukaryotic cells. These

enzymes have deviating properties and can be further sub-
divided into a variety of isoforms (Fig. 4) (35, 60, 113, 202,
273). The cytosol of yeast, for example, contains the catalase
Ctt1, the Prx isoforms Tsa1, Tsa2, and Ahp1, as well as the
GPx isoforms GPx2 and GPx3 (Table 2). Among the thiol-
dependent hydroperoxidases, selenocysteine-containing
mammalian GPx are the most reactive enzymes with second-
order rate constants for H2O2 > 107 M-1s-1 (35, 89, 273). In
contrast, cysteine-containing GPx and Prx—only some of
which use GSH as an electron donor (60, 69, 83, 273)—have
rate constants that often range from 104 to 107 M-1s-1 (35,
273, 275, 294). Heme-containing catalases have rate con-
stants >107 M-1s-1 but are thiol independent and catalyze the
disproportionation reaction 2 H2O2/O2 + 2 H2O (3, 31, 202,
206). Please note that the reaction rates of peroxidases are
usually linear at low nanomolar substrate concentrations and
can be described by Eq. 1 ([S] << Km, Second-Order Rate
Constants section). Some 1-Cys Prx isoforms, however,
might be even inactivated at such low H2O2 concentrations,
which would explain why they are inactive in standard en-
zymatic assays in vitro (62, 66, 203). Why do many organ-
isms possess members of all three major hydroperoxidase
families in a single compartment? Furthermore, what is the
benefit or function of less efficient Prx isoforms?

Alternative substrate concentrations and preferences

A comparison of the normalized reaction rates and
Km

app
(H2O2) values of GPx, Prx, and catalases suggests the

following physiological implications. Catalases are excellent
catalysts at all substrate concentrations. They have an ad-
vantage at peak concentrations of H2O2 above 50 lM because
of an absent substrate saturation (Fig. 4A). However, whether
this is of physiological relevance is questionable for many
organisms (as outlined in the Electrophile Concentrations
section). Selenocysteine-containing GPx are the most active
hydroperoxidases at H2O2 concentrations below 50 lM,
whereas some cysteine-containing GPx and Prx have similar
activities as catalases at H2O2 concentrations £ 0.1 lM
(Fig. 4B, C). Thus, a broad hydroperoxidase repertoire might
reflect an adaptation to variable H2O2 concentrations, for

FIG. 4. Comparison of normalized hydroperoxidase activities at variable H2O2 concentrations. Normalized reaction
rates at (A) high, (B) intermediate, and (C) low H2O2 concentrations are shown from left to right. Kinetic parameters for
equine catalase (k = 3.5 · 107 M-1s-1), bovine GPx1 at 4 mM GSH (kcat

app = 3 · 103 s-1, Km
app = 3 · 10-5 M), and recom-

binant peroxiredoxin AhpC from Salmonella typhimurium (kcat
app = 52 s-1, Km

app = 1.4 · 10-6 M) are based on reported
measurements by Ogura (206), Flohe et al. (89), and Parsonage et al. (220), respectively. The parameters for the modeled
sensitive Prx isoform are kcat

app = 100 s-1 and Km
app = 1 · 10-5 M.
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example, in pathogenic organisms that have to compensate
basal H2O2 concentrations as well as short-term peak concen-
trations because of plant or animal host defense mechanisms.

Even though members of all three hydroperoxidase fami-
lies convert H2O2 as an oxidizing substrate, they utilize dif-
ferent reducing agents. Catalases have the advantage that
they do not rely on the NADPH-dependent replenishment of
thiol pools and that the demand for reducing equivalents is
coupled to its supply (because H2O2 is the electron acceptor
and donor). The combination of GPx and Prx might allow a
balanced consumption of electrons from different thiol pools,
for example, from the GSH and Trx pool. Please note that
although many Prx and GPx are specific for their electron
donor, several isoforms appear to be more promiscuous and
accept electrons from Trx, Grx, and/or GSH (60, 66, 69, 83,
236, 242, 261, 273). The thiol-dependent hydroperoxidases
also have deviating preferences regarding the oxidizing
substrate. For example, monomeric mammalian GPx4 re-
duces membrane-bound lipid hydroperoxides in contrast to
the soluble tetrameric GPx homologues (35).

Redox sensing and moonlighting functions

Another explanation for the variety of cellular hydro-
peroxidases is that some GPx and Prx are H2O2 sensors,
which allow a fine-tuned redox regulation. As reviewed
previously, these proteins are inactivated at higher hydro-
peroxide concentrations or form mixed protein–protein
disulfide bonds with intermediate half-lives for signal trans-
duction (34, 46, 59, 65, 110, 131, 137, 238, 255, 299). Last but
not least, hydroperoxidases can also exert moonlighting
functions, for example, as chaperones or for sperm maturation
(39, 136, 282).

Summary IV: relevance of the enzyme repertoire

Seemingly redundant enzyme repertoires can result in kinetic
competitions. The repertoires originate from many factors, in-
cluding the compartmentalization of eukaryotic cells, over-
lapping but nonidentical substrate preferences, an adaptation
to variable substrate concentrations and electron donors, as well
as alternative (moonlighting) functions, for example, in redox
signaling or protein folding. These factors have been intensely
studied for peroxidases and are presumably also important
for Grx, GST, glyoxalases, and other glutathione-dependent
enzymes, even though their physiological functions often re-
main to be characterized (Table 1) (60, 65, 279). Thus, to un-
derstand glutathione metabolism, it is crucial to determine the
compartment-specific enzyme repertoires and to assign a func-
tion to each member of these highly diverse protein families.

The Relevance of the Enzyme Concentration

Turnover numbers and second-order rate constants of re-
dox enzymes differ by several orders of magnitude. However,
just because an enzyme is much less reactive does not mean
that it is irrelevant. I will first illustrate this again for the
hydroperoxidases and subsequently discuss the implications
for other proteins and for common genetic approaches.

