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Introduction
Gliomas are one of the most common tumors that originate 
in the central nervous system (CNS). They derive most plau­
sibly from multipotent progenitor cells, showing histological 
features similar to astrocytes or oligodendroglial cells,1 and 
develop usually near the vascular niches.2,3 Glioblastoma 
multiforme (GBM) is the most aggressive type of glioma, 
classified as grade IV by the World Health Organization.4,5 
The main characteristics of GBM include cellular polymor­
phism, brisk mitotic activity, microvascular proliferation, 
necrosis,6 high degree of invasiveness, and infiltrative edema. 
Particularly for edema, white matter surrounding the lesion is 
edematogenous; edema consists mainly of infiltrating tumor 
cells and a lesser proportion of vasculature.7,8 Despite a multi­
modal treatment strategy and extensive research on possible 
new treatment approaches during the last decades, mortality 
has not changed significantly, with average life expectancy 
ranging between 12 and 15 months.6,9

Cancer cells in solid tumors form a mass with augmented 
metabolic needs due to constant, vigorous changes. As the solid 
tumor develops, it must generate its own blood supply due to 
insufficient diffusion of nutrients and oxygen from preexisting 
vasculature. GBM is a highly vascularized tumor, recruiting 
preexisting vessels of an already well-oxygenated organ like 
brain and generating neo-vasculature from excessive levels of 
circulating vascular endothelial growth factor (VEGF) apart 
from other pro-angiogenic molecules.10 Intratumoral hypoxia 
is considered to be the main driving force of induced angio­
genesis within the tumor, in agreement with Folkman’s asser­
tion.11 Hypoxia-inducible factor (HIF-1α) is a transcription 
factor that promotes ischemia-driven angiogenesis through 
the induction of differential expression of VEGF. VEGF 
appears to be a key molecule for both the pro-angiogenic 
events and the survival of newly formed vessels.12 At a cellular/
tissue level, the series of events is a multistep, repeatable pro­
cess. In brief, first, the preexisting neighboring vessels stretch 
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and expand toward tumor as a response to the pro-angiogenic 
factors released by cancer cells. The new endothelial cells 
migrate in a concrete way while degrading concurrently the 
extracellular matrix, and eventually form tube structures.13–15 
However, the mechanisms of angiogenesis in tumors fail to 
promote mature vascular networks and lead to the formation 
of abnormal, leaky, tortuous, and/or shunt vessels,16 which fail 
to restore oxygen supply in hypoxic regions, which further 
induces HIF expression and a perpetual cycle of events from 
hypoxia and HIF-1α expression to VEGF, angiogenesis, and 
tumor growth.

The extreme invasive and neoplastic growth of GBM 
has motivated the development of mathematical models for 
augmenting the understanding of the mechanism of glioma 
growth and predicting the temporal evolution of growth 
and therapy response. A number of different mathemati­
cal models have been proposed, allowing the description 
of tumor growth and invasion at different spatiotemporal 
scales.17,18 Among them, discrete mathematical models 
describe tumor cells as individual entities and study how 
their micro-interactions affect tumor behavior and morpho­
logy,19 while continuum approaches are better in describing 
tumors at tissue level assuming that tumor cells can be rep­
resented by densities or volume fractions.20–25 More recently, 
the incorporation of patient-specific, noninvasive imaging 
data to the existing mathematical approaches seems to be 
critical for the validation and clinical translation of such 
models, which is evident by the growing interest in this 
direction.26,27

Magnetic resonance imaging (MRI) is used for the esti­
mation of tumor size, borders, and vasculature. Dynamic 
contrast-enhanced MRI (DCE-MRI) is a technique where 
MRI sequences are obtained before, during, and after the 
intravenous administration of a low molecular weight gado­
linium (Gd) chelate contrast agent. DCE-MRI data can later 
be processed using Toft’s model (TM)28 in order to evaluate 
pharmacokinetic (PK) parameters that are able to quantify the 
differential leakage during the pass of the tracer’s bolus in the 
tumor compartment of the model. DCE-MRI is frequently 
applied in brain oncology because of the prominence of vascu­
lature that characterizes these tumors.

Several approaches attempting to decode cancer physi­
ology through imaging biomarkers and use them toward 
initializing computational models with clinical data have 
recently emerged. Swanson et  al.29 utilized two pretreat­
ment time points of Gd-enhanced, T1-weighted (T1-Gd) 
and T2-weighted (T2) volume data to derive the micro­
scopic tumor growth parameters of invasion and prolifera­
tion. Ellingson et  al.30 proposed a method of using serial 
diffusion-weighted MR (DW-MRI) images in order to 
estimate the same microscopic parameters. Szeto et al.31,32 
combined MRI and positron emission tomography (PET) 
images from GBM cases to show that tumor aggressiveness 
estimated by a reaction-diffusion equation and MRI data is 

correlated with hypoxic burden visible on fluoromisonida­
zole (FMISO)-PET. Recently Yankeelov et al.26,33 empha­
sized the importance of having a direct relevance to clinical 
outcome using both diffusion and perfusion MRI for param­
eterizing a logistic growth model and predicting chemother­
apy effect and cellularity in breast cancer. They used serial 
apparent diffusion coefficient measurements to estimate the 
tumor cell population and approximate the proliferation rate 
of tumor cells. An extended TM (ETM) was used in their 
work in order to incorporate the ve and vp PK parameters 
into the estimation of tumor cell number.33 However, none 
of the above has made an effort or presented a framework to 
predict vascularity macroscopically based on imaging studies 
and predictive models.

