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Abstract

Drug-target interaction (DTI) prediction has drawn increasing interest due to its substantial position in the drug discovery
process. Many studies have introduced computational models to treat DTI prediction as a regression task, which directly
predict the binding affinity of drug-target pairs. However, existing studies (i) ignore the essential correlations between
atoms when encoding drug compounds and (ii) model the interaction of drug-target pairs simply by concatenation. Based
on those observations, in this study, we propose an end-to-end model with multiple attention blocks to predict the binding
affinity scores of drug-target pairs. Our proposed model offers the abilities to (i) encode the correlations between atoms by a
relation-aware self-attention block and (ii) model the interaction of drug representations and target representations by the
multi-head attention block. Experimental results of DTI prediction on two benchmark datasets show our approach
outperforms existing methods, which are benefit from the correlation information encoded by the relation-aware
self-attention block and the interaction information extracted by the multi-head attention block. Moreover, we conduct the
experiments on the effects of max relative position length and find out the best max relative position length value k ∈ {3, 5}.
Furthermore, we apply our model to predict the binding affinity of Corona Virus Disease 2019 (COVID-19)-related genome
sequences and 3137 FDA-approved drugs.
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Introduction
Drugs work by interacting with target proteins to activate or
inhibit the biological process of the targets. Thus, identifing
novel drug-target interactions (DTIs) is an essential step in the
drug discovery field, like drug repurposing [12, 18, 26]. However,
transitional costly experiments limit the process to identify new
DTIs [26, 28, 31]. Thus, the computational approach for DTI
prediction is urgent [37]. Recently, a large of studies proposed
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computational methods for DTI prediction. Parts of studies
[6, 16, 29, 32] considered the DTI prediction task as a binary
classification problem. They focused on the existence of DTI,
while some other studies [9, 18, 24] treat it as a regression task
to directly predict the binding affinity scores. Here, the binding
affinity scores describe the strength of the interactions in drug-
target pairs. In this study, we focus on the drug-target binding
affinity prediction.

https://academic.oup.com/
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Recently, deep learning methods are utilized for DTI predic-
tion. DeepDTA [18] proposed a convolutional neural networks
(CNNs)-based model for drug representation learning, target
representation learning and predicting interaction between
them. As one of the widely used deep learning-based models
for predicting the binding affinity values, it has achieved
an acceptable result. However, it is limited due to that CNN
cannot capture the long-distance relationship among atoms
in drugs. Based on this, the study [24] introduced a self-
attention mechanism-based model with position embedding
to encode the relationship among all atoms in compounds.
Nevertheless, firstly, it is far from enough to model the
compounds since these existing methods just label each atom
a corresponding integer according to a dictionary. During
modeling the compounds, what is learned is an atom at a
specific position. It ignores the correlation between atoms and
separates each atom. For example, the compounds ’COC1=C
(C=C2C(=C1)CCN=C2C3=CC(=C(C=C3)Cl)Cl)Cl’. In existing
methods, given a dictionary {′C′ : 1,′ l′ : 2,′ O′ : 3, etc.}, the
character ’C’ would be coded as ’1’ and ’l’ is labeled as ’2’.
The existing methods separated the chloride atom ’Cl’ as two
fake atoms since they cannot further learn the relative position
information between character ’C’ and character ’l’. Moreover,
the correlation between atoms not only depicts relative position
information but also enhances the diversity of atoms. As the
’C’ in that example, ’C’ atoms would be in any position, but
each one includes unique information since their connected
atoms are different. Secondly, most existing methods always
simply modeled the interaction between drugs and targets by
concatenating their representations which is not sufficient to
describe the interactions.