Hydroperoxidase concentrations

Based on the normalized reaction rates in Figure 4A and B,
one might assume that some Prx play a rather minor role for

the detoxification of H2O2 compared to catalase and
selenocysteine-containing GPx. However, if we consider the
physiological concentration of H2O2 in the nanomolar (or
maybe picomolar) concentration range, which is usually far
below the Km

app value, the differences between the peroxi-
dases are less pronounced (Fig. 5A). If we now take into
account that many Prx are among the most abundant proteins
(top 5%) in many eu- and prokaryotes (287), the lower ac-
tivity compared to catalase is more than compensated
(Fig. 5B, C). For example, deficiencies of catalase or GPx1 in
mouse erythrocytes were reported to result in rather mild
phenotypes in contrast to the loss of Prx2, which caused
hemolytic anemia (159). The latter phenotype and the sig-
nificant contribution of Prx2 to H2O2 removal (140, 159)
become explainable considering that Prx2 has an estimated
concentration of 0.24 mM in erythrocytes (190). (However,
additional Prx2-specific functions, for example, in redox sig-
naling or hemoglobin stabilization (46, 114, 299), could also
contribute to the phenotype.) Figure 5B and C also reveals how
an enzyme with a high second-order rate constant can become
completely irrelevant if competing enzymes are much more
concentrated in the same compartment. Please note that such
deviating concentrations are not unusual for redox enzymes.
For instance, a ratio of *1200:1 was reported for the yeast
peroxiredoxin Tsa1 and the cytosolic catalase Ctt1 (100).
Based on a cytosol volume of roughly 50 fl, the data translate
into estimated concentrations of Tsa1 and Ctt1 around 25 lM
and 20 nM, respectively (Table 2). This scenario is similar to
the one for protein A and C in Figure 5C. Thus, the comparison
of reaction rates taken alone can be misleading.

Implications for other enzymes

Effects of variable reactivities and concentrations also
apply to other potentially competing glutathione-dependent
enzymes such as Grx or GST isoforms. It is therefore im-
portant to determine not only the presence and kinetic con-
stants of these enzymes but also their compartment-specific
concentrations using the same approaches as outlined for the
protein substrates (Electrophile Concentrations section). Ac-
tivity measurements of Glo1 and Glo2 in E. coli revealed, for
example, calculated concentrations around 0.6 and 3 lM, re-
spectively (217). A nice example for the compartment-specific
distribution of an enzyme in eukaryotes is Cu/Zn-superoxide
dismutase, which was determined for rat hepatocytes by
quantitative immunocytochemistry (44): The highest
amount of the enzyme was found in the cytosol and nucleus,
whereas highest estimated concentrations were detected in
lysosomes (42 and 22 lM vs. 240 lM, respectively). Per-
oxisomes contained lower concentrations of superoxide
dismutase around 8 lM and the secretory pathway was (al-
most) devoid of the enzyme (44). Complementing ap-
proaches were also developed for the quantification of
catalase and GPx (291). Thus, it is, in principle, possible to
obtain reasonable estimates for compartment-specific enzyme
concentrations. The situation for multicellular organisms is
of course further complicated because of tissue-specific
differences as highlighted in the mouse ‘‘redox atlas’’ (103).
One advantage of yeast as a model organism is the avail-
ability of quantitative data on protein abundances. A major
drawback is, however, that data sets can differ by up to two
orders of magnitude (Table 2) (48, 100, 152). These
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differences presumably originate from alternative quantifi-
cation methods using the fluorescence intensity of C-
terminally GFP-tagged proteins (48), Western blot signals
of C-terminally TAP-tagged proteins (100), or mass spec-
trometry signals from untagged peptides (152).

Implications for genetic approaches

An often neglected aspect regarding enzyme concen-
trations is that the scenarios in Figure 5B and C do not
occur only under normal growth conditions. Such scena-
rios are also artificially generated by reverse genetics, for
example, by gene deletions or complementation studies
with high copy number plasmids or strong promoters. Such
tools are commonly used to aggravate a metabolic imbalance—
for example, on the addition of highly concentrated electro-
philes—to trigger pronounced growth defects or a rescue
phenotype. This is certainly a great approach to gain first
insights on the potential function of a protein in vivo. How-
ever, it may also lead to an over- or underestimated relevance
of an enzyme or might even result in an incorrect functional
assignment. If, for example, candidate peroxidase A only
rescues a knockout strain of peroxidase B on H2O2 treatment
when protein A is about a hundred times more abundant than
under normal growth conditions—e.g., using a high copy
number plasmid for expression—then it is not necessarily
justified to conclude that protein A is important for the re-
moval of H2O2. Likewise, some phenotypes might require
the deletion of another gene. For example, the comparison of
two peroxidase candidates A and B might only reveal an
interesting phenotype for a strain that lacks the major per-
oxidase C. Such experiments might rather point to the irrel-
evance of candidates A or B compared to peroxidase C but
are sometimes used to promote a novel function in vivo (see
also the Kinetic Competitions for hydroperoxides I: Grx and
GST section).

Summary V: relevance of the enzyme concentration

The relevance of enzyme concentrations for the reaction
rates of potentially competing processes can be easily under-
estimated. There are rather few examples for which we know
reliable compartment-specific enzyme concentrations. Much
more data are required to quantify potential kinetic competi-
tions. Furthermore, genetic approaches that are commonly
used to address the relevance of glutathione-dependent pro-
cesses require sufficient controls to avoid incorrect functional
assignments because of altered enzyme concentrations.

The Relevance of Enzymatic Mechanisms
and Kinetic Patterns

Differences between ping-pong and sequential
kinetic patterns

Kinetic patterns of glutathione-dependent enzymes depend
on the substrates and the catalytic mechanisms. These can
differ drastically among the protein families in Table 1 (60).
Enzymes with two substrates often have either ping-pong or
sequential kinetic patterns (28, 250). Both kinetic patterns are
easily distinguished in Lineweaver–Burk plots as depicted in
Figure 6. The patterns are not always predictable and have to
be determined experimentally for each enzyme–substrate
couple. A sequential pattern usually indicates a ternary com-
plex between the enzyme and both substrates. However, ping-
pong mechanisms can also result in sequential kinetic patterns,
for example, when a substrate or product acts as an inhibitor
(28, 250). In contrast to the glutathionylated substrates of
Grx (Fig. 6A), this seems to be the case for the non-glutathione
model substrate bis(2-hydroxyethyl)disulfide (HEDS) (Fig. 6B):
Grx reduces HEDS enzymatically (23) yielding the mixed
disulfide between GSH and 2-mercaptoethanol (GSSEtOH) as
a product. GSSEtOH is subsequently utilized as a glutathio-
nylated substrate in the same assay. However, newly formed

FIG. 5. Variable enzyme concentrations have drastic effects on reaction rates. Reaction rates for hypothetical hy-
droperoxidases A–D are shown from left to right at three different enzyme concentrations and variable H2O2 concentrations.
The kinetic parameters of enzymes A–D are identical to the enzymes in Figure 4. The relevance of each enzyme is depicted
below each plot. (A) Model with an identical concentration of 1 lM for all four proteins. (B) Model with enzyme
concentrations differing by two orders of magnitude. (C) Model with enzyme concentrations differing by four orders of
magnitude. Similar enzyme concentrations are found in Table 2.
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GSSEtOH probably adopts a futile orientation at the enzyme
and has to be released before it is accepted as a substrate (22).
Thus, GSSEtOH also seems to act as an inhibitor that causes
the sequential kinetic patterns. To which degree similar Grx-
catalyzed reactions occur in vivo remains to be clarified.
Potential non-glutathione substrates that might cause such
kinetic patterns include l-cystine, coenzyme A disulfides or
diallyl disulfides, and related compounds from garlic and
other Allium species (23).

