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Abstract: The chronic low-grade inflammation widely associated with obesity can lead to a prooxi-
dant status that triggers mitochondrial dysfunction. To date, Roux-en-Y gastric bypass (RYGB) is
considered the most effective strategy for obese patients. However, little is known about its molecular
mechanisms. This interventional study aimed to investigate whether RYGB modulates oxidative
stress, inflammation and mitochondrial dynamics in the leukocytes of 47 obese women at one year
follow-up. We evaluated biochemical parameters and serum inflammatory cytokines -TNFα, IL6
and IL1β- to assess systemic status. Total superoxide production -dHe-, mitochondrial membrane
potential -TMRM-, leucocyte protein expression of inflammation mediators -MCP1 and NF-kB-,
antioxidant defence -GPX1-, mitochondrial regulation—PGC1α, TFAM, OXPHOS and MIEAP- and
dynamics -MFN2, MNF1, OPA1, FIS1 and p-DRP1- were also determined. After RYGB, a significant
reduction in superoxide and mitochondrial membrane potential was evident, while GPX1 content
was significantly increased. Likewise, a marked upregulation of the transcription factors PGC1α and
TFAM, complexes of the oxidative phosphorylation chain (I–V) and MIEAP and MFN1 was observed.
We conclude that women undergoing RYGB benefit from an amelioration of their prooxidant and
inflammatory status and an improvement in mitochondrial dynamics of their leukocytes, which is
likely to have a positive effect on clinical outcome.

Keywords: bariatric surgery; obesity; mitochondrial dynamics; oxidative stress; inflammation

1. Introduction

Obesity is a complex and multifactorial disease currently affecting 650 million people
worldwide and represents one of the largest problems facing public health in modern
societies. Similar to other chronic diseases, it has been linked to several health complications,
including dyslipidemia, hypertension, insulin resistance (IR), type 2 diabetes (T2D), heart
disease and strokes, sleep apnoea and cancer, which are responsible for the significant
morbidity and mortality associated with this global epidemic [1].

Lifestyle and pharmacological approaches are the most prescribed interventions to
overcome this disease [2,3]. However, poor patient adherence can render these strategies
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ineffective insofar as achieving long-lasting benefits. In this sense, Roux-en-Y gastric bypass
(RYGB) is a surgical weight loss treatment for morbidly and severely obese patients [4]
that has consistent short- and long-term effects on many obesity hallmarks. [5,6]. Recent
data indicate that, despite similar obesity rates among men and women, there is substantial
gender disparity in the use of bariatric surgery, with women comprising 80% of the patients
undergoing the procedure [7]. These differences may, in part, be due to gender-based
differences in perceptions of obesity-related quality of life and body weight, which may
affect the motivation for seeking surgery interventions and treatments.

Previous studies have highlighted the importance of reducing the inflammatory re-
sponse and oxidative stress—mediated by increased antioxidant capacity and diminished
levels of reactive oxygen species (ROS) production—as underlying mechanisms of the
cardiometabolic changes associated with RYGB [6,8]. Mitochondria are known to play a
key role in these processes, since not only are they the primary sources of cellular ROS,
but their functions include ATP production by oxidative phosphorylation (OXPHOS), as
well as regulation of calcium homeostasis and programmed cell death [9]. To deal with
these challenges, mitochondria are amazingly plastic organelles that mediate a series of
dynamic processes, such as mitochondrial fusion and fission, mitophagy and mitochondrial
biogenesis, which determine mitochondrial morphology, quality and abundance.

There is growing evidence of an intriguing direct connection between mitochondrial
dynamics and nutrient availability status [10], suggesting that modifications in mitochon-
drial architecture and networks are a mechanism of bioenergetic adaptation to metabolic
demands. Interestingly, a reduction in the mitochondrial proteins mitofusin (MNF)1, MNF2,
optic atrophy 1 (OPA1) and the dynamin-related protein 1 (DRP1) has been associated with
an impairment of OXPHOS capacity, as well as defects in energy production in several
metabolic diseases, including type 2 diabetes and obesity [11–13]. In line with this, a
recent study reported that sedentary—and not active—subjects displayed an age-associated
downregulation in MNF1, MNF2, DRP1 and OPA1, a process related to weight gain, muscle
loss and inflammation [14].