Based on these observations, we propose an end-to-end
model with multiple attention blocks, named MATT_DTI, to
predict the binding affinity scores of drug-target pairs. The
protein sequences and SMILES (Simplified Molecular Input Line
Entry System) of drugs are the inputs of our proposed model.
Firstly, we propose a relation-aware self-attention block to model
the drugs from SMILES data, considering the correlation between
atoms. The relative self-attention block makes it possible to
enhance the relative position information between atoms in
compounds while considering the relationship of all elements
at the same time. Secondly, two CNN models are utilized to learn
the representations of drugs and targets, respectively. Finally,
a multi-head attention block is built to model the similarity
of drug-target pairs as the interaction information and fully
connected networks (FNNs) are used to extract interaction
features. Compared with the baseline DeepDTA [18], both
of us are sequence representation methods and the protein
representation learning part uses the same CNN model. The
difference is that we employ a relation-aware self-attention
block in drug representation learning to encode correlations of
atoms, and a multi-head attention block to model the interaction
information of DTIs.

In the experiments, we evaluate our proposed model on two
public benchmark datasets, Davis [4] and KIBA [25] datasets,
and compare our model with regression-based baselines,
KronRLS [19], SimBoost [9], DeepDTA [18] and other recent
sequence representation learning methods for DTI prediction.
Our MATT_DTI model outperforms these baseline models on
Concordance index (CI) and r2

m index metrics. Moreover, in order
to further investigate the potential of our model, we apply
our proposed model to Corona Virus Disease 2019 (COVID-19)-
related proteins and list the FDA-approved drugs with high
binding affinity scores predicted by our model.

The main contributions of this paper can be summarized as
follows.

(i) In order to model the drug compounds, a relation-aware
self-attention block is built to enhance the relative position
information between atoms in drugs and capture the long-
distance relationship among all the atoms at the same time
(section 3 Methods).

(ii) In order to further extract the interaction information of
drug-target pairs, a multi-head attention block is proposed
to model the similarity between drugs and target (section 3
Methods).

(iii) To the best our knowledge, our results are the state-of-
the-art on the two datasets in sequence presentation
learning methods for drug-target binding affinity prediction
(section 4 Experiments).

(iv) We apply our model to COVID-19-related proteins and pro-
vide a reference to medical experts to find related drugs
(section 5 Discussion).

Preliminaries
In this section, we introduce existing approaches for DTI predic-
tion, the background knowledge of attention mechanism and the
motivation of this work.

The related studies on DTI prediction

Many studies [6, 16, 29, 32] regarded DTI prediction as a binary
classification problem. The proposed models to determine
whether the interactions exist between drugs and targets.
However, those methods simplified the DTI problem as with
chosen binding affinity threshold values [18]. They overlooked
the information for the binding affinity value, which describes
the strength of the interaction between a drug-target pair.
Therefore, the exact way for DTI prediction is directly to predict
the binding affinity value based on a regression model.

In recent years, many efforts have been conducted on
regression-based models for DTI prediction. The approaches
based on random forest algorithm [11, 22] have been successful
to predict the binding affinities of drugs and targets. Moreover,
similarity-based methods were one option for regression-based
DTI prediction, which utilized the similarity information of drugs
and targets, such as SimBoost [9] and KronRLS [19].

With the significant success of deep neural networks in the
computer version, speech recognition and natural language pro-
cessing (NLP), many deep learning-based models were proposed
to predict DTIs based on regression motivation. In recent works,
deep models for DTI prediction mainly include two branches,
graph representation method-based approaches with structure
information as inputs [15, 30] and sequence representation-
based approaches considering sequence information of DTI [18,
34, 35]. In this work, we focus on sequence representation learn-
ing approaches DeepDTA [18] and OnionNet [36] proposed CNN-
based models for DTI predicting. Especially, DeepDTA focused on
the sequence information of both drugs and targets and then
used two CNN models for drugs (the SMILES input) and targets
(the protein sequence input) as representation learning parts.
Then, an information fusion part was connected to predict the
binding affinities of drugs and targets. There, three FNN layers
were regarded as the information fusion part. Since it could
not capture the long-distance relationship between atoms, the
study [24] applied a self-attention network (SAN) with position
embedding to extract drug representation for DTI prediction.
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The background of attention mechanism

Most neural sequence transaction models have an encoder-
decoder structure. The transformer [27] is a typical encoder-
decoder model based on an attention mechanism. It is widely
used in the field of NLP, which has proven the strong ability
of transformer in processing text data. The main block of the
transformer is the attention function. The attention function can
be described as mapping a query (Q) and a set of key-value (K-V)
pairs to an output.