In addition to standard ping-pong or sequential patterns,
Lineweaver–Burk plots are sometimes curved or biphasic.
This can point to a glutathione-dependent allostery or co-
operativity as revealed for a monomeric Glo1 isoform and a
PrxV-type enzyme from malaria parasites (67, 69, 261).
Classical heme-containing catalases use the following unusual
ping-pong mechanism: reduction of the first H2O2 molecule
yields the oxidized enzyme, an oxoferryl porphyrin cation
radical termed ‘‘compound I’’. Oxidation of the second H2O2

molecule regenerates the Fe3+-containing enzyme (3). Because
H2O2 is the substrate for both half-reactions, catalase cannot be
saturated, resulting in a linear substrate concentration depen-
dence of the reaction rate (Fig. 4A). However, the physio-
logical situation is more complicated because the enzyme gets
inactivated by O2

�-, and alternative electron donors such as
ethanol compete for the reductive half-reaction of bifunctional
catalase peroxidases (43). Further mechanisms of the enzymes
in Table 1 are reviewed in Ref. (60).

Why are the mechanisms and kinetic patterns impor-
tant? An allostery or cooperativity points to a glutathione-
dependent enzyme regulation. For example, glutathione was
shown to alter the oligomerization, activity, and function of
selected Prx in vitro (69, 218, 226). Furthermore, the second
substrates of enzymes with ping-pong or sequential kinetic
patterns have different effects on the kinetic parameters. (i)
Decreasing the concentration of the second substrate of an
enzyme with ping-pong patterns shifts the ratio between the
enzyme species ‘‘E’’ and ‘‘F’’ in scheme 3 toward species

‘‘F’’ and results in lower kcat
app and Km

app values for the first
substrate (Fig. 6A). Different GSH concentrations in the
cytosol and the endoplasmic reticulum should therefore alter
the ratio between reduced and glutathionylated GPx isoforms
in these compartments. (ii) In contrast, decreasing the con-
centration of the second substrate of an enzyme with se-
quential patterns results in lower kcat

app values and/or higher
Km

app values (Fig. 6B, C). Both effects cause a drop of the
catalytic efficiency (the kcat

app/Km
app value), whereas the

efficiencies of enzymes with ping-pong patterns remain un-
affected by the substrate concentration. The latter aspect
might be helpful to decipher the physiological role of high
GSH concentrations (Mother Nature Invented GSH: But
Why So Much section).

Molecular Lego: uncoupling mechanisms
using modular enzymes

Why do pro- and eukaryotes contain so many catalytically
inactive Grx isoforms that are involved in iron metabolism?
How can some GPx and Prx isoforms exert additional func-
tions as redox sensors? All these enzymes have in common
that they utilize ping-pong mechanisms for catalysis. The
selectivity of glutathione-dependent enzymes appears to de-
pend on the geometric and electrostatic complementarity of the
protein–substrate couple. In other words, the substrate and the
transition state nicely fit into the active site of the protein, and
the recruitment of the substrate in a suitable orientation is
guided by the electrostatic surface potential (22, 60, 65). As
outlined in the Difference Between True and Apparent kcat and
Km Values section, substrates of enzymes with ping-pong
mechanisms never encounter each other (scheme 3). Fur-
thermore, the trigonal bipyramidal transition states during
GPx, Prx, and Grx catalysis necessitate either drastic con-
formational changes or two distinct substrate interaction sites
(22, 60, 73). These chemical constraints result in a modular
enzyme architecture, which is even more pronounced in

FIG. 6. Kinetic patterns depend on the enzyme and substrate. Lineweaver–Burk plots are shown for three different
enzyme–substrate combinations. (A) Ping-pong patterns of ScGrx7 with the model substrate l-cysteine-glutathione disulfide
(GSSCys) at three different GSH concentrations based on data from Ref. (22). The reciprocal slope (the kcat

app/Km
app value)

remains constant because an increase of the kcat
app value is coupled to an increase of the Km

app value. (B) Sequential kinetic
patterns of ScGrx7 with the model substrate HEDS at three different GSH concentrations based on data from Ref. (22). The
reciprocal slope (the kcat

app/Km
app value) and the kcat

app values vary, whereas the Km
app values remain constant. (C) pH-

dependent sequential kinetic patterns of PfGlo2 at four different concentrations of SLG based on data from Ref. (280). The
reciprocal slope (the kcat

app/Km
app value) and the Km

app values vary, whereas the kcat
app values remain constant. HEDS,

bis(2-hydroxyethyl)disulfide; SLG, S-d-lactoylglutathione.
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redox-active flavoenzymes such as GR, TrxR, or Erv (60, 64).
Thus, point mutations in enzymes with ping-pong mechanisms
can have a specific effect on only one of both half-reactions
and enzyme–substrate interactions. This allows the utilization
of alternative substrates or the deceleration or inactivation of
a half-reaction to kinetically uncouple a process and to accu-
mulate a metastable intermediate (Fig. 7).

Mutations and the spatiotemporal separation of the hy-
droperoxide reduction from the reductive half-reaction al-
lowed Prx and GPx, for example, to switch between different
reducing agents and to accumulate a metastable oxidized
enzyme species for redox signaling (59, 60, 113, 261, 273,
299). A similar scenario was suggested for Grx catalysis (60,
73), which was recently shown to require two distinct glu-
tathione interaction sites, one for GSSR and one for GSH
(Fig. 8) (22). In the course of evolution, mutations in the rather
ill-defined GSH interaction site presumably abolished the en-
zymatic activity of most monothiol Grx isoforms. The muta-
tions include the loss of a hydroxyl group of a conserved
tyrosine residue and the introduction of a rigid proline and a
bulky tryptophan residue (Fig. 8) (22, 60, 63, 183). Loss of
the GSH interaction resulted in a kinetic uncoupling from
GSH catalysis and probably stabilized the interaction be-
tween glutathione and an iron–sulfur cluster at the GSSR
binding site. The kinetic uncoupling from redox catalysis
obviously allowed an important gain of function for Grx in
iron metabolism (17, 56, 163, 194, 214, 241), which has

been suggested to be, at least in yeast, the most relevant
branch of glutathione metabolism (153). It may also allow
GSSG sensing by monothiol Grx (Kinetic Competitions for
GSSG and GSSR section)

Are there further candidates for molecular uncoupling
mechanisms? Many dithiol and monothiol Grx isoforms have
an additional, catalytically irrelevant cysteine residue after a
GG motif (60, 69). The residue was shown to form a variety
of mixed disulfide bonds in vitro (69). Such modifications
could interfere with the GSSR interaction site and might
uncouple the oxidative instead of the reductive half-reaction
of Grx. This might shut off the deglutathionylation activity of
Grx. An alternative inactivation of the oxidative half-reaction
includes the phosphorylation of selected threonine or serine
residues, as hypothesized previously (97). Please note that
both reversible uncoupling scenarios might solve the di-
lemma how specific glutathionylated substrates should ac-
cumulate at high GSH concentrations in the presence of Grx
(Kinetic Competitions for GSSG and GSSR section).