In terms of metabolic demands, cellular starvation has been linked to the elongation of
mitochondria through upregulated fusion [15] and increased ATP synthesis capacity [16],
while a rich-nutrient environment tends to generate mitochondrial fragmentation [16,17]
and apoptotic function via increased fission [18]. For its part, fragmentation probably
reduces the mitochondrial oxidative metabolism, as displayed in the adipocytes of obese
animal models and humans [19–21].

Despite enormous interest in the management of obesity, relatively little is known
about the effects of RYGB surgery on the intricate biogenesis and function of mitochondria.
RYGB has been reported to provide beneficial effects on the liver mitochondrial dynamics
of diet-induced obese rats [22]; an increase in mitochondrial complexes I–V have been
observed after surgery, as well as modifications in the expression of several mitochondrial
proteins involved in mitophagy, mitochondrial biogenesis, fusion and fission. Moreover,
consistent with previous studies performed on human adipose tissue [23] and skeletal
muscle [24], RYGB showed an increase in the peroxisome proliferator-activated receptor
gamma coactivator 1-alpha (PGC1α) [22], a key transcription factor regulating energy
efficiency, as well as mitochondrial quality control and fatty acid oxidation [25]. Among
the downstream mediators of PGC1α, the transcription factor A mitochondria (TFAM) is a
transcription factor for mitochondrial DNA (mtDNA) implicated in mitochondrial-encoded
gene transcription and mtDNA replication, whose expression is downregulated in the
adipose tissue of obese patients [26]. In this line, myocytes derived from severely obese
subjects undergoing RYGB show improved mitochondrial function in association with
reduced Drp1 phosphorylation [27], while mitochondrial basal and maximal respiration
rates in peripheral blood monocytes have been shown to increase rapidly after surgery [28].

However, to date, no studies have highlighted the effects of this surgical procedure
on mitochondrial dynamics in human leukocytes. Therefore, based on the importance of
reducing the obesity-associated inflammatory and prooxidative status, the present study
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aimed to explore whether RYGB-induced weight loss modulates fission and fusion proteins
as well as overall mitochondrial quality control mechanisms in the leukocytes of obese
women.

2. Materials and Methods
2.1. Subjects

The study cohort was composed of forty-seven obese patients undergoing RYGB,
recruited at the Endocrinology and Nutrition Outpatient’s Department and the Department
of General and Digestive System Surgery of the University Hospital Doctor Peset, Valencia
(Spain). Recruitment was carried out from May 2017 to September 2019. All subjects agreed
with the objectives and methodology of the study and gave their written informed consent
to participate. The hospital’s Ethics Committee for Clinical Investigation approved the
study (code 96/16), which was in line with the World Medical Association’s Declaration of
Helsinki.

It is important to note that this study has arisen as part of a wider project, registered in
clinicaltrials.gov under the study number NCT05071391. During the course of this project,
we have revealed the implication of inflammation and oxidative stress in the pathogenesis
of obesity and its comorbidities and have explored in depth the mechanisms associated
with RYGB-induced weight loss [6,29].

Women aged from 18 to 65 years, with a body mass index (BMI) of ≥35 kg/m2 and
assigned to RYBG intervention were eligible to be included in the study. Pregnancy or
lactation, active infectious disease, thromboembolism, stroke or documented history of
cardiovascular diseases, malignancies, severe renal or hepatic disease, drug abuse, chronic
inflammatory disease and secondary obesity (hypothyroidism, Cushing’s syndrome) were
established as exclusion criteria. We only targeted the female population to reduce potential
bias due to gender confounding and interindividual variations.