Scaled dot-product attention is defined as the generalized
attention with Q, K and V. Let the dimension of Q and K be dk

and the dimension of V be dv

Attention(Q, K, V) = softmax(
QKT

√
dk

)V, (1)

where Q ∈ R
n×dk , K ∈ R

m×dk and V ∈ R
m×dv . Attention describes

the similarity between the query and each value. The similarity
can be measured by inner product of the softmax results and
the value. The factor dk plays a regulatory role so that the inner
product is not too large. When Q, K and V are projections from
the same inputs, the attention function is the self-attention.

Multi-head Attention is an improved attention
mechanism. Firstly, before scaled dot-product attention,
the dmodel-dimensional Q, K and V should be linearly projected
h times with learned linear projections to dk, dk and dv,
respectively. Specifically,

headi = Attention(QWQ
i , KWK

i , VWV
i ), (2)

where WQ
i ∈ R

dmodel×dk , WK
i ∈ R

d model×dk and WV
i ∈ R

dmodel×dv . Then,
concatenate the results of attention

MultiHead(Q, K, V) = Concat(head1, ..., headh)Wo, (3)

where Wo ∈ R
hdv×dmodel . Here, for each of those Q, K and V, a

number of different ’heads’ are obtained through linear projec-
tions and attention with different weights. Thus, multi-head can
be regarded as multiple the same operation in parallel, while
parameters are not shared.

Motivation

As seen, when SANs are used on DTI prediction, an atom will
conduct an attention operation with all atoms. It leads to SANs
disperse the attention distribution to all elements and then
overlook the essential correlation between atoms. In addition,
most deep models for DTI prediction simply concatenate drug
and protein representations to model the interaction between
them. The way ignores the interaction features between drug
and protein representations. In this study, we propose a deep
model on DTI binding affinity prediction, in which the corre-
lation between atoms and the interaction information between
drugs and targets are considered.

Methods
In this work, we introduce a multiple attention blocks-based
model—MATT_DTI, to predict the binding affinity scores of drug-
target pairs, as shown in Figure 1. Like most deep learning-based
DTI models, our model consists of three parts: drug represen-
tation learning, protein representation learning and interaction

learning. Specifically, we propose a relation-aware self-attention
block in the drug representation learning process. The relation-
aware self-attention block is to encode correlations by enhanc-
ing the relative position information between atoms. Then, two
CNN models are utilized to extract features from drugs and pro-
teins in drug representation learning and protein representation
learning processes, respectively. Finally, the interaction learning
model is exploited to combine and extract interaction features
from both drug representations and protein representations by
multi-head attention.

Input embedding

The inputs of our model are SMILES sequences for drugs and
FASTA sequences for proteins. According to the work [18], the
SMILES sequence is comprised of characters representing atoms
and structure indicators. Mathematically, a drug is

D = {d1, d2, · · · , di · · · }, (1)

where di ∈ N∗ and the sequence length is varied, which depends
on a compound. In this study, we define a hyperparameter
ld to restrict the max input length for drugs. Inspired by the
token embedding and position embedding in transformer [27],
the input of drug representation learning is the sum of token
embedding and position embedding of SMILE sequences. The
token embedding Ed

t ∈ R
ld×ed has a trainable weight Wt ∈ R

vd×ed ,
where vd is the vocabulary size of drugs and ed is the embedding
size of drugs. The position embedding Ed

p ∈ R
ld×ed has a trainable

weight Wp ∈ R
ld×ed . The output of the embedding operations is

Xd = Ed
t + Ed

p, (2)

where Xd ∈ R
ld×ed .

The same as the mathematical expression of drugs, a protein
sequence is mathematically expressed as,

P = {p1, p2, · · · , pi · · · }, (3)

where pi ∈ N∗ and the length of P depends on proteins. We also
define a hyperparameter lp as the fixed protein input length to
ensure the same size of inputs. Different from drug sequence,
the trainable embedding layer of protein sequence is similar to
DeepDTA [18] as

Xp = Embedding(P, ep), (4)

where ep is the embedding size of protein sequences and
Xp ∈ R

lp×ep .