Summary VI: relevance of enzymatic mechanisms
and kinetic patterns

The knowledge on enzyme mechanisms and kinetic pat-
terns is crucial to estimate the physiological effects of altered
substrate concentrations or inhibitors. Modular ping-pong
reactions facilitate a molecular evolution that results in the

FIG. 7. The modular architecture of enzymes with ping-pong mechanisms facilitates the gain of novel functions.
Two evolutionary scenarios are shown to illustrate how point mutations affect the geometric and electrostatic comple-
mentarity between the enzyme and substrate. For enzymes with ping-pong mechanisms, mutations can selectively alter the
substrate preferences (scenario a) and/or kinetics (scenario b). This can result in trapped enzyme species and novel
functions, for example, in redox signaling or iron–sulfur cluster biogenesis. The model may apply to all kinds of enzymes
with ping-pong mechanisms such as Grx, Prx, GPx, GR, and TrxR [see Ref. (60) for details on the respective enzyme
mechanisms]. Please note that the relevant enzyme–substrate interactions might be very temporary. Furthermore, they are
not restricted to the reaction center and also include the protein surface that can affect the substrate recruitment.
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use of alternative substrates and that allows a kinetic un-
coupling of processes from redox catalysis at physiological
GSH concentrations. Such processes include redox sensing,
iron–sulfur cluster binding, and maybe protein glutathiony-
lation and oxidative protein folding.

Applications and Examples

Now that we have gained an overview on the relevant pa-
rameters and gathered some quantitative data, we can apply
this information to estimate the reaction rates of potentially
competing enzymatic as well as nonenzymatic reactions in
glutathione metabolism. I will provide three examples to ad-
dress (i) whether hydroperoxide detoxification is a common
function of glutathione metabolism, (ii) whether GSSG-
dependent glutathionylations occur during oxidative chal-
lenge, and (iii) whether GSH plays a role as a radical scavenger.
The reader is encouraged to raise the question whether similar
quantitative approaches might be helpful to address other as-
pects of glutathione metabolism, for example, using the data
from Tables 1–3.

Kinetic competitions for hydroperoxides I:
Grx and GST

Which glutathione-dependent processes contribute to the
detoxification of hydroperoxides and/or H2O2-dependent re-
dox signaling? As reviewed previously, glutathione-dependent
hydroperoxidases are rather the exception, and most charac-
terized GPx and Prx isoforms were shown to use Trx isoforms
as electron donors (60, 90, 172, 273). From an evolutionary

perspective, this contradicts the hypothesis that high GSH
concentrations are pivotal for the detoxification of hydroper-
oxides. To rescue the hypothesis, one might consider other
ubiquitous glutathione-dependent proteins. A hydroperoxidase
activity was indeed not only detected for selected GPx and Prx
(35, 60, 89, 109, 261, 273) but also for several GST, MAPEG,
and Grx isoforms (16, 52, 53, 60, 80, 121, 134, 135, 229). Are
these in vitro activities high enough to become physiologically
relevant, as has been suggested by independent groups based
on survival and protection assays in yeast and human cell
cultures (52, 53, 80)?

Mammalian Grx2 as well as yeast ScGrx1 and ScGrx2
were reported to have quite high hydroperoxidase activities
with kcat

app/Km
app values for H2O2 ranging from 7.7 · 103 to

5.3 · 104 M-1s-1 (Table 3) (52, 80). Only one GSH concen-
tration was tested for these enzymes so that we can only
speculate on the kinetic patterns. For the sake of simplicity, we
will assume ping-pong patterns with constant kcat

app/Km
app

values irrespective of the GSH concentration. Furthermore, we
will assume that the kcat

app/Km
app values really reflect the ox-

idative half-reaction and are comparable with the second-order
rate constants of GPx and Prx. Estimated concentrations for
cytosolic ScGrx1 and ScGrx2 range from 3.4 nM to 6.5 lM.
The estimated concentration of the competing cytosolic Prx
isoform Tsa1 is between 0.51 and 26 lM (Table 2). Second-
order rate constants of Tsa1/2 for H2O2 are about 107 M-1s-1

(Table 3) (207). To evaluate a competition at a theoretical
H2O2 concentration of 10 nM, we will use the highest kcat

app/
Km

app value of Grx. Taking all these parameters into account,
we can now estimate the reaction rates using Eq. 1 (Box 1).

FIG. 8. The modular architecture of enzymes with ping-pong mechanisms allows a kinetic uncoupling of the half-
reactions. Grx catalysis with glutathionylated substrates (GSSR) requires two distinct glutathione interaction sites because
of the transition-state geometry of thiol/disulfide exchange reactions (22, 60, 183). The upper and lower parts illustrate
differences and similarities between active and inactive Grx isoforms. Both groups have partially conserved residues for the
interaction with the GSSR substrate at the so-called scaffold site. This interaction results in the glutathionylation of the
active site cysteine residue. The scaffold site can also interact with glutathione that is bound to other groups (X) such as
glutathione conjugates or iron–sulfur clusters (161, 164, 183, 302). Inactive Grx lack the hydroxyl group of a conserved
tyrosine residue in a CxY(C/S)-motif and have a bulky WP-motif that probably interferes with the GSH interaction at a
predominantly uncharacterized activator site (22, 60, 63, 183). Thus, the reductive half-reaction of inactive Grx is either
very slow or cannot take place anymore because of an incompatible geometric and electrostatic complementarity between
the enzyme and GSH (22, 60, 65).
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Box 1. Calculated Reaction Rates of Grx, Prx,

and GPx at 10 nM H2O2

The most optimistic scenario at a high Grx and low Tsa1
concentration suggests that the reaction rate of Grx accounts
for 7% of the Tsa1 rate, which is still too slow for an efficient
competition. If this scenario is correct, a fraction of Grx
might, nonetheless, form a sulfenic acid and act as a redox
sensor to explain the observed survival effects. However,
redox sensing would require a kinetic uncoupling from the
reduction by GSH, that is, a stabilization of the sulfenic acid
or an efficient competition between GSH and a cysteine
residue (Molecular Lego: Uncoupling Mechanisms Using
Modular Enzymes section). For the most pessimistic sce-
nario, the reaction rate of H2O2 with Grx is up to six orders of
magnitude smaller than the rate with Tsa1. This scenario is
quite likely considering that Tsa1 was reported to constitute
0.7% of the total soluble protein from yeast (146). Thus, the
reaction of Grx with H2O2 is too slow to compete with the
established hydroperoxidases in yeast.