In this work, we focus on translating anatomical infor­
mation and functional imaging biomarkers derived from 
DCE-MRI into tumor characteristics in order to set the 
initial state of glioma growth models with perspectives on 
clinical outcome. Our central objective is to demonstrate the 
feasibility to predict vascularity changes over time under the 
assumption that the PK parameter Ktrans well characterizes 
the vasculature in each imaging session. This assumption is 
based on published clinical studies where it is reported that 
determination of tracer kinetics by Ktrans is a primary marker 
for monitoring vascular and angiogenic treatment effect.34 We 
propose a method based on DCE-MRI in order to initialize 
an extended mathematical model35,36 that describes the spa­
tiotemporal evolution of tumor cells and their microenviron­
ment. The model incorporates three types of cell populations 
(normoxic, hypoxic, and necrotic), endothelial cells (building 
vasculature), angiogenic factors, and oxygen concentration. 
The interactions among the different species are described 
using a system of coupled partial differential equations. DCE-
MRI is used for extracting PK information and particularly 
Ktrans, which is then used for (1) guiding tumor’s compart­
ment (viable cells and necrosis) selection within the region 
of interest (ROI) and (2) setting up the initial map of the 
vasculature.36,37 To our knowledge, this is the first attempt 
of a glioma model initialization and validation based on the 
parametric map. The methodology proposed is subsequently 
applied to a real clinical case where the follow-up (FU) imag­
ing examination is used as the gold standard for assessing 
vasculature prediction. The simulated tumor vasculature is 
correlated with the real tumor evolution, and the effect of 
certain model parameters is also examined.

Methods
In this work, we mainly address the question of whether the 
evolution of tumor vascularity can be predicted (through the 
integration of medical imaging and computational model­
ing). To elaborate on this, we first chose a well-developed 
tumor growth computational model that accounts for vascu­
lature evolution.36 Then, through DCE-MRI patient data, 
we incorporated spatial information of the initial vasculature 
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into the model in the least possible arbitrary way. Although 
numerous research studies have been focused on tumor vas­
cularization,36,38–41 to our knowledge, this is the first attempt 
where the vasculature estimated by clinical MRI data is intro­
duced to initialize a computational model of tumor growth. 
DCE-MRI, routinely used by clinicians, is used to extract 
tumor physiology information through PK model analysis. 
For this reason, we fitted TM, which converts Gd concentra­
tion time curves into the more informative PK parameters. 
In fact, the properties of Ktrans, the PK parameter that we 
used, depend on the model used to calculate it. TM not only 
is the most common model for such estimations but also, as 
shown in comparative studies, is the best in terms of fitting 
errors and ambiguity compared to other more complex ana­
lytical models.42 Among the variables that are evaluated by 
TM, we chose Ktrans because it is indicative of vascular per­
meability, and also depends on surface area and blood vol­
ume and flow.43,44 The following sections explain our method 
in detail.

PK DCE-MRI parameters. Perfusion DCE-MRI 
may characterize the rate of delivery of nutrients via blood 
into brain tissue parenchyma. The maps that are constructed 
through the analysis of such data reveal microvasculature 
information, which can be correlated to the levels of angio­
genesis and the grade of the tumor. DCE-MRI is performed 
by acquiring T1-weighted images before, during, and after the 
intravenous injection of a low molecular weight Gd chelate, 
which enters the blood circulation and is deposited on the tis­
sue without entering the cells. Due to the disruption of the 
blood–brain barrier (BBB), tumor sites show a faster and more 
acute development than healthy background tissue, followed 
by deamplification after repletion of the available space.45 The 
boosted infiltration and vascularization of tumor lesions leads 
to enhanced permeability of contrast agents in blood vessels 
supplying the tumor, which results in corresponding “bright” 
image regions in the post-contrast phase during image acqui­
sition. Afterwards, the Gd tracer evacuates the tissue with 
reentry to the vessels.

The concentration of the contrast agent, along with other 
parameters such as the transport rate constants, is measured 
when passing through the vessels to the extracellular space, 
and vice versa. DCE-MRI is used for the calculation of the 
vascular permeability constants through PK models and is a 
useful tool for characterizing tumor blood vessels and differ­
ent compartments of the affected tissue.