Protein representation learning model

As for protein representation leaning process, our proposed
model is developed from DeepDTA [18] and the learning model
for protein sequences also utilizes three convolutional layers as
the feature extractor, followed by a max pooling layer. As for the
CNN model in presentation learning model, suppose there exist
Lc convolutional layer

CLc = CNN(Xp), (5)
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Figure 1. Illustration of our proposed MATT_DTI which considers drug SMILES and protein sequence as input to predict the binding affinity of drug-target pairs, which

use a relation-aware self-attention block to strengthen the relative position information when encoding drug compounds and employ multi-head attention to model

the interaction of drug representations and protein representations.

where CLc is the output of Lcth convolutional layer and the lth
(l ∈ (0, Lc]) layer can be formally expressed as

Cl
i = f (

V−1∑
v=0

Cl−1
i+vkl

v), (6)

where kl indicates the trainable filters in lth convolutional layer,
the size of it is 1 × V, Cl is the output of lth layer and f (·) is
the activation function. Based on this, when Lc = 3 in protein
representation learning, the output of protein representation
learning could be calculated as

Rout
p = Pooling(CNN(Xp)), (7)

where Pooling(·) is the max pooling function.

Drug representation learning model

SANs have drawn increasing interest, especially in the NLP field.
SANs have the ability to capture long-distance dependencies by
explicitly attending to all the elements, regardless of distance
[33]. It contributes to representing a drug because SANs capture
the long-distance relation between all atoms in a compound.
However, SANs have a major limitation that is it disperses the
attention distribution and thus overlooks relative information
of elements [7, 23]. The relative information of atoms in drugs
describes the essential correlation between atoms. This leads to
that SAN is not sufficient to model SMILES data. Thus, a relation-
aware self-attention block is proposed in drug representation
learning.

The relation-aware self-attention block

In the field of NLP, self-attention with relative position repre-
sentations [23] has already considered the pairwise relationship
between words. It considers the relative distance information to
model the distance between the words during conducting the
self-attention. According to work [23], it can be simplified as

rel_att_output = Rel_Att(Q, K, V, wr), (8)

where wr ∈ N∗ is the relative distance length between words.
Inspired by this, we developed it to encode the correlation

between atoms. We first define k kinds of relative relationships
between atoms, which are embedded into learnable parameters
WR ∈ R

k×ed . Taken Xd as the input, the output of a self-attention
with relative position representations [23] layer can be formally
expressed as

Rin
d =Rel_Att(XdWQ , XdWK, XdWV, WR) (9)

=softmax(
(XdWQ )(XdWK)T + AR

√
ed

)(XdWV), (10)

where WQ , WV, WK ∈ R
ed×ed denote parameter matrices of

attention layer. AR ∈ R
ld×ld indicates the relationship matrix, of

which, AR
i,j represents the correlation between the ith and the jth

elements

AR
i,j = (Xd

i WQ )(WR
min(|j−i|,k))

T. (11)
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Here, Xd
i is the ith vector in Xd. clip(∗) is employed to select

corresponding embedding in WR. Thus, AR can be served as
inductive biases to revise the attention distribution.

Then, a residual connection [8] and an FNN layer are follow-
ing. As for the FNN layers in this study, L fully connected layers
can be calculated by

aL = FNN(a0), (12)

where a0 is the input of FNN layers, the aL is the output of Lth FNN
layer and the lth ∈ (0, L] fully connected layer can be described
as

al = f (Wf al−1), (13)

where Wf is the trainable wight and al is the output of lth fully
connected layer. Therefore, the output of the residual connection
and the FNN layer in the relation-aware self-attention block is

Rd = FNN(Rin
d + Xd) + (Rin

d + Xd). (14)

Since the protein representation is learned by the CNN model,
the three convolutional layers are also used to exploited drug
information. We insist the two CNN models could ensure that
the drug and protein representations are projected to the same
space. Thus, the output is

Rout
d = Pooling(CNN(Rd)), (15)

while Lc = 3 in drug representation learning. In this process, layer
normalization [2] and dropout [10] are used.