Box 1 also shows calculated reaction rates for mammalian
GPx1 and Prx2 using rate constants of 4.7 · 107 M-1s-1 and
108 M-1s-1 (89, 174, 273) as well as hypothetical protein
concentrations of 1 and 10 lM, respectively. The reaction
rates at 10 nM H2O2 between 5 · 10-7 and 10-5 M/s are in
the same range as for Tsa1 in yeast. This would explain why
glutathione-dependent mammalian GPx isoforms can play
a role in hydroperoxide removal, although there are cer-
tainly kinetic competitions with Prx and catalase depending
on the substrate, the subcellular localization, and the en-
zyme concentration (Fig. 5) (35, 89, 273). Regarding the
moderate hydroperoxidase activity of mammalian Grx2
isoforms in Table 3, it appears unlikely that these enzymes
are concentrated enough to compete with the established
hydroperoxidases.

Which information is available on the potential relevance of
GST in yeast? The cytosolic GST isoform Ure2 was reported to
have a hydroperoxidase activity with sequential kinetic patterns
(16). The kcat

app/Km
app value at 1 mM GSH is about a hundred

times higher than the second-order rate constant for the non-
enzymatic H2O2-dependent formation of GSOH (Table 3).
Considering an estimated concentration of Ure2 between 14
and 490 nM (Table 2), which is more than a thousand-fold
lower than the GSH concentration, the Ure2-dependent reac-
tion rate is not only negligible compared to Tsa1 but also much
slower than the nonenzymatic reaction between H2O2 and GSH
(which ranges from 10-11 to 10-12 M/s at 10 nM H2O2).

In summary, a physiological relevance of Grx and GST
isoforms as hydroperoxidases is highly questionable, unless
(i) there is a specific substrate, (ii) the compartment contains
no classical hydroperoxidases, (iii) the enzyme is either very
concentrated or directly targeted to the H2O2 source, or (iv)
one of the assumptions above is completely wrong. Con-
sidering that the reported effects in yeast and human cell
cultures required an overexpression of Grx (52, 53, 80), it is
likely that the results are based on artificially high Grx con-
centrations (similar to shifting the relevance of enzyme A
from Fig. 5C or 5B to 5A). This interpretation is also sup-
ported by genetic and proteomic studies suggesting that the
Trx/TrxR system is the major electron donor for the reduction
of hydroperoxides in yeast (153, 156).

Kinetic competitions for hydroperoxides II: GAPDH

What can we say about the formation of sulfenic acids in
other proteins than GPx and Prx? As emphasized previously,
there are only few cysteine residues with rate constants above
102 M-1s-1 that might compete with the activity of hydro-
peroxidases (34, 59, 65, 91, 263). One exception is GAPDH
(Table 3), which forms a sulfenic acid that is susceptible to
the reduction by GSH (111, 120, 225, 246, 251). The ex-
trapolation of the rate constant of GAPDH with H2O2 at 25�C
depends on the activation energy. Using the Arrhenius
equation, the rate constant from Ref. (165) at 0�C, and a
hypothetical activation energy between 65 and 20 kJ/mol,
reasonable estimates for the k2 value range from 200 to 1100
M-1s-1. Furthermore, GAPDH is one of the most abundant
cytosolic proteins (top 5%) (287) and was suggested to have a
concentration of up to 1 mM (225). Combining the informa-
tion, the estimated reaction rate of GAPDH at 10 nM H2O2 is
between 2 · 10-9 M/s and 1.1 · 10-8 M/s. A comparison with
the reaction rates from Box 1 reveals for the most optimistic
scenario—with a k2 value of 1100 M-1s-1 and an unrealistic
low Tsa1 concentration—that the reaction rate of GAPDH is
about 20% of the Tsa1 rate (or 2% of the reaction rate of
GPx1 in mammals). If the concentration of GAPDH is lower,
the k2 value is smaller, and/or the Tsa1 concentration is
higher, less than 0.02% of H2O2 might react with GAPDH,
which is more realistic. However, in contrast to GPx, Prx, and
also Grx, the cysteine residue of GAPDH is quite buried, and
the reduction by GSH is probably much slower than the re-
duction of the other proteins (Table 3). Thus, GAPDH(SOH)
can accumulate over time and reach detectable steady-state
concentrations (111). The accumulation of oxidized GAPDH
was suggested to either affect moonlighting functions or to
shift the metabolic flux of glucose toward the pentose phos-
phate pathway, yielding NADPH for the reduction of Trx and
GSSG (120, 225, 251).

It remains highly controversial whether sulfenic acids of
less abundant and reactive proteins accumulate in vivo. On
the one hand, low nanomolar steady-state concentrations
translate into only a handful of H2O2 molecules in subcellular
compartments with a volume around 1 fl (see Table 2 legend
for estimated compartment volumes). If a highly reactive and
abundant peroxidase is present, the chances of H2O2 to react
with a common nonreactive cysteine residue are minuscule
because of an unwinnable kinetic competition. Even for
GAPDH, a rate constant of 1100 M-1s-1 at a steady-state
concentration of H2O2 around 10 nM translates into a half-

vGrx(high) = 5.3 · 104 M-1s-1 · 6.5 lM · 10 nM = 3.4 3 1029 M/s

vGrx(low) = 5.3 · 104 M-1s-1 · 3.4 nM · 10 nM = 1.8 3 10212 M/s

.................................................................

vTsa(high) = 107 M-1s-1 · 26 lM · 10 nM = 2.6 3 1026 M/s

vTsa(low) = 107 M-1s-1 · 0.5 lM · 10 nM = 5.0 3 1028 M/s

–––––––––––––––––––––––––––––––––––––––––––––
vGPx1 = 4.7 · 107 M-1s-1 · 1 lM · 10 nM = 4.7 3 1027 M/s

vPrx2 = 108 M-1s-1 · 10 lM · 10 nM = 1.0 3 1025 M/s
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time for sulfenic acid formation of 12 h. In other words, it
would require 12 h (or 15 min at 0.5 lM H2O2) to oxidize
50% of GAPDH, provided that the sulfenic acid is not re-
duced again. In the same time, only 0.04% of a regular cys-
teine residue with a rate constant of 1 M-1s-1 would become
oxidized, and it would take about 12 days at 10 nM H2O2 until
1% of the oxidized protein accumulates (always provided
that the sulfenic acid is not reduced again). This also shows
that even compartments without highly concentrated per-
oxidases will only accumulate sulfenic acids very slowly as
long as the H2O2 concentration does not rise. The only way
to accelerate the reaction is to either alter the rate constant,
for example, by increasing the pH or by increasing the
(local) H2O2 concentration. The latter scenario might occur
in vivo when H2O2 is generated in the proximity of a cys-
teine residue, for example, by a flavoenzyme or a damaged
iron–sulfur cluster. These conditions would increase the
likelihood for a successful sulfenic acid formation. How-
ever, even that is not enough to result in the accumulation of
sulfenic acids at steady-state conditions. For this, the re-
duction of the sulfenic acid has to be slow. Reported rate
constants for the in vitro reduction of sulfenic acids depend
on the protein environment and range from 0.012 to >105