This work uses TM28 in order to quantify the permeability 
of the vessels by the measurement of Ktrans (min–1), the transfer 
constant between blood plasma and extravascular–extracellular 
space (EES), which is indicative of the volume of blood that 
flows out of the vessels; ue, the volume of EES per unit volume 
of tissue, which represents the volume of blood which flows 
out of the vessels; and kep, the rate constant between EES 
and blood plasma (min–1). DCE-MRI PK parameters, which 
reflect the physiology of the tumor, are used to obtain a more 

realistic estimation of the model’s initial parameters and set 
their default bounds. The precise set of values is patient-spe­
cific since they depend on a DCE-MR image referring to a 
particular brain tumor.

Based on DCE-MRI, we can estimate the vascular per­
meability constants for an agent driven effectively through 
the blood vessels. Moreover, though Gd passes through the 
endothelium of the blood vessels, it cannot pass through the 
cancer cells and, thus, it remains in the EES until its resorp­
tion. In DCE-MRI, there is no linear relationship between 
the Gd concentration and the signal intensity of the tissue. 
In our approximation, the transfer constant Ktrans is used, 
which represents a measure of trans-endothelial transport 
of Gd from the vessels to the tumor interstitium.46 Ktrans is 
assumed to be indicative of the tumor’s morphological features 
in a twofold way: (1) the image areas of interest and (2) the 
microcirculation.

Tumor areas defined by Ktrans. At first, we determine the 
location and space occupied by the tumor or, alternatively, the 
ROI. On comparing the enhancement showed in a DCE-MR 
image by a GBM tumor mass with the neighboring healthy 
tissue, the former appears to be more intense due to the loss of 
the BBB within the majority of the tumor blood vessels and 
the subsequent intensified Gd efflux from the vasculature. It 
should be noted that the acquisition time of DCE-MR images 
that we used in our model implementation was around five 
minutes in total. Given that Gd clearance can be fully attrib­
uted to renal excretion, the fact that Gd does not enter the 
cells46 and in combination with such a short time of scanning, 
the visible Gd concentration can be assigned only to direct Gd 
exchange to and from the blood circulation in regions where 
blood vessels exist (and not to passive Gd diffusion).

Additionally, as already mentioned, the infiltrative 
nature of the edema of the GBM is confined in the peritu­
moral region with a small percentage of vasculature. Thus, 
there is limited, if any, concentration of Gd tracer in the area 
surrounding the tumor and no enhancement in the Ktrans 
map.7,8 Despite the fact that the intensity of the infiltrative 
edema should approximate that of the cerebrospinal fluid 
(CSF), this is not that clear due to the dark background of 
the nonaffected tissue above or below (Fig. 1) within a slice. 
In this way, we can define the ROI from PK analysis in a 
DCE-MR image as the enhanced area of the GBM plus the 
interior necrotic core.32

Moreover, Ktrans is indicative of necrosis.32 The necrotic 
core of the brain tumor is not expected to maintain any vessels 
and, thus, there is no enhancement in the MR signal intensity 
(SI); that is the value of Ktrans in that region is zero. In order 
to be more precise in the determination of the fraction of the 
ischemic necrosis, the chosen area can be set right inside after 
the nulls of Ktrans spotted in the Ktrans map. In other words, 
there is a sequence of areas with interchanged, attenuating or 
not, brightness. This observation was verified by a radiologist 
in each case.
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Vasculature defined by Ktrans. Angiogenic mechanisms of 
vascularization in GBMs result in newly formed neoplastic 
vessels that are leaky, tortuous, and abnormal with irregularly 
increased permeability, larger pores, and fluid retention prob­
lems.16 The immatureness of the newly formed blood vessels 
may also explain the tendency of the BBB permeability. Fur­
thermore, Gd tracers, in contrast to oxygen (O2), have a much 
higher molecular weight, which makes obvious that there is a 
need for generally more permeable vessels in order for Gd to 
exit from the vasculature and pass into the interstitium.

We assume (1) any vessel inside the tumor mass is highly 
permeable and (2) within tumor regions with the same level of 
oxygenation, these vessels are homogeneously allocated.

Because of the existence of many vessels, the average 
vessel within a voxel is expected to satisfy these assumptions. 
Thus, since TM itself provides no particular information 
about the physiology of the vessels with any impact on steric 
effects, ie, size of pores or diameter, we assume that the higher 
the Gd concentration, the more the number of vessels. In this 
way, the higher the Ktrans value, the higher the percentage of 
the vessels.

By incorporating this rationale into the model, there is a 
division of the tumor volume in regions with different levels 
of vasculature and, consequently, more or less effective oxy­
genation. It is also important to stress that Ktrans is a quantita­
tive measure and voxel-specific, with both high temporal and 
spatial resolution.

Having defined the necrotic (region 1 in Fig. 1C) and the 
viable tumor area (region 2 in Fig. 1C, on which the Ktrans is 
used as vasculature map) from the DCE-MRI GBM patient 
data baseline, we proceed in the next sections to initialize the 
predictive model.