Interaction learning model

The existing way of interaction learning is to concatenate the
representations of drugs and proteins. It overlooks the interac-
tion information of drugs and proteins. In similarity-based DTI
prediction models [9, 19], the similarity information of drug-
protein pairs was used as the interaction information in them.
Inspired by this, a multi-head attention block is exploited to
model the similarity of drug-protein pairs as the interaction
information of them. Here, the drug representations are regarded
as the query, while the protein representations are the key and
value in the attention mechanism. Mathematically, the output is

Iin
dp = MultiHead(Rout

d , Rout
p , Rout

p ), (16)

with three heads in this study. Then, a residual connection [8] is
used as

Idp = conc[g(Rout
d ), g(Rout

p ), g(Iin
dp)], (17)

where conc(·) is a concatenation function and g(·) is global average
pooling operation. Then, a 3-layered FCN (L=3) is employed to
learn the interaction information from Iin

dp and the last layer of
the network has only one neuron as the output of our model

y∗ = FNN(Idp), (18)

Table 1. Summary of the benchmark datasets

Davis KIBA

Proteins 442 229
Compounds 68 2111
Interactions 30056 118254
Training data 25046 98545
Test data 5010 19709

where y∗ is the predicted binding affinity value of the drug-
target pair. The weights of our proposed MATT_DTI model are
optimized by the mean square error (MSE) between the network
output y∗ and the actual binding affinity value y

MSE = 1
n

n∑
i=1

(y∗
i − yi)2. (19)

Experiments
We proposed a novel drug-target binding affinity prediction
method based on multiple attention blocks with sequence infor-
mation of drugs (compounds) and proteins as inputs. In this
section, we conducted experiments with our proposed model
(MATT_DTI) on two benchmark datasets: Davis [4] and KIBA
[25] datasets. The CI and r2

m metrics were used to measure the
performance of the proposed model and the baseline models.

Benchmark datasets

We evaluated our proposed model on two benchmark datasets,
Davis [4] and KIBA [25] datasets. The Davis dataset contains the
442 kinase proteins and their relevant inhibitors (68 ligands) with
respective dissociation constant (Kd) value. The Kd values were
transformed into log space, as [9, 18], pKd, as the binding affinity
values, which is explained in 20,

pKd = −log10(
Kd

1e9
). (20)

The KIBA dataset was developed from the KIBA approach,
which comprised 467 proteins, 52 498 drugs and their binding
affinity scores originally. Here, the KIAB scores measure the
kinase inhibitor bioactivities and are regarded as the binding
affinity values. SimBoost [9] filtered it to contain 229 unique
proteins and 2111 unique drugs for a fair comparison. As for the
input of proteins and drugs in the Davis and KIBA dataset, we
followed the DeepDTA method [18] in which the SMILES of drugs
and protein sequences were digitized to a fixed maximum length
by a dictionary. Table 1 summarizes the details of the Davis and
KIBA dataset.

Experiments setup

We evaluated the performance of our MATT_DTI on the bench-
mark datasets. Like the study DeepDTA [18], we firstly clipped
the training data as training set and validation set to find the
optimal settings of our model, like number of filters, filter length,
hidden size, dropout rate and number of epochs. The final results
given in this section were the average results on the test set
with 5 times training. Table 2 gives the parameter settings in
experiments depending on datasets. All models were trained on
1 NVIDIA 2080Ti GPU.
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Table 2. Summary of parameter settings for MATT_DTI

parameter KIBA Davis

max length (drug) 100 85
max length (protein) 1000 1200
embedding size 128
number of filters in CNNs 32 64 96 16 32 64
filter size (drug) 8
filter size (protein) 12 16
hidden size in FNNs 1024 1024 512 1
batch size 256 128
epoch 300
dropout 0.1
optimizer Adam
learning rate 0.001
activation function ReLU[14]

Metrics

To evaluate the performance of our model, firstly, the CI was used
as the evaluation metrics

CI = 1
Z

∑
δi>δj

b(bi − bj), (21)

where bi is the prediction value with larger affinity δi, bj is the
prediction value for smaller affinity δj and Z is a normalization
constant. Moreover, the b(x) is the step function [19]

b(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if x > 0,

0.5, if x = 0,

0, if x < 0.