M-1s-1 (Table 3) (111, 199).
In summary, a general accumulation of sulfenic acids

cannot occur in vivo. The formation of specific sulfenic acids
requires unusual conditions such as (i) high (local) hydro-
peroxide concentrations, (ii) the absence of competing hy-
droperoxidases, or (iii) a very reactive cysteine residue in
combination with a high protein concentration. Except for
GAPDH, the bacterial transcription factor OxyR, and maybe
a few other candidates, it is questionable whether sulfenic
acids of nonhydroperoxidases are formed to a significant
extent in vivo (34, 65, 91). The steady-state concentration of
such species depends not only on the oxidation but also on the
reduction rate, both of which are usually unknown.

Kinetic competitions for GSSG and GSSR

A reiterated model of diverse theories on oxidative stress
is that protein cysteine residues are protected from ‘‘over-
oxidation’’ by unspecific glutathionylations. Such theories
are sometimes supported by proteomic screens revealing
hundreds of glutathionylated candidates (143). Glutathiony-
lated residues are suggested to be formed from (i) sulfenic
acids and GSH, from (ii) thiols that react with accumulated
GSSG, from (iii) nitrosothiols, or (iv) from radicals [see Ref.
(95) for review]. Another way to obtain a glutathionylated
protein is of course the reaction between a protein disulfide
bond and GSH, however, it is not really plausible why the
initial disulfide bond should be less protected under oxidative
challenge than the mixed disulfide bond with glutathione.
The promiscuous formation of sulfenic acids under oxidative
challenge is implausible and can be discarded as a general
glutathionylation mechanism (Kinetic competitions for hy-
droperoxides II: GAPDH section). Radical reactions are
discussed in the Kinetic Competitions for Radicals section.
We will therefore continue with potential nonenzymatic and
enzymatic competitions for GSSG.

Cytosolic Grx are, because of their ping-pong mechanism,
supposed to be predominantly present in the reduced state at
physiological GSH concentrations. No apparent substrate

saturation is expected at nanomolar or low micromolar GSSG
concentrations (in analogy to the hydroperoxidases shown in
Fig. 5). The concentration of enzymatically active mamma-
lian Grx is *1 lM in the cytosol and in the mitochondrial
matrix (97). Estimated concentrations for yeast ScGrx1 and
ScGrx2 range from 3.4 nM to 6.5 lM (Table 2). Second-order
rate constants of Grx with glutathionylated substrates, in-
cluding GSSG, are usually between 105 and 106 M-1s-1 (22,
96, 300), whereas common thiols have k2 values that are 103-
to 108-times smaller (Table 3) (198, 266). A kinetic compe-
tition between a protein thiol and Grx for GSSG or GSSR is
only possible if the concentrations of Grx and the protein thiol
differ by the same order of magnitude. Such a scenario is
unlikely for cytosolic proteins. Thus, peak concentrations of
cytosolic GSSG rather yield Grx(SSG) than protein(SSG) as an
intermediate product. A subsequent enzymatic transfer of the
glutathione moiety from Grx(SSG) to a protein cysteine resi-
due is, in principle, possible. However, such a reaction has to
compete with millimolar GSH and rate constants between
6 · 103 and 5 · 105 M-1s-1 (Table 3). Protein glutathionylation
therefore requires a high protein concentration, an unusual rate
constant, or kinetic uncoupling of Grx catalysis from GSH
because of an altered reductive half-reaction (Fig. 7). En-
zymatically inactive Grx isoforms are uncoupled, provide the
properties to sense GSSG (60, 73) and might transfer the
glutathionylation signal to specific transducer proteins in ac-
cordance with the concept on redox signaling from Ref. (34).

The competition between protein thiols and Grx also
brings us back to the four possible mechanisms for the rapid
recovery of intracellular E¢GSH values after oxidative challenge
(Glutathione concentrations section). Peak concentrations of
GSSG are very temporary, and the number of cytosolic GSSG
molecules under steady-state conditions is probably small. As I
just outlined, a Grx-independent buffering of cytosolic GSSG
as protein(SSG) does not make sense. Whether there is a
transient Grx-catalyzed glutathionylation of proteins depends
on the competition between Grx and the GR- or transporter-
catalyzed removal of GSSG. GR from rat has a kcat

app/Km
app

value for GSSG of 4.9 · 106 M-1s-1 (37), which is roughly 10
times faster than the k2 value of Grx (Table 3). Thus, efficient
Grx-catalyzed protein glutathionylation (e.g., for redox sig-
naling) should only occur if the GR concentration is lower
than the Grx concentration. Further quantitative data on GR,
Grx, and GSSG transporters are necessary to decipher the
exact fate of GSSG on oxidative challenge.

It is interesting to note that a hypothetical temporary de-
pletion of NADPH on oxidative challenge will have a direct
effect on the activity of GR, whereas the activity of Grx is not
affected. When the GSSG concentration rises and GR stays
inactive, Grx could glutathionylate a number of proteins. Such
a metabolic flux should occur in GR-deficient cells, which are
presumably viable because (selected) glutathionylated proteins
are also substrates of the Trx/TrxR system as demonstrated
in vitro (79, 139). A similar situation might occur in the se-
cretory pathway of yeast, which lacks GR but harbors ScGrx6
and ScGrx7 (132, 184). Whether these enzymes catalyze glu-
tathionylations or deglutathionylations should depend on the
ratio between GSSG and GSH (Fig. 2). Whether specific
PDI isoforms exert similar glutathione-dependent functions on
oxidative protein folding in mammals and other eukaryotes
requires more quantitative and qualitative data in vivo (Mod-
ified Cysteine Residues section) (8, 170, 209, 272).
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In summary, a general accumulation of glutathionylated
proteins during oxidative challenge is unlikely to occur in vivo
and would necessitate a permanent depletion of NADPH.
Nonenzymatic GSSG-dependent glutathionylations are out-
competed by enzymatic glutathionylations when Grx are
present. Enzymatically active Grx prevent or immediately re-
verse glutathionylations at millimolar GSH concentrations.
GSSG-dependent protein glutathionylations require special
conditions such as (i) high local GSSG concentrations (e.g.,
when GR or GSSG transporters are absent or inactive) or (ii)
kinetic uncoupling mechanisms (e.g., to transfer the glutathione
moiety from an inactive Grx isoform to a specific transducer).