Computational Model of Tumor Growth
The mathematical model used in our work35,36 incorporates 
the angiogenic cascade and oxygen supply as interacting with 
tumor cell populations. Depending on oxygen availability, 

tumor cells can be normoxic, hypoxic, or necrotic. Thus, the 
different components of the model are the concentrations of 
normoxic cells (c), hypoxic cells (h), necrotic cells (n), angio­
genic factors (a), endothelial cells building vasculature (v), and 
oxygen (o). The interacting species are described using a sys­
tem of partial differential equations of reaction-diffusion type 
(Equations 1–6).

More specifically, the model assumes that normoxic cells 
(Equation 1) diffuse at rate D, proliferate at rate ρ, and covert 
to hypoxic and necrotic cells at rates β and an, respectively. 
Hypoxic cells (Equation 2) are assumed, for simplicity, to dif­
fuse at the same rate D and do not proliferate but can convert 
to normoxic cells at rate γ when oxygen becomes available. 
Necrotic cells (Equation  3) derive from normoxic, hypoxic,  
and endothelial cells that cease at a rate an when in con­
tact with necrosis, as well as from hypoxic cells that turn to 
necrotic when oxygen is insufficient. Continuing as described 
in Refs 3,6, and Ref 35, endothelial cells structuring vasculature 
(Equation 4) migrate with a diffusion rate Dv, increase their 
population at a rate av, and die at a rate an. Angiogenic factors 
(Equation 5) diffuse with a diffusion rate Da, are produced by 
normoxic and hypoxic cells at rates δc and δh, respectively, are 
consumed by endothelial cells at rate q av, decay at a rate λ, 
and are washed out by the vessels at a rate ω. Finally, oxygen 
diffuses at rate Do, decays at rate ao, is produced by vascula­
ture with a rate βo, and is consumed by normoxic and hypoxic 
cells at rates γoc and γoh, respectively (Equation 6). In all the 
equations, T is a capacity variable defined as T c h v n

k
=

+ + + , 

where k corresponds to the maximum capacity of a voxel, ie, 
the maximum number of cells it can host.

∂
∂

= ∇⋅ ∇
c
t

D( T) c) c( T) ho c( ) a ncn( 1 1 1− + ρ − + γ − β − ο − 	 (1)

∂
∂

= ∇⋅ ∇ ( )h
t

D( T) h) ho c( ) a ( ) a n hh n( 1 1 1− − γ + β − ο − − ο + 	 (2)

Figure 1. Clarification of discrete regions with delineation based on signal intensity in histologically proven GBM tumor. Ventral surface of axial sections 
through dorsal portions of corpus callosum. (A) Post-contrast T1-weighted MR image with higher resolution. (B) T2-weighted MR image with water and 
fluid (ie, edema) appearing bright. (C) DCE-MR image where different regions are noted: 1. non-enhancing necrotic core; 2. tumor mass (normoxic and 
hypoxic cells) seen as a bright, ring-shaped tumor in the right frontal lobe; 3. hypointense peritumoral edematous infiltrating area; 4. lateral ventricle with 
cerebrospinal fluid, and 5. normal white matter (control); (D) The same DCE-MR image with superimposed the Ktrans color map and with the dotted line 
showing the borders of the edema surrounding the tumor and extending to both the medio-lateral and the antero-posterior axes.
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∂
∂

= ( )n
t

a h( ) a n c h vh n1 − ο + + + 	 (3)

∂
∂

= ∇⋅ ∇
v
t

D ( T) v) a v( a nvv v n( 1 1− + − Τ) − 	 (4)

∂
∂

= ∇⋅ ∇
a
t

D a) c h qa v( av aa c h v( + δ + δ − − Τ) − ω − λ1 	 (5)

∂
∂

= ∇⋅ ∇
o
t

D o) a o v c ho o o oc oh( + + β − γ − γ 	 (6)

The spatiotemporal solution of the system is approxi­
mated by applying the alternative direction implicit method 
of finite differences in three spatial dimensions.47,48 Neumann 
boundary conditions have been applied to all equations, by 
setting zero derivative at boundaries.

Stepping from ROI to discrete tumor areas. In order 
to initialize the populations that comprise the computational 
model, it is important to define the necrotic cells, discrimi­
nate between normoxic and hypoxic areas, and determine the 
density of endothelial cells within the tumor area. As already 
mentioned, based on Ktrans intensity map, the image area of 
necrosis (Ktrans = 0) and the tumor’s area with viable cell popu­
lations (Ktrans ≠ 0) are defined within the ROI (regions 1 and 2 
in Fig. 1C). Thus, although necrotic cells are concentrated in 
areas with no Ktrans, hypoxic and proliferative cells are not 
discriminable with PK parameters. For this reason, similar to 
Ref. 49, we propose a procedure to further approximate the 
necrotic area as well as to discriminate between normoxic and 
hypoxic areas.