(22)

Then, in order to better evaluate our model, r2
m [20, 21], which

is widely used in this filed, is the another metric in this work.
Mathematically,

r2
m = r2 ∗ (1 −

√
r2 − r2

0), (23)

where r2 and r2
0 are the squared correlation coefficient values

between the observed and predicted values with and without
intercept, respectively. Only r2

m value of a model on test set is
larger than 0.5, the model is an acceptable model.

Experiment 1: relation-aware self-attention-based
representation learning for drug compounds

Table 3 lists the average results on the drug-target binding affin-
ity prediction tasks. As seen, MATT_DTIs improve the prediction
quality in both two datasets, reconfirming the necessity of mod-
eling the long-distance relationship and the relative position
information of compounds. Besides, our models outperform all
the baseline works in all metrics, indicating the superiority of
the proposed approaches. In particular, The MATT_DTI with
the self-attention block achieves better performance than Deep-
DTA, revealing the contribution of self-attention that model-
ing the long-distance relation of all elements in drugs. More-
over, the MATT_DTI with a relation-ware self-attention block
(Rel_sa:CNN) outperforms the MATT_DTI model with a self-
attention layer (sa:CNN), indicating that modeling the relative

Figure 2. CI results on KIBA dataset. Effects of relative position length in proposed

MATT_DTI with a relation-aware self-attention block for drug representation and

a multi-head self-attention in interaction learning.

Figure 3. r2
m results on KIBA dataset. Effects of relative position length in

proposed MATT_DTI with relative self-attention for drug representation and a

multi-head self-attention in interaction learning.

information can raise the ability of the self-attention model on
capturing the atoms’ information.

Experiment 2: interaction learning with multi-head
attention

In this section, we conducted the experiment about the
interaction learning part based on multi-head attention and
compared it with the existing way based on concatenation
way. Table 4 gives the average test results on both KIBA and
Davis datasets. One intuition of our approach is to capture
interaction features via modeling the similarity between drug-
protein pairs by a multi-head attention block. To evaluate it, we
implemented models with a multi-head attention block in the
interaction learning process. As shown in Table 4, the DeepDTA
model and MATT_DTI model with a multi-head attention block
(MulH_attention + FNN) achieve higher results than the models
without it (Concatenation + FNN), revealing that extracting
interaction features with multi-head attention is superior to
concatenation.

Experiment 3: effects of max relative position length

We finally investigated the effects of relation position length
in the relation-aware self-attention block on the drug-target
binding affinity prediction task. As shown in Figures 2 and 3,
MATT_DTI with max relative position length k = 5 has the best
performance in the KIBA dataset. As plotted in Figures 4 and 5,
we believe the max relative position length with k = 3 is superior
to other setting for Davis dataset. The different distribution
of KIBA and Davis dataset may lead to the slight difference
of best max relative position length. As seen, MATT_DTI with
max relative position length k ∈ {3, 5} improves the prediction
performance, indicating that the correlation between atoms is
better modeled with max relative position length k ∈ {3, 5}.

Moreover, we compare our proposed model with other
sequence representation-based approaches in Table 5. As seen,
our final results are higher 0.026 than DeepDTA on KIBA and
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Table 3. Test results on KIBA and Davis dataset. The proposed MATT_DTI model includes a relative self-attention block in drug representation
learning. The max relative position length k in ’Rel_sa:CNN’ is set to 5. In this table, ’sa:CNN’ denotes that the model has a self-attention block
before CNN layers, while ’Rel_sa:CNN’ has a relative self-attention block in front of CNN layers

Dataset Methods Compounds Proteins Interaction CI (std) MSE r2
m (std)