Kinetic competitions for radicals

The substrate O2
�- of superoxide dismutase is one of the

most important radicals in biology. Is a nonenzymatic reac-
tion between O2

�- and GSH of any physiological relevance?
The reaction rate of superoxide dismutase ranges from
5 · 10-8 to 6 · 10-6 M/s at a hypothetical O2

�- concentration
of 0.1 nM (using the calculated concentration for cytosolic
superoxide dismutase between 0.23 and 31 lM from Table 2
and the rate constant from Table 3). At a GSH concentration
of 13 mM (212), the enzymatic reaction of superoxide dis-
mutase is four to six orders of magnitude faster than the
nonenzymatic reaction with GSH. Thus, there is no way that
GSH has any relevance for O2

�- removal in the cytosol. Such
a reaction might only play a role in a compartment that is (i)
devoid of superoxide dismutase, (ii) contains only low con-
centrations of competing flavo-, heme-, or iron–sulfur cluster
proteins, and (iii) has a pH value above 6 (otherwise the
spontaneous disproportionation of O2

�- is faster).
However, GSH might play a role in scavenging other

radicals that react with any available electron donor in a
diffusion-controlled manner. The rate constants of radical
reactions and the high GSH concentration obviously increase
the likelihood for the formation of the thiyl radical GS�. From
there on one can go through many potential reactions on
paper. Whether this ‘‘paper chemistry’’ is really relevant
in vivo, or whether GS� is just another link in a detrimental
chain reaction, might depend on the presence and concen-
tration of other compounds such as NO�, ascorbate, and
maybe Grx (38, 95, 97, 147). For example, GSNO is some-
times suggested to be formed by GS� and NO�. However,
even at a high NO� concentration, the GS�-dependent for-
mation of GSNO is questionable because of a competition
with the O2

�—dependent formation of peroxynitrite (Reactive
Oxygen and Nitrogen Species section). The rate constant for
the reaction of NO�with GS� is about one order of magnitude
smaller than for the reaction with O2

�- (38). Whether the
metabolic flux is now directed toward the formation of per-
oxynitrite or GSNO highly depends on the steady-state con-
centrations of GS� and O2

�-. Although there appear to be no
quantitative data on the steady-state concentration of GS�, I
would be surprised if it is 10 times higher than the concen-
tration of O2

�-. The detection of GS� by sensitive spin traps
required, for example, the continuous treatment of neuro-
blastoma cells with *0.3 mM H2O2, whereas no GS� was
trapped in unstressed controls (155).

In summary, a GSH-dependent detoxification of radicals
and the NO�-dependent formation of GSNO are presumably
of little physiological relevance and would require highly

specialized reaction conditions because of unfavorable ki-
netic competitions. However, when iron ions are liberated
from damaged iron–sulfur clusters during oxidative chal-
lenge (Modified Cysteine Residues section), GSH could
contribute electrons to detrimental Fenton reactions (197).
This might lead to local glutathionylations and the formation
of O2

�-, H2O2, and �OH. In such a scenario, nonenzymatic
single-electron exchanges with GSH would rather enhance
the formation of harmful radicals instead of scavenging them
as an ‘‘antioxidant’’.

Mother Nature Invented Glutathione: But Why So Much?

Hypothesis I: high GSH concentrations are crucial
for redox homeostasis

This imprecise hypothesis subsumes numerous parame-
ters, including enzymatic and nonenzymatic reactions be-
tween multiple partners. As outlined in the previous sections,
nonenzymatic reactions of GSH with O2

�-, H2O2, and di-
sulfides are too slow and cannot compete with enzymes even
at millimolar GSH concentrations. Enzymatic reactions with
O2
�- and H2O2 also occur without a glutathione system, and

glutathione-dependent hydroperoxidases are rather the ex-
ception than the rule. Furthermore, such enzymes work with
ping-pong mechanisms and their catalytic efficiency is con-
stant and does not depend on high GSH concentrations. One
might argue that apparent substrate saturations play a role.
However, nanomolar hydroperoxide concentrations and the
established rate constants do not necessitate millimolar GSH
concentrations to maintain the hydroperoxidases in a reduced
state. This should also be the case for nanomolar GSSG
concentrations and the Grx-catalyzed reduction of disulfides,
even though these reactions are reversible. A common argu-
ment is that high GSH concentrations are necessary to fully
reduce redox proteins such as Grx at equilibrium, because—in
contrast to dithiol reductants such as dihydrolipoate or Trx—
the half-cell reduction potential E¢GSH not only depends on the
standard Eo¢GSH value (-0.24 V at pH 7.0 and 25�C) and the
[GSH]/[GSSG] ratio but also on the total concentration of
glutathione (10, 101). However, metabolism is not at equili-
brium and the reversibility of the reduction of disulfide sub-
strates (e.g., of ribonucleotide reductase) should remain
unproblematic even at lower glutathione concentrations as
long as the (GSH)2/GSSG ratio is maintained and the meta-
bolic flux is sufficiently high. Both aspects are ensured by the
rapid GR-dependent removal of GSSG and the high, substrate
concentration-independent catalytic efficiency of Grx. The
same principle should apply to the GSH/GSNO couple as long
as there is an efficient GSNOR-dependent removal of GSNO.

The only situation that appears to necessitate a higher GSH
concentration for redox homeostasis is the extreme oxidative
challenge. The more GSH available, the more oxidants can be
immediately buffered resulting in a temporary increase of
GSSG. The question is whether such challenges are of gen-
eral relevance and really reflect a basic principle in biology.
For example, deletion of GR in yeast and harsh treatment
with 1 mM H2O2 resulted in a temporary increase of cytosolic
GSSG with a peak concentration of 140 lM. The same
treatment resulted in wild-type cells in a minuscule tempo-
rary change of the (GSH)2/GSSG ratio (192). Thus, even
under extreme conditions, the buffer capacity of the GSH
pool was hardly ever utilized. One might argue that the
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situation is different in other organisms or subcellular com-
partments (e.g., in human cells or in the secretory pathway)
and that different enzyme repertoires and transport processes
will affect the glutathione fluxes. This is certainly true for
other organisms. For example, exogenous H2O2 concentra-
tions between 10 and 100 lM yielded minor and major
temporary changes of the (GSH)2/GSSG ratio in HeLa cells
(112), indicating that not only the Trx/TrxR system but also
the glutathione system responded to the challenge in contrast
to yeast. However, it is unlikely that requirements in the
secretory pathway or other subcellular compartments dictate
the high cytosolic GSH concentration in eukaryotes, in par-
ticular, taking into account that millimolar glutathione con-
centrations are also found in bacteria.

In summary, the presence of alternative hydroperoxidases
and electron donor systems, as well as the kinetic patterns and
activities of Prx, GPx, Grx, and GR, raises the question whe-
ther millimolar GSH concentrations are really necessary for
redox homeostasis. Even under physiological oxidative chal-
lenge, the buffer capacity of the GSH system might be hardly
ever used depending on the organism and genetic background.