As shown in Figure 2, the interior core of the Ktrans is 
associated with areas of no vasculature. The areas that are 
nearly adjacent to the vascularized ring (intersection of the 
two areas) can be assumed to be marginally oxygenated and 
not necrotic. Therefore, in order to define the necrotic area, 
we erode away 10% of the Ktrans = 0 area (regions marked as 
erosion 1 in Fig. 2). However, it should be noted that direct 
use of the Ktrans = 0 area as necrotic region produces similar 
results in the simulations. In order to discriminate hypoxic 
and normoxic regions in the Ktrans ≠ 0 area, we assume that 
proliferative cells must have their highest density toward the 
periphery,50 while the hypoxic area must be considerably larger 
than the normoxic ring. We consider the thickness of the nor­
moxic ring around the tumor surface as a variable, eroding the 
Ktrans ≠ 0 area with several different reductions. Furthermore, 
the density of endothelial cells was assumed to be proportional 
to the Ktrans intensity map.

Model initialization and parameterization. Before feed­
ing the model with parameters, the system of Equations 1–6 
was non-dimensionalized according to previous studies.35,36 The 
length scale was set to 27.08 cm, which corresponded to the 
actual image size, and the time scale was set to τ = 8 hours. 
We rescaled cell densities with the maximum cell density, 

k = 108 cells/cm2, and initial vasculature and angiogenic factors 
with υ0,max = 10–2 and amax = 5.75 × 10–4 mmol/cm3, respec­
tively. Following bibliography,35,36 we used the set of param­
eters listed in Table 1. The effect of varying the values of these 
parameters has been also explored in the Results section.

Two time points of DCE-MR images from a GBM 
patient were used in our study. The first image was used for 
model initialization, whereas the FU was used as a gold stan­
dard for validation. The original dataset consists of 37 DCE-
MRI slices of 192 × 192 pixels. To keep computational load 
low, MRI images and the respective Ktrans maps have been 
interpolated to a 96 × 96 × 96 voxel volume.

Figure 3 (left) shows an exemplar slice of the initial non­
dimensionalized vasculature as derived from the Ktrans map. 
In the absence of any additional information, and considering 
that GBMs are highly diffusive brain tumors, we set the maxi­
mum initial concentrations of each normoxic (c0), hypoxic (h0), 
and necrotic (n0) subpopulations to one-third of the maximum 
voxel capacity. However, we must stress that other values were 
tested but they did not produce sufficiently good results (data 
not shown). In particular, after increasing the cellularity, 
the simulated tumor mass appeared to be homogeneous and 
highly rigid, contrary to the expected heterogeneity and dif­
fusiveness of a real GBM tumor. Figure 3  shows the initial 
normoxic, hypoxic, and necrotic subpopulations. Note that 
there are areas that overlap between the three regions and that 
the peak densities are located in the periphery, the interior, 
and the center for normoxia, hypoxia, and necrosis, respec­
tively. Furthermore, erosion shrinks the periphery of necrosis 

Figure 2. Depiction of shape formation of the tumor areas within the 
region of interest. Dashed lines represent the erosions. The hypoxic 
tumor area extends between the two dashed lines, while the normoxic 
layer is a variable that is used in our result evaluation of the vasculature 
prediction.
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Figure 3. Initial concentration of vasculature (v0), normoxic (c0), hypoxic (h0), and necrotic (n0) cells projected on the 57th slice of the initial state, after 
interpolation.

by 1 mm, which can be assumed a valid maximum distance for 
oxygen to be transferred51 from the Ktrans ≠ 0 to the Ktrans = 0 
region. The ring of normoxic area in Figure  3 has a mean 
width of 1 mm.

Ktrans is not informative regarding the levels of angiogenic 
factors. Thus, a negligible value of the angiogenic factors 
was initially chosen (a0  =  0). Indeed, we will show in the 
following sections that different initial values of angiogenic  

factors have minimal effect on tumor growth. For simplic­
ity, we also assumed that initially the oxygen concentra­
tion was set to its maximum saturation value; that is 1. It 
is important to mention that, at the moment studied, the 
tumor has generated its own blood supply and is character­
ized by augmented metabolism. Thus, the initial vasculature 
is expected to play a critical role in tumor evolution, while 
the need for consumption will quickly configure oxygen 

Table 1. Model parameters for simulation and their nondimensionalized versions.37

Parameter Value Non-dimensionalized Parameter Value Non-dimensionalized

ρ
0.0087

1
day







τρ β ρ
10

1
day







8.7 10-4

γ
0.05

1
day







τγ D
3.6 10 8

2

⋅ 





− cm
s

τ
L

D
2

an ln2
50

1
day





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ln2
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Dv
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⋅ 




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s

τ
L

Dv2

ah ρ
20
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day







4.35 10 4−
Da

10 3
2

− 





cm
s

τ
L

Da2

µ ln2
15

1
day







τµ Km
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3
− 



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mmol
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K
a

m
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δc 7.59 10 16− 





mmol
cell day

τ δk
a c
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λ ln2
64

1
min





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τλ
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


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mmol
cell day

τ δk
a h
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ω
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112−

cell day




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tkω

q 105 mol
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





k
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q
max
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
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
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τ
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Do2
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
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
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τao βo 0.05
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



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
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


τγ oc γ oh 2
1γ oc day


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
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dynamics, which will further determine the distributions of 
normoxic, hypoxic, and necrotic subpopulations as well as  
angiogenic factors.