2.2. Sample Collection, Anthropometric and Biochemical Determinations

The study cohort was composed of forty-seven obese patients undergoing RYGB,
recruited at baseline and post-surgical (12 months after RYGB) appointments attended by
subjects, during which blood samples were collected from the brachial vein under fasting
conditions (10–12 h) between 8:00 and 9:30 a.m. Several anthropometric parameters were
then measured as follows: systolic blood pressure (SBP) and diastolic blood pressure (DBP)
were measured twice consecutively by an automatic sphygmomanometer; weight and
height were measured with an electronic scale and stadiometer, respectively; BMI was cal-
culated as weight (kg)/(height (m))2, and waist circumference was measured at the 10th rib
and the iliac crest using a measuring tape. The percentage of excess weight loss (EWL) was
calculated according to the formula [(preoperative weight−current weight)/(preoperative
weight–ideal weight (considering BMI = 25 kg/m2))] × 100.

Levels of fasting glucose, total cholesterol, HDL cholesterol and triglycerides were
obtained with a Beckman LX20 analyzer (Beckman Corp., Brea, CA, USA). Friedwald’s
formula was employed to calculate LDL cholesterol. Insulin was measured with an im-
munoassay using the Architect Insulin Reagent Kit, and insulin resistance was estimated
using the Homeostasis Model of Assessment (HOMA-IR = (fasting insulin (µU/mL) × fast-
ing glucose (mg/dL)/405)). Glycated haemoglobin (HbA1c) was analysed employing an
automated glycohemoglobin analyser (Arkray Inc., Kyoto, Japan). Serum levels of high
sensitivity C-reactive protein (hsCRP) were analysed using an immunonephelometric assay
(Behring Nephelometer II, Dade Behring, Inc., Newark, DE, USA) with an intra-assay
coefficient of variation < 5.5%. Total leukocytes and neutrophils were determined in a
COULTER® LH 500 haematology blood analyser (Beckman Coulter Inc., Brea, CA, USA).

2.3. Isolation of Leukocytes

Blood collected in BD Vacutainer® citrated tubes (approximately 15 mL) was mixed
and incubated with dextran 3% for 45 min at room temperature (RT). The supernatant



Antioxidants 2022, 11, 1302 4 of 15

was placed over Ficoll-Paque Plus (GE Healthcare, Uppsala, Sweden) and centrifuged at
650× g for 25 min at RT. The resulting halo of peripheral blood mononuclear cells (PBMCs)
was collected and centrifuged for 10 min at 650× g. The pellet of polymorphonuclear
leukocytes (PMN) was incubated with a specific erythrocyte lysis buffer (Sigma-Aldrich,
Inc., St. Louis, MO, USA) for 5 min. Finally, PBMCs and PMN pellets were washed twice in
Hank’s Balanced Salt Solution (HBSS; Capricorn, Ebsdorfergrund, Germany) prior to the
following experiments.

