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Hot pepper (Capsicum annuum) is one of the most consumed vegetable crops in the world and useful to
human as it has many nutritional and medicinal values. Genomic resources of pepper are publically
available since the pepper genomes have been completed and massive data such as transcriptomes have
been deposited. Nevertheless, global transcriptome profiling is needed to identify molecular mechanisms
related to agronomic traits in pepper, but limited analyses are published. Here, we report the
comprehensive analysis of pepper transcriptomes during fruit ripening and pathogen infection. For the
ripening, transcriptome data were obtained from placenta and pericarp at seven developmental stages. To
reveal global transcriptomic landscapes during infection, leaves at six time points post-infection by one of
three pathogens (Phytophthora infestans, Pepper mottle virus, and Tobacco mosaic virus P0 strain) were
profiled. The massive parallel transcriptome profiling in this study will serve as a valuable resource for
detection of molecular networks of fruit development and disease resistance in Capsicum annuum.
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Background and Summary
Large amounts of transcriptome data have been released using next-generation sequencing technology for
past decades, which enables us to study organisms in a genomic perspective. In plants, global gene
expression profiling was performed to elucidate molecular mechanisms for organ specificity,
developmental changes, and disease resistance1–10. For example, the transcriptome analysis on
developing seeds suggested that transcriptional change in endosperm and embryo was regulated by
distinct co-expressed networks in wheat and maize1,2. In addition, the expression analysis of pathogen
infected leaves in Arabidopsis and tomato revealed that a number of genes and networks interacted with
each other in a specific time and a stage7–10. A recent study using multiple transcriptomes identified the
vacuolar protease SLVPE3 and their target, serine protease inhibitor KTI4, involved in fruit ripening and
disease resistance11. These genomic and transcriptomic studies have allowed us to unveil gene expression
mechanisms and find target genes associated with agronomic traits.

Hot peppers (Capsicum spp.), belonging to Solanaceae family, are the most widely cultivated spice in
the world. In 2013, the worldwide production of pepper was 31.1 million tons (14.6 billion US dollars),
which was the third largest among vegetable crops12. The pepper fruits are rich sources of vitamin C,
pigments, minerals and pungent agents that are known as nutritional and functional properties for
human health13. The genus Capsicum consists of 33 undomesticated and five domesticated species
including the most widely cultivated species, Capsicum annuum14. Various genetic studies for the pepper
have been performed to unveil molecular mechanisms of important agronomic traits and disease
resistance15–24. Recently, completion of the multiple reference pepper genomes with the deposited large
amount of transcriptome data has enabled to perform in-depth analyses for these agronomical
traits13,25–28. However, comprehensive transcriptome analyses to identify expression and expressional
variations of genes using the large transcriptome resources of the peppers are still lacking.

In this study, we openly released the hot pepper transcriptomes that were previously published13,21,23.
We described in detail the expression profiling methods of samples from fruit development, pathogen
infection in each time point and tissues in C. annuum (Fig. 1). Total 125.68 Gb of transcriptome
data from previously reported fruit tissues (pericarp and placenta) and infected leaves with P. infestans,
Pepper mottle virus (PepMov), and Tobacco mosaic virus (TMV) P0 strain was generated (Table 1
and Data Citation 1). After preprocessing analyses, we mapped the remaining sequences to the
reference pepper genome (Data Citation 1). The preprocessed sequences were validated through quality
assessment (Fig. 2). A principal component analysis (PCA) showed the global gene expression
patterns and variations between samples (Fig. 3). Consequently, the expression profiling of multiple
conditions in pepper will provide valuable resources for analysis on fruit development, ripening and
disease resistance.

Methods
Experimental overview
Massive transcriptome data for seven developmental stages in fruit (fruit development set) and six to
seven time points in leaves infected by pathogens (pathogen infection set) were generated to decipher
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Figure 1. Schematic overview of the analysis pipeline. The pepper transcriptome of fruit organs and

pathogen- infected leaves including three biological replicates except for Mock-Up (n= 2) were collected from

NCBI SRA (SRP106410 and SRP119199). All raw sequences were pre-processed and assessed using FastQC

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc) and MultiQC. The filtered reads were mapped to

Capsicum annuum reference genome (v.1.55) using CLC assembly. The mapped reads were normalized RPKM

and log2 transformed mean value were used to PCA.
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global gene expression profiling for fruit development and disease resistance in C. annuum. The reference
pepper genome annotation v1.55 was used (http://peppergenome.snu.ac.kr). Reference mapping
and normalization for filtered transcriptome were performed after quality filtering and assessment.
A principal component analysis (PCA) was performed to elucidate global gene expression patterns and
evaluate the correlation between samples using log2 transformed RPKM values (Fig. 1).