Quantitative Metrics for Spatial Evaluation
The resulting growth curves (cell populations over time), the 
similarity measurements, and a correlation analysis of the 3D 
volume comparing the modeling predictions and imaging data 
were set under study. Indicative examples/figures of 2D slices 
are also illustrated in Results section.

For evaluation, we use a scheme that uses solid metrics and 
provides objective comparison. Therefore, if the final pattern of 
Ktrans is used as the golden ground truth for vasculature, we use 
the Jaccard (JC), Dice (DS), and Volume Similarity (VS) met­
rics for assessing similarity.20–25 JC, DS and VS are defined as 
follows:

JC TP
FP TP FN

=
+ +

DS TP
FP TP FN

=
+ +

2
2

VS
FP FN

FP TP FN
= −

−
+ +

1
2

TP (true positive) is the number of tumor voxels belong­
ing to both the ground truth and simulated result; FP (false 
positive) is the number of tumor voxels belonging to the sim­
ulated result but not found in ground truth; and FN (false 
negative) is the number of tumor voxels belonging to ground 
truth but not found in the simulated tumor. For eliminat­
ing noise and artifacts, we set the detection threshold as 10% 
of the maximum value for both ground truth and the test 
datasets.

The evaluation metrics enable comparing the vasculature 
of the simulated tumor and the Ktrans of the real FU1 tumor, 
concerning their volumes. A cross-correlation analysis was 
made in order to further evaluate their internal transdifferen­
tiations beyond size.

Results
Our method was applied to real patient data chosen from a 
nonresponder to therapy where the tumor was expanding, 
in order to approximate as much as possible free evolution. 
It is important to stress that it is hard to find patients with­
out resection or untreated GBM for the entire duration of the 
disease. In this feasibility study, data were from a patient with 
two time points of DCE-MR images; the diagnostic and the 
FU clinical examinations were 39 days apart.

The clinical data used was taken from a patient with 
recurrent GBM, classified as stable disease using the Response 
Assessment in Neuro-Oncology (RANO) criteria, which is 

currently the clinical standard in the radiological FU of high-
grade glioma patients. The data were taken from an imaging 
study approved by the local ethics committee of the University 
Hospitals Leuven, Leuven, Belgium. The DCE-MRI were 
acquired with a 3.0 T scanner (Achieva, Philips Medical Sys­
tems) using an é-channel head coil for reception and the body 
coil for transmission.

The presence of new lesions and the generalized tumor 
volume progression make this case appropriate for our study. 
The central necrotic lesions are located in the right frontal 
lobe. There is extensive edema, causing mass effect on the 
frontal horn of the right lateral ventricle.

Spatial evolution of the tumor and its microenviron-
ment. Figure 4 illustrates indicative simulation results after 
initializing vasculature and cell densities according to the 
described procedure. An analytic, quantitative evaluation of 
our modeling results that considers the 3D volume will be 
presented in the following paragraphs. An exemplar slice of 
the original Ktrans map of the FU examination, which was 
performed 39 days after the initial examination, is also pre­
sented in Figure 4 for comparison. Within the frame of Fig­
ure 4 are illustrated the spatial distributions of the predicted 
vasculature (v) of the FU1, the normoxic (c), hypoxic (h), and 
necrotic (n) cell densities, as well as the angiogenic factors 
(a) after 39 fictitious days. The tumor increases in size, while 
hypoxic cells maintain the larger space within the tumor, 
and hypoxia-driven angiogenic factors are homogeneously 
allocated inside this hypoxia-bounded area. The predicted 
vasculature (v) is similar in shape with the actual FU of the 
Ktrans map, and the model seems to qualitatively predict the 
hot spots of maximum abnormal vascularity (yellow to red 
intensity peaks). Such hot spots are usually important mark­
ers for the temporal therapeutic assessment and for therapy 
planning in general.

Vasculature predictions correlated with Ktrans map. The 
scatter plot of the Ktrans map of the FU1 image and the 
associated vasculature profile of the in silico approxima­
tion is shown in Figure  5. Higher values of either Ktrans 
or vasculature density are expected at lower frequencies 
within a tumor mass. The calculated correlation coefficient 
is R = 0.8861, after truncating all zero values for Ktrans and 
v. Taken together, the evaluation results show that the two 
tumors are strongly correlated both in terms of size and 
internal characteristics.