2.4. Protein Expression Analysis

PBMCs were lysed on ice for 15 min with RIPA Lysis Buffer supplemented with pro-
tease plus phosphatase inhibitors, and total protein concentration was quantified using
the BCA assay (all reagents from Thermo Fisher Scientific, Waltham, MA, USA). Aliquots
of 25 µg of protein were resolved on 8–16% or 4–20% gradient SDS-polyacrylamide gels
(Invitrogen, Carlsbad, CA, USA) and then transferred to nitrocellulose membranes. Mem-
branes were then blocked with 5% BSA or 5% skimmed milk in TBS-T for 1 h at RT with
soft shaking. Proteins of interest were detected by incubating membranes overnight at 4 ◦C
with the following primary antibodies: mouse monoclonal anti-OPA-1 (Ref. MABN737),
rabbit polyclonal anti-MFN1 (Ref.ABC41), rabbit polyclonal anti-MFN2 (Ref. ABC42) and
rabbit polyclonal anti-FIS-1 (Ref. ABC67) from Merck-Millipore (Burlington, MA, USA);
mouse monoclonal anti-OXPHOS (Ref. ab110411), rabbit monoclonal anti-MIEAP (Ref.
ab180154), rabbit polyclonal anti-PGC1α (Ref. ab54481) and rabbit polyclonal anti-MCP-1
(Ref. ab73866) from Abcam (Cambridge, UK); rabbit monoclonal phospho-DRP1 (Ser616)
from (Ref. 4494s) Cell Signalling Technology (Danvers, MA, USA); mouse monoclonal
anti-mtTFA (Ref. sc-376672) from Santa Cruz (Dalas, TX, USA); mouse monoclonal anti-
NF-кB (Ref. 33-9900) and rabbit polyclonal anti-GPX1 (Ref. PA5-30593) from Thermo
Fisher Scientific (Waltham, MA, USA). Mouse monoclonal anti-actin (Ref. 3700T) from Cell
Signalling Technology (Danvers, MA, USA), rabbit polyclonal anti-actin (Ref. A5060) from
Sigma-Aldrich (San Luis, MO, USA) and mouse monoclonal anti-VDAC (Ref. ab14734)
from Abcam (Cambridge, UK) were used as protein loading controls. The following day,
membranes were incubated for 60 min at RT with the following secondary antibodies:
goat anti-rabbit from Vector Laboratories (Ref. PI-1000-1) (Burlingame, CA, USA) and goat
anti-mouse (Ref. 31430) from Thermo Fisher Scientific (Waltham, MA, USA). A summarised
table (Table S1) of all antibodies used has been included as supplementary material. The
chemiluminescence signal was detected with SuperSignal West Pico Plus or Femto from
Thermo Fisher Scientific (Walthman, MA, USA) using the Fusion FX5 (Vilber Lourmat,
Marne-La Vallée, France) imaging system. The quantification of protein levels was per-
formed by densitometric analysis with Bio1D software v15.03a (Vilber Lourmat, Marne-La
Vallée, France).

2.5. Evaluation of Systemic Cytokines TNFα, IL6 and IL1β

Blood in EDTA-coated tubes was used to obtain plasma samples by centrifugation
(1500 g, 10 min, 4 ◦C). Serum concentrations of TNFα, IL6 and IL1β were analysed in
duplicate with a Luminex® 200 analyser system (Luminex Corporation, Austin, TX, USA)
according to the Milliplex-Kit manufacturer’s procedure (Millipore Corporation, Billerica,
MA, USA). Validation settings were intra- and inter-serial coefficient variations (CV) of
<5.0% and <15.0%, respectively.

2.6. Superoxide Production and Mitochondrial Membrane Potential

The determination of superoxide production and mitochondrial membrane potential
was assessed by static fluorometry using an IX81 Olympus fluorescence microscope coupled
with the static cytometry software ScanR v2.03.2 (Olympus, Hamburg, Germany). In brief,
1.5 × 105 PMN/wells were seeded in a 48-well plaque and incubated for 30 min at 37 ◦C
with Dihydroethidium (DHE) and tetramethylrhodamine methyl ester (TMRM) probes for
intracellular superoxide and mitochondrial membrane potential determination, respectively.
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Hoechst 33,342 was used to visualise cell nuclei. All fluorescent dyes were purchased from
Life Technologies (Thermo Fisher Scientific, Waltham, MA, USA).