KIBA KronRLS [19] Pubchem Sim S-W – 0.782 (0.001) 0.411 0.342 (0.001)
SimBoost [9] Pubchem Sim S-W – 0.836 (0.001) 0.222 0.629 (0.007)
DeepDTA [18] CNN CNN FNN 0.863 (0.002) 0.194 0.673 (0.009)
MATT_DTI sa:CNN CNN FNN 0.881 (0.000) 0.162 0.734 (0.002)
MATT_DTI Rel_sa:CNN CNN FNN 0.889 (0.001) 0.151 0.745 (0.008)

Davis KronRLS [19] Pubchem Sim S-W – 0.871 (0.001) 0.379 0.407 (0.005)
SimBoost [9] Pubchem Sim S-W – 0.872 (0.001) 0.282 0.644 (0.006)
DeepDTA [18] CNN CNN FNN 0.878 (0.004) 0.261 0.630 (0.017)
MATT_DTI sa:CNN CNN FNN 0.880 (0.003) 0.261 0.632 (0.015)
MATT_DTI Rel_sa:CNN CNN FNN 0.884 (0.004) 0.254 0.649 (0.009)

Table 4. Test results on KIBA and Davis dataset. The interaction model of the proposed MATT_DTI is based on multi-head attention. The max
relative position length k in ’Rel_sa:CNN’ is 5

Dataset Methods Compounds Proteins Interaction CI (std) MSE r2
m (std)

KIBA DeepDTA[18] CNN CNN Concatenation + FNN 0.863 (0.002) 0.194 0.673 (0.009)
DeepDTA-Attention CNN CNN MulH_Attention + FNN 0.875 (0.003) 0.173 0.724 (0.012)
MATT_DTI Rel_sa:CNN CNN Concatenation+ FNN 0.889 (0.001) 0.151 0.745 (0.008)
MATT_DTI Rel_sa:CNN CNN MulH_Attention + FNN 0.889 (0.001) 0.150 0.756 (0.011)

Davis DeepDTA[18] CNN CNN Concatenation + FNN 0.878 (0.004) 0.261 0.630 (0.017)
DeepDTA-Attention CNN CNN MulH_Attention + FNN 0.877 (0.002) 0.252 0.648 (0.014)
MATT_DTI Rel_sa:CNN CNN Concatenation + FNN 0.884 (0.004) 0.254 0.649 (0.009)
MATT_DTI Rel_sa:CNN CNN MulH_Attention + FNN 0.890 (0.003) 0.229 0.682 (0.009)

Figure 4. CI results on Davis dataset. Effects of relative position length in

proposed MATT_DTI with a relation-aware self-attention block for drug repre-

sentation and a multi-head self-attention in interaction learning.

Figure 5. r2
m results on Davis dataset. Effects of relative position length in

proposed MATT_DTI with a relation-aware self-attention block for drug repre-

sentation and a multi-head self-attention in interaction learning.

higher 0.012 on Davis for CI metric. The r2
m also higher 0.083 than

DeepDTA on KIBA and higher 0.052 on Davis. In general, our
model performs better than all other sequence representation
learning approaches.

Discussion
Recently, the new coronavirus (SARS-CoV-2) infection is spread-
ing rapidly, and the daily incidence rate is increasing worldwide.
It is urgent to find out a valid drug for the patient. Drug repur-
posing is one of the computational efforts that re-utilize FDA
approved drugs, or compound succeeded in phase one clinical
trials, for a new indication, to take advantage of the proved toxi-
city [5, 13]. Drug repurposing is regarded as one potential way for
finding new coronavirus treatment [3]. Therefore, in this section,
we apply our trained model to predict the binding affinity scores
between existing drugs and the genome sequences of COVID-19-
related severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2). We believe that the discussion could provide an example
to apply our model in real-life situations and hope our results
can provide scientists with an assistant to learn the coronavirus.

Based on studies [1, 3], we extract the genome sequences, 3C-
like proteinase, RNA-dependent RNA polymerase, helicase, 3’-to-
5’ exonuclease, endoRNAse and 2’-O-ribose methyltransferase of
SARS-CoV-2 from the National Center for Biotechnology Infor-
mation database; 3137 FDA-approved drugs are included in this
section. Table 6 lists parts of the FDA-approval antiviral drugs
with top binding affinity values predicted by our MATT_DTI
with weights trained by KIBA dataset and existing approaches
[1]. The full lists of the 6 genome sequences could be found at
supplementary data, see Supplementary Data available online
at http://bib.oxfordjournals.org/.

Nowadays, the effective drugs to cure COVID-19 have not
been found; thus, we cannot verify our results. It is only a
theoretical result on drug repurposing task. We just hope that
the experiment will reflect the way to use our model in practical
applications. Moreover, like studies [1, 3], we hope our work can
provide scientists with some ideas for new drugs.
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Table 5. Results on KIBA and Davis dataset of our proposed model and the existing baseline methods

Dataset Methods CI (std) MSE r2
m (std)

KIBA DeepDTA [18] 0.863 (0.002) 0.194 0.673 (0.009)
MT-DTI [24] 0.882 (0.001) 0.152 0.738 (0.006)
WideDTA[17] 0.875 (0.001) 0.179 –
GANsDTA [34] 0.866 (–) 0.224 0.675 (–)
MATT_DTI 0.889 (0.001) 0.150 0.756 (0.011)

Davis DeepDTA [18] 0.878 (0.004) 0.261 0.630 (0.017)
MT-DTI [24] 0.887 (0.003) 0.245 0.665 (0.014)
WideDTA[17] 0.886 (0.003) 0.262 –
GANsDTA [34] 0.881 (–) 0.276 0.653 (–)
MATT_DTI 0.891 (0.002) 0.227 0.683 (0.017)

Table 6. Parts of the FDA-approval antiviral drugs with top affinity scores of 3 genome sequences of SARS-CoV-2 predicted by our model

The genome Drug Rank of
sequences 3137 drugs

3C-like proteinase Peramivir 25
Lopinavir 45
Saquinavir 54
Zanamivir 73
Danoprevir 83
Ritonavir 89

RNA-dependent RNA polymerase Saquinavir 58
Peramivir 120
Lopinavir 148
Danoprevir 183
Daclatasvir (BMS-790052) 202
MK-5172 243

helicase Peramivir 51
Lopinavir 55
Saquinavir 102
Elvitegravir (GS-9137) 118
Danoprevir 137
Daclatasvir (BMS-790052) 215

Conclusion
In this work, we propose a multiple attention blocks-based
model to (i) enhance relative position information between
atoms when encoding drugs and (ii) model the interaction
between drug representations and target representations.
Empirical results of the drug-target binding affinity prediction
task on two benchmark datasets demonstrate the effectiveness
of our proposed methods. The extensive analyses suggest that
(i) encoding the relative position information is beneficial to
drug representations, (ii) modeling the interaction can further
improve the performance of predicting the binding affinity of
DITs and (iii) the best max relative position length to encode
drugs is in 3–5 for the KIBA and Davis dataset. Furthermore,
we apply our trained model to predict the binding affinity
scores of SARS-CoV-2-related genome sequences and 3137 FDA-
approved drugs to provide some reference for COVID-19-related
scientists.

Key Points
• MATT_DTI is a deep learning-based model for drug-

target binding affinity score prediction.

• In order to encode the correlation between atoms
of drugs, MATT_DTI employs a relation-aware self-
attention block to enhance the relative information
between atoms when encoding drug compounds.

• In order to extract interaction feature of drug-target
pairs, a multi-head attention block is proposed to
model the similarity between drugs and target in
MATT_DTI.

• Experimental results of DTI prediction on two bench-
mark datasets show our MATT_DTI outperforms exist-
ing models, which is benefit from the correlation and
interaction information.

• We further apply our model to FAD-approved drugs
and COVID-19-related proteins, which could provide a
reference to medical expert.

Supplementary data

Supplementary data, including code, weight and results,
are available online at https://github.com/ZengYuni/MATT_
DTI/.

https://github.com/ZengYuni/MATT_DTI/
https://github.com/ZengYuni/MATT_DTI/
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