Vasculature predictions affected by D, ρ, and the proliferative 
rim. This section examines the effect of a number of critical 
modeling parameters on the simulation result, while quantita­
tive metrics are used in order to better evaluate the outcome 
of the presented feasibility study. The first parameter studied 
was the diffusion coefficient D of tumor cells. Specifically,  
we explore how the simulated vasculature is affected when 
changing the diffusion rate of cells. Figure 6 shows the pre­
dicted spatial distribution of v for 0.1D and 10D, where 
D = 3.6 × 10–8 cm2/s (Table 1) is within the range of values in 
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relevant literature.35 For comparison, Figure 6 also shows the 
original Ktrans map of the FU examination as well as the pre­
dicted v for the original value of D. As expected, the pattern of 
v for low D is highly saturated, as the inability of tumor cells 
to migrate fast increases their local densities and consequently 
their demands for new vasculature. On the other hand, higher 
values of D result in an increase in tumor size and produce a 
pattern where the vasculature seems more extended and scat­
tered than the original corresponding data of Ktrans. A quan­
titative comparison has been also performed and presented in 
the next section.

The next step is to study the effect of the proliferation 
rate ρ to the results. Figure 7 shows how results differ for 0.1ρ 
and 10ρ, where ρ = 0.0087/day (Table 1) agrees with biblio­
graphy values.36,52 The pattern of v for high ρ (ie, cells divide 
faster) shows a saturation of v, as increased cellular prolifera­
tion leads to increased tumor densities and metabolic demands 
that stimulate increase in vasculature. On the other hand, 
lower ρ produces a pattern where the vasculature seems more 
dispersed. Different values for both D and ρ were also tested 
(data not shown), but none reflected better the real FU1 than 
the pair of values finally chosen.

In summary, we present a quantitative evaluation of the 
agreement between the simulated tumor and the final tumor 
vasculature.

Table 2 presents the resulting metrics for different cases of 
parameters. Metrics regarding the uniform initialization of vas­
culature (uniform v) is noted, since it is commonly used in the 
absence of relevant information.36 The scores for uniform vascu­
lature are remarkably lower than the rest of the cases. Addition­
ally, multiple erosions with different morphological operators 
were tried regarding the configuration of the area of the pro­
liferative ring. However, this is not the case for the erosion of 
the necrotic core since the chosen erosion is representative of 
the population of cells changing between necrotic and hypoxic 
areas. Normoxic area diameter varied from 0 mm (no erosion) 
to ∼10 mm (minimum hypoxia). As can be seen in Table 2, all 
metric scores are inversely proportional to the normoxic area 
expansion (erosions 1–5 mm show minimal differences). Alter­
natively, the less the assumed hypoxic region by erosion, the 
more inaccurate the model predictions become. According to 
our trials, the erosion of 1 mm appears to be the most appropri­
ate. The parameters used in our approximation were selected to 
produce the highest scores for all three evaluation metrics.
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Temporal evolution of the tumor. Figure  8  shows 
the concentrations of the normoxic, hypoxic, and necrotic 
subpopulations over time. The total tumor population 
consisting of the sum of normoxic, hypoxic, and necrotic 
cells follows a Gompertzian-like growth, where an ini­
tially fast growth is followed by a slow-down phase. The 
normoxic subpopulation slightly decreases over time until it 
almost stabilizes, while hypoxic cells initially increase fast 
and then slow down where a plateau is r'eached. Further­
more, a slight increase of the necrotic population over time 
is also observed. As can be seen in Figure 8, hypoxic cells 
dominate within the tumor, indicating that oxygen supply is 
insufficient for the increasing metabolic demands of tumor 

cells. All populations start from a nonzero value determined 
by the initialization process.

Figure  9  shows the evolution of vasculature and angio­
genic factors over time. These biological phenomena are causally 
related; hypoxia leads to the expression of angiogenic factors, 
which in turn promote angiogenesis and the formation of vascu­
lature in hypoxic areas. Note that, a few days after hypoxic cells 
start increasing (Fig. 8), both the levels of angiogenic factors and 
vasculature are rapidly multiplied (day 12 in Fig. 9). However, 
as hypoxic cells reach a plateau, the concentration of angiogenic 
factors is stabilized and vasculature keeps increasing.

As stated previously, the initial density of angiogenic 
factors, a0, was set to zero. Once again, this model param­
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Figure 6. Effect of the different values of the diffusion coefficient D on the resulting vasculature.

FU1 (Ktrans color-map) v for p = 0.0087 day−1

0.03

0.025

0.02 X 10−4

12

10

8

6

4

2

0.015

0.01

0.005

0

v for 10pv for 0.1p
Simulation (39 days)

Figure 7. Effect of the different values of the proliferation rate ρ on the resulting vasculature.

Table 2. Evaluation metrics of vasculature (%).
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eter was checked for values other than zero: particularly, a0 
was alternatively set to the maximum value of 1. Initially, a 
steep drop by approximately three orders of magnitude of the 
angiogenic factors is observed as their consumption relative 
to their production is significantly higher (Fig. 10). However, 
as the tumor evolves and hypoxia increases, an increase in 
the angiogenic factors is also observed similar to that of Fig­
ure  9 (left). Interestingly, the resulting graphs of the three 
tumor populations and the overall tumor growth, as well as 
the growth of endothelial cells in time, appear to be almost 
the same as in Figures 8 and 9 (left). This indicates that the 
choice of initial a does not substantially affect the model’s 
outcome.