2.7. Statistical Analysis

This study was designed to achieve a power of 80% and detect significant (p < 0.05)
differences of 20% in relation to the primary efficacy criterion—protein detection by West-
ern blot—assuming a common SD of 25 units. Based on these premises, a minimum of
13 patients were required, as a loss-to-follow-up rate of 0% was estimated. SPSS 20.0 (IBM
SPSS Statistic, Chicago, IL, USA) was employed to conduct the statistical analysis. Nor-
mality was checked by employing the Shapiro—Wilk test due to sample size. Parametric
values are expressed as the mean ± standard deviation (SD) and non-parametric values as
the median and interquartile range (25th–75th percentile). Qualitative data are expressed
as percentages. Bar graphs were represented by the mean + standard error (SE). The paired
Student’s t-test and Wilcoxon test were used to compare parametric and non-parametric
data, respectively. Statistical significance was considered when p < 0.05 in all comparisons,
with a confidence interval of 95%.

3. Results

This study was carried out on a cohort of 47 obese female patients with a mean age of
45.5 ± 10.2 years and a BMI of 40.3 ± 5.3 kg/m2. As expected, after RYGB surgery patients
showed a considerable decrease in waist circumference (p < 0.001), BMI (p < 0.001), SBP
and DBP (p < 0.01 for both) (Table 1).

Table 1. Clinical features of the study population before and after RYGB.

Parameters Before After
n (females %) 47 (100)
Age (years) 45.5 ± 10.2
Weight (kg) 107.1 ± 15.6 76.3 ± 12.0 ***

BMI (kg/m2) 40.3 ± 5.3 29.0 ± 4.3 ***
EWL (%) 81.1 ± 29.7

Waist (cm) 114.3 ± 10.5 88.8 ± 12.0 ***
SBP (mmHg) 130.6 ± 16.1 121.6 ± 18.3 **
DBP (mmHg) 80.6 ± 10.2 73.5 ± 11.0 **

Glucose (mg/dL) 96.4 ± 12.5 84.0 ± 6.9 ***
Insulin (µU/mL) 14.4 ± 7.6 7.0 ± 3.1 ***

HOMA-IR 3.52 ± 2.18 1.44 ± 0.72 ***
HbA1c (%) 5.47 ± 0.54 5.16 ± 0.35 ***

TC (mg/dL) 190.0 ± 32.6 169.8 ± 26.2 ***
HDLc (mg/dL) 48.1 ± 8.1 59.5 ± 9.6 ***
LDLc (mg/dL) 125.1 ± 40.2 97.2 ± 21.0 ***

TG (mg/dL) 95.5 (73.8, 136.5) 76.0 (56.0, 100.5) ***
hsCRP (mg/L) 4.69 (2.08, 8.29) 0.79 (0.28, 1.48) ***

Leukocytes (103/µL) 7.74 ± 2.41 6.39 ± 1.98 *
Treatment

Hypertension % (n) 36.2 (17) 14.9 (7)
Hyperlipidemia % (n) 21.3 (10) 10.6 (5)

T2D % (n) 27.7 (13) 0 (0)
Data are expressed as mean ± SD or percentage (n). TG and hsCRP are represented as median and IQ range (25%
and 75% percentile). Values were statistically compared with a paired Student’s t-test or Wilcoxon test and were
considered significant when * p < 0.05, ** p < 0.01 and *** p < 0.001. BMI, Body mass index; DBP, Diastolic blood
pressure; EWL, Excess weight loss; HbA1c, Glycated haemoglobin; HDLc, HDL cholesterol; hsCRP, High sensitive
C-reactive protein; IL1β, Interleukin 1β; IL6, Interleukin 6; LDLc, LDL cholesterol; SBP, Systolic blood pressure;
TC, Total cholesterol; TG, Triglycerides; T2D, Type 2 diabetes.

Glucose metabolism parameters, such as HbA1c, insulin, glucose, and HOMA-IR
(p < 0.001 for all), also improved. Similarly, triglycerides (p < 0.001), LDL cholesterol
(p < 0.001) and total cholesterol (p < 0.001) showed a significant decrease, while HDL
cholesterol levels (p < 0.001) had fallen one year after the intervention. Acute phase reactant
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hsCRP (p < 0.001) and total leukocyte count (p < 0.05) were lower after the intervention
(Table 1).