Hypothesis II: high GSH concentrations are crucial
for detoxifications

This hypothesis subsumes the removal of heavy metals,
xenobiotics, and endogenous harmful metabolites such as
2-oxoaldehydes, formaldehyde, or 4-hydroxy-2-nonenal
(Fig. 1). Depending on the toxin, a few molecules might be
sufficient to alter the genome or to poison the organism.
Furthermore, a high GSH concentration might be completely
irrelevant for most of the life span (or under axenic laboratory
conditions) but becomes immediately essential once the or-
ganism is exposed. This selection pressure might have fa-
vored permanent millimolar glutathione concentrations at an
early time point in the course of evolution, in particular, if we
consider that the corresponding enzymes often have se-
quential kinetic patterns so that the catalytic efficiencies in-
crease with higher GSH concentrations. Please note that
Km

app values of GST isoforms usually reflect a real substrate
affinity. Thus, high GSH concentrations also help to scavenge
the toxin by lowering the Km

app value.
Among the candidate detoxification systems and sub-

strates that could necessitate high glutathione concentrations,
glyoxalases deal with a very basic chemical challenge: the
removal of glycolysis-derived methylglyoxal. However, we
can exclude these enzymes and 2-oxoaldehydes from the list
because (i) glyoxalases are often nonessential, (ii) high GSH
concentrations inhibit Glo2, and (iii) some organisms have
methylglyoxal reductase or other GSH-independent enzymes
that can also do the job (60, 61, 129, 256). We can also
exclude the activities of GSNOR and GSH-dependent
formaldehyde dehydrogenases because these enzymes are
often missing in glutathione-utilizing pro- and eukaryotes.
The best candidates are indeed the numerous GST isoforms.
They are the most widespread and diverse glutathione-
dependent enzymes and they are able to remove potentially
deadly mutagens and poisons (6, 30, 60, 117). Among the
numerous GST and MAPEG members, we can exclude the
specialized isoforms that contribute to amino acid catabolism
or to steroid and eicosanoid biosynthesis (Fig. 1) (60, 117,
135, 176). For the remaining vast majority of isoforms, we

encounter the dilemma of how to quantitatively address the
relevance of millimolar GSH concentrations for detoxification
processes without knowing the identity and compartment-
specific concentrations of the relevant enzyme–substrate
couples in real ecosystems.

Hypothesis III: high GSH concentrations are crucial
for iron metabolism

The hypothesis is counterintuitive because nonenzymatic
reactions between GSH and free iron ions could promote
harmful Fenton reactions. However, biochemical systems are
adopted to limit free iron ions. Furthermore, genetic studies
in yeast support hypothesis III (153, 194, 214, 241). Best
candidates for an important link between iron and glutathione
metabolism are evolutionarily conserved Grx isoforms that
are able to bind iron–sulfur clusters (Orphan Proteins and
Unknown Metabolites and Substrates section). The stability
of these clusters was shown to not only depend on the pres-
ence (17, 161, 164, 228, 302) but also on the concentration of
reduced GSH in vitro (183). However, nothing is known
about the steady-state concentrations of Grx-bound
[Fe2S2(GS)2] clusters and many rate constants are missing to
support the hypothesis. We only know that the cluster transfer
from Grx has an intermediate rate constant, as has been re-
ported for poplar chloroplast monothiol GrxS14 and ferre-
doxin (Table 3) (17). On the one hand, the Grx-bound cluster
has to be accessible and should not be bound too tightly to
facilitate the critical transfer between proteins. On the other
hand, the cluster should be shielded from O2

�- and H2O2.
This presumably reflects a dual function of glutathione, which
might be easily stripped off during the cluster transfer and also
shields the iron ions. Both parameters should depend on the
Grx isoform and function. Thus, a quantitative analysis of the
relevance of glutathione for iron–sulfur cluster metabolism
boils down to potential kinetic competitions between GS-,
O2
�-, H2O2 and donor and acceptor proteins regarding their

cluster interactions. Almost all relevant rate constants of these
processes seem to be unknown. For example, whether milli-
molar GSH concentrations are necessary to shift the equilib-
rium from the unprotected to the protected cluster species
depends on the rate constants for GS- binding and dissociation.
In summary, many more rate constants and concentrations are
necessary to quantitatively address the relevance of millimolar
GSH concentrations for iron metabolism.

Concluding Remarks

Recent discoveries have challenged the traditional view of
glutathione metabolism that was predominantly based on
concepts of redox homeostasis and oxidative stress. The fo-
cus has clearly shifted from antioxidant defense to the com-
partmentalization of glutathione-dependent pathways, redox
regulation, and the relevance of glutathione for iron meta-
bolism. So far, there appears to be no unambiguous expla-
nation for the millimolar concentration of GSH, and the
glutathione puzzle remains incomplete. It still comprises
numerous missing pieces, including compartment-specific
transporters, substrates, and enzymes as well as crucial
quantitative data regarding concentrations, rate constants,
and enzyme kinetic patterns. I tried to emphasize the im-
portance of each of these parameters and provided examples
how to use them to compare the rates of potentially
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competing reactions with hydroperoxides, disulfides, or radi-
cals. Such a quantitative approach could be also helpful to
unravel the relevance of the other functions of glutathione,
which can differ significantly among organisms, cell types,
and subcellular compartments. The presented model on un-
coupling mechanisms might be useful to address fundamental
aspects of iron–sulfur cluster biogenesis, redox sensing, and
oxidative protein folding. Future qualitative and, in particular,
quantitative analyses will certainly reveal novel unexpected
insights on glutathione metabolism and tell us whether we
were on the right way or just guessing at numbers and figures.
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Abbreviations Used

2-OG¼ 2-oxoglutarate
Cyt¼ cytosol
ER¼ endoplasmic reticulum

GAPDH¼ glyceraldehyde-3-phosphate
dehydrogenase

Glo¼ glyoxalases
GPx¼ glutathione peroxidase
GR¼ glutathione reductase
Grx¼ glutaredoxins

GSH¼ glutathione
GSNO¼GSNO reductase
GSSG¼ glutathione disulfide
GSSR¼ glutathione-disulfide substrate

GST¼ glutathione transferase
GSX¼ sum of glutathione conjugates

H2O2¼ hydrogen peroxide
HEDS¼ bis(2-hydroxyethyl)disulfide

IMS¼mitochondrial intermembrane space
MM¼mitochondrial matrix

MRP¼multidrug resistance-associated proteins
Nu¼ nucleus

PDI¼ protein disulfide isomerase
Per¼ peroxisomes

Pi¼ inorganic phosphate
Prx¼ peroxiredoxin

SLG¼ S-d-lactoylglutathione
Trx¼ thioredoxin

TrxR¼ thioredoxin reductase
Ycf¼ yeast cadmium factor
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