Discussion
This paper focuses on predicting the evolution of the 
GBM tumor vascularization and presents a method that, 
in essence, is a feasibility study toward this difficult task. 
Models efficiently predicting vasculature are potentially of 
great interest, as the evolution of tumor growth is highly 

determined by the evolution of its vascularization, in the 
context of novel treatment strategies targeting angiogen­
esis and therapeutic decision making as well as predicting 
response to treatment.

DCE-MRI is a plausible clinical examination, while TM 
is the most common approach for Gd distribution estimations; 
hence, the significance of translating and subsequently using 
DCE-MRI to introduce multiple tumor development variables 
is evident. We presented a new way for defining the model 
inputs (image areas of interest and vasculature) of a glioma 
model by using biomarkers extracted by DCE-MRI, and 
demonstrated that it is feasible to predict vascularity despite 
the complexity of the model variables (Equations 1–6) and the 
assumptions made. In contrast to an arbitrary initialization 
with homogeneous vasculature as model input, we showed 
that the imaging-derived information regarding the initial 
vessel localization can yield more accurate results with respect 
to both tumor growth and vascularization predictions. The 
estimated spatial information of vasculature density within 
the ROI enables the model to predict intraregional differences 
that are closer to the ground truth. More interestingly, the 
method indicated that vascularity hot spot could be predicted, 
which in turn might be an important result for choosing the 
right therapy for the right patient.

Although we presented a number of qualitative and 
quantitative results on this study, also perturbing the param­
eters and the image areas of interest, the presented results 
need to be validated in a large number of patients in order 
to provide enough evidence that vasculature can be predicted 
with a standardized set of parameters and heuristics. In this 
respect, a sensitivity–specificity analysis would define a range 
of values within a patient database for the model parameters 
taken into account.35

However, there is a difficulty in finding GBM patient 
data were the tumor evolution is unaffected from treatment, 
which renders this necessary validation hard. This repre­
sents a limitation of our model, since the actual therapeutic 
regimes (chemotherapy and radiotherapy) were not mod­
eled in the current version. Use of the linear quadratic (LQ ) 
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model20,22 could be in the direction for simulating radiother­
apy, but the estimation of radiobiology parameters of the LQ 
is, however, the most challenging part of this task. We need 
to stress that, in order for this prediction method to reach the 
clinical setting, it will be also essential to model the effects 
of therapy.

An alternative prospect is to use additional imaging bio­
markers in order to approximate other model parameters using 
either other MRI techniques, PET, or magnetic resonance 
spectroscopic imaging (MRSI). As an example, using diffu­
sion MRI data, registered with the DCE MRI data, could 
also provide measures of cellularity to input the models.

A limitation of our method is that we oversimplified 
the discrimination of normoxic and hypoxic areas within the 
tumor. However, as a future perspective, determining these 
areas based on Ktrans and/or other PK parameter values or even 
additional imaging modalities can be more accurate and rep­
resentative of the reality. Alternatively, a control experiment 
could be used in order to determine the threshold value of 
Ktrans in each image area. According to this procedure, a range 
of values would be assigned to a given area and the ROI divi­
sions could be based on clustering the Ktrans values.

Conclusion
The presented method focuses on vascularity prediction in 
GBM based on DCE-MRI data. The open challenges for 
patients with GBM and brain cancer in general are to find the 
right way of decoding MRI scans and obtain knowledge about 
the specific grade, characteristics, appropriate treatment, and 
patient response and probability of survival, all these from the 
very first moment that the cancer is diagnosed.

Our method, based on initializing a glioma model using 
DCE-MRI biomarkers, indicates that the 4D profile of vas­
culature can be predicted especially in the sense that it can 
prompt the clinician to regions were vascularity will reach 
very high Ktrans values indicating tumor progression. Individ­
ualized predictions to monitor therapeutic effect and tumor 

development using computational models with noninvasive 
imaging biomarkers as input should be further investigated 
and validated, targeting direct clinical impact. This paper, 
however, presented a method for introducing vasculature in 
the modeling process, and this, if confirmed with large patient 
cohorts, can have a significant impact in predicting early the 
therapeutic effect especially with respect to tumor vascula­
ture change. Clearly, the lack of proper retrospective patient 
data and the added computational requirements for calculat­
ing MRI-based vasculature maps are some of the obstacles 
and limitations to achieve larger scale verification. However, 
the potential benefit in predicting vasculature response can 
certainly outweigh these limitations and lead to the design of 
proper trials, which will also take into consideration patient 
clinical data such as gender, weight, and comorbidities, which 
have an effect on the computation of PK parameters and can 
therefore increase accuracy.

Another potential clinically relevant implementation of 
our method could be the prediction of a downstaging can­
cer as a result of a wider variety of factors, apart from radio­
therapy. If this is the case, an operable GBM tumor could 
be identified in time, which would lead to improvement of 
clinical symptoms.
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