These changes were accompanied by reductions in systemic proinflammatory
cytokines—TNFα (Figure 1A, p < 0.05), IL6 (Figure 1B, p < 0.05) and IL1β (Figure 1C,
p < 0.001) —and were mirrored by a decline in intracellular mediators of inflammatory
response in leukocytes—MCP1 and NF-κB proteins (Figure 1D,E, p < 0.05 for both).

Figure 1. Proinflammatory markers in obese patients before and after RYGB. Serum levels of
(A) TNFα (n = 32), (B) IL6 (n = 36) and (C) IL1β (n = 35). Leukocyte protein expression of in-
flammatory mediators and representative Western blot images of (D) MCP1 (n = 13) and (E) NF-kB
(n = 21). Data are represented as the mean + SE. * p < 0.05, *** p < 0.001 when compared using a paired
Student’s t-test. IL1β, interleukin 1β; IL6, interleukin 6; MCP1, monocyte chemoattractant protein 1,
NF-κB, nuclear factor kB; RYGB: Roux-en-Y gastric bypass; TNFα, tumor necrosis factor alpha.

Since obesity-related inflammatory status has been closely linked to cell oxidative
stress, we also aimed to analyse superoxide production, antioxidant defences and mito-
chondrial membrane potential (Figure 2) in leukocytes, widely known to be sensors of the
whole-body’s responses to disease [30].

Our findings showed a significant decrease in total superoxide (Figure 2A, p < 0.01) and
mitochondrial membrane potential (Figure 2B, p < 0.05) and a restoration of the antioxidant
enzyme GPX1 (Figure 2C, p < 0.05). Taken together, these results suggest a partial recovery
of redox balance thanks to a decrease in ROS production and an increase in the antioxidant
response. In line with these findings, and given the close relationship between obesity,
oxidative stress and processes of mitochondrial dynamics, we decided to determine the
impact of RYGB on several regulators and transcriptional coactivators of mitochondrial
biogenesis in leukocytes of obese subjects before and after surgery (Figure 3). One year
after the intervention, we observed a significant increase in the transcriptional coactivator
PGC1α (Figure 3A, p < 0.05) and its downstream mediator TFAM (Figure 3B, p < 0.05),
suggesting a mitochondrial network turnover.
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Figure 2. Oxidative stress and mitochondrial dysfunction markers in leukocytes of obese patients
before and after RYGB. Evaluation of (A) total superoxide (n = 20) and (B) mitochondrial membrane
potential (n = 21), expressed as arbitrary units of fluorescence and with representative images stained
respectively with dHE (red) and TMRM (red), and Hoechst 33,342 for nuclei (blue). (C) Leukocyte
protein expression of GPX1 and representative western blot images (n = 19). Data are represented
as the mean + SE. * p < 0.05 ** p < 0.01 when compared using a paired Student’s t-test. dHE,
Dihydroethidium; TMRM, ethyl ester of tetramethylrhodamine; GPX1, Glutathione peroxidase 1.

Figure 3. Transcription factors of mitochondrial biogenesis in leukocytes of obese patients before
and after RYGB. Protein expression and representative Western blot images of (A) PGC1α (n = 10)
and (B) TFAM (n = 16). Data are represented as the mean + SE. * p < 0.05 when compared using a
paired Student’s t-test. PGC1α, Peroxisome proliferator-activated receptor γ co-activator 1α; TFAM,
Transcription Factor A Mitochondrial.

Our next step was to determine changes in the protein expression of the five mitochon-
drial OXPHOS complexes (Figure 4).
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Figure 4. Mitochondrial complexes involved in the electron transport chain and MIEAP in leukocytes
of obese patients before and after RYGB. Protein expression and representative Western blot images
of (A) Mitochondrial complex I (n = 15), (B) Mitochondrial complex II (n = 15), (C) Mitochondrial
complex III (n = 13), (D) Mitochondrial complex IV (n = 14), (E) Mitochondrial complex V (n = 14)
and (F) MIEAP (n = 9). Data are represented as the mean + SE. * p < 0.05, ** p < 0.01, *** p < 0.001
when compared using a paired Student’s t-test. MIEAP, mitochondria-eating protein.

These assemblies provide most of the energy required for cellular function through
an electrochemical proton gradient (or a proton motive force) between the mitochondrial
matrix and the intermembrane space. After RYGB, our patients showed an increase in
complexes I and V (Figure 4A,E, p < 0.05 and p < 0.001, respectively) and an upward
trend in complex IV (Figure 4D, p = 0.089), which was also accompanied by a substantial
upregulation of MIEAP (Figure 4F, p < 0.05).

Finally, associated with these changes, we detected intriguing alterations in mitochon-
drial dynamics post-surgery (Figure 5).

Although the increase in MNF2 (Figure 5A) and OPA1 did not reach statistical sig-
nificance (Figure 5C), a significant increase in MFN1 protein content (Figure 5B, p < 0.05)
was observed in leukocytes after RYGB. In contrast, the fission proteins FIS1 and p-DRP1
(Ser616) remained unchanged (Figure 5D,E, respectively). As a whole, these results lead us
to hypothesise that RYGB restores mitochondrial homeostasis by reducing the inflamma-
tory response and oxidative stress parameters and by modulating mitochondrial dynamics
through activation of transcriptional factors involved in the synthesis and degradation of
mitochondrial components, OXPHOS complexes and fusion and fission processes, though
this requires further confirmation.
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Figure 5. Mitochondrial fusion and fission markers in leukocytes of obese patients before and after
RYGB. Leukocyte protein expression and representative Western blot images of (A) MFN2 (n = 12),
(B) MNF1 (n = 13), (C) OPA1 (n = 14), (D) FIS1 (n = 16) and (E) p-DRP1 (n = 14). Data are represented
as the mean + SE. * p < 0.05 when compared using a paired Student’s t-test. FIS1, mitochondrial fission
1; MNF1, mitofusin 1; MFN2, mitofusin 2; OPA1, optic atrophy protein 1; p-DRP1, dynamin-related
protein 1.

4. Discussion

In the present study, we have seen how obese women undergoing RYGB exhibited
improvements in several clinical and metabolic outcomes, including sustained weight
loss, enhanced glucose homeostasis and lipid profile, as well as a reduction in systemic
inflammatory parameters. These improvements were accompanied by a reduction in
intracellular inflammatory pathways in leukocytes and a slowing down of oxidative stress.
Interestingly, our findings revealed that RYGB regulates several processes of mitochondrial
dynamics, including fusion/fission, the repair or removal of dysfunctional organelles and
mechanisms of mitochondrial biogenesis. Altogether, these findings represent novel and
relevant evidence of the physiological and molecular mechanisms involved in the beneficial
effects of this surgical procedure in obesity and its associated metabolic comorbidities.

The pathophysiological mechanisms underlying the relationship between obesity and
metabolic dysfunction are likely to be multifactorial. Over the last few years, bariatric
surgery has proven to be successful in treating morbid/severe obesity, improving patient
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quality of life and providing durable and effective results with respect to various metabolic
parameters—namely, weight loss, improvement of lipid profile, reduction of cardiovascular
risk and glycaemic control [31–35], which our findings affirm. It is worth noting that
inflammation is reported to be the main player linking obesity with its related metabolic
perturbations [36] and is ameliorated after weight loss. A significant reduction in systemic
cytokines—TNFα, IL6 and IL1β—and decreased MCP1 and NF-κB protein expression
were detected in the leukocytes of our patients after RYGB, which is in line with previous
reports of an overall reduction in inflammatory markers in leukocytes [37] and adipose
tissue [23]. The complex inflammatory network that characterises obesity is mostly acti-
vated by an oxidative stress status. Indeed, we have previously