Transcriptome data generation
The transcriptome data in this study were acquired from CM334 dataset (Data Citation 2 and
Data Citation 3). For transcriptome profiling of fruit development, pepper fruits at seven ripening stages
were harvested at 6, 16, 25, 36, 38, 43, and 48 days post-anthesis (DPA) as previously described13. For
transcriptome profiling of immune response to multiple pathogens, pepper leaves were inoculated with
15 μl droplets of 5 × 104 zoospores ml− 1 suspension in P. infestans, and PepMov and TMV P0 strain
purified from systemically infected tobacco leaves as previously described21,23. Inoculated leaves harvested
at several time points from three biological replicates were ground in liquid nitrogen, which was used for
total RNA purification. The strand-specific libraries with 150–200 bp insert size were constructed and
sequenced with Illumina HiSeq 2000 and 2500 platforms (Illumina Inc., San Diego, USA) using fruit
development set and pathogen infection set, respectively. Sample names were assigned: placenta (PL);
pericarp (PR); stage 1, 6 DPA (1); stage 2, 16 DPA (2); stage 3, 25 DPA (3); mature green, 36 DPA (MG);
breaker, 38 DPA (B); breaker plus 5, 43 DPA (B5); and breaker plus 10, 48 DPA (B10); control
for P. infestans (TDW) and virus (Mock); infection for P. infestans (Pi), pepper mottle virus (PepMov),

Sample Tissue/
treatment

Read type Sampling method Time point Preprocessed data (Gb) Accession number

Fruit organ Placenta
Pericarp

Single Tissue sampling 6, 16, 25, 36, 38, 43, 48 DAP 4.32
5.12

SRP119199

Oomycete P. infestans
TDW

Paired Suspension
droplet

0, 6, 12, 24
48, 90, 120 h

13.2
10.92

SRP106410
SRP119199

Virus PepMov
TMV_P0
Mock

Paired Rubbing with carborundum on the
leaves

0, 0.5, 4, 24, 48, 72 h and
systemic leaves

9.66
6.15
15.16

SRP119199

Table 1. Statistics of pepper transcriptomes used in this study. PepMov: pepper mottle virus; TMV_P0:
tobacco mottle virus P0 strain; TDW: control for P. infestans; Mock: control for viruses; DPA: days post-
anthesis.
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Figure 2. Quality assessment of pepper transcriptomes. The filtered reads from all 136 samples were assessed

by MultiQC. (a) Mean quality scores distribution in each position. (b) Read counts distribution for mean

sequence quality. (c) GC ratio distribution. (d) Read length distribution.
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TMV P0 strain (TMV). Only single (forward) reads were used in pathogen infection set to reduce the
read type variable for the fruit development set.

Pre-processing and quantification
The raw sequences of transcriptome were filtered and trimmed using previously described methods to
remove contaminated and low quality reads13. The raw reads containing reference bacterial sequences
were filtered using Bowtie2 v2.0.0-beta7 with modified parameters (--local –D 15 –R 2 –N 0 –L 20 –I
S,1,0.65)29. The sequences with quality scores below 20 were trimmed using the CLC quality trimming
software (CLC bio, Aarhus, Denmark). Minimum length cut-off for 50 bp and 101 bp read was 35 bp and
71 bp, respectively. The reads were validated using FastQC v0.11.5 (ref. 30) and MultiQC v1.3.dev0
(ref. 31) software with default parameters. The processed reads were mapped to the v.1.55 pepper CDS
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Figure 3. Global gene expression pattern in pepper transcriptomes. The log2 transformed mean RPKM

values were plotted by boxplot function in R (a). The line plot (b) and scatter plots of PC1 versus PC2 (c) and

PC1 versus PC3 (d) were drawn using previously published code with modification32. The abbreviations see

method section 2.
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using CLC assembly cell with –s 0.99 –l 0.9 parameters (CLC bio, Aarhus, Denmark). Total mapped reads
were normalized to reads per kilobase per million mapped reads (RPKM).

Principal component analysis (PCA)
Average RPKM values for each time point and tissue were used for PCA. To reduce the influence of
extremely expressed genes, RPKM values were log2-transformed and boxplot was drawn using boxplot
function in R. PCA was performed using previously published code with modification32.

Data Records
The detailed transcriptome information and average RPKM values for all pepper samples were deposited
in figshare (Data Citation 1). The raw reads for transcriptome were deposited in NCBI Sequence Read
Archive (SRA) accession (Data Citation 2 and Data Citation 3).

Technical Validation
Quality validation
To assess total data quality, we performed the quality check using FastQC and MultiQC software for
all preprocessed samples. Overall, the mean quality scores in each base position were higher than 27
(Fig. 2a). The read counts per quality scores were distributed above 25 and average quality was higher
than 35 (Fig. 2b). The normal distribution of GC content was indicating non-contaminated in sequencing
process (Fig. 2c). The average sequence lengths were 50 bp and 99 bp for fruit development set and
pathogen infection set, respectively (Fig. 2d). These numerical values represent that high-quality
sequences were obtained for further analysis.

Global gene expression analysis
To elucidate global gene expression patterns in multiple conditions, filtered reads were mapped to pepper
CDS and normalized by RPKM. The average RPKM values of three biological replicates in each sample
were used for further analysis. A principal component analysis using log2 transformed RPKM showed
that first three PCs explained most of the variance (Fig. 3a,b). The comparisons between PC1 and PC2 or
PC3 indicated that the group of fruit organs and leaves infected by pathogen were separated clearly. In
addition, the leaves infected by P. infestans and group of virus (PepMov and TMV P0 strain) showed a
different pattern with minor overlap. (Fig. 3c,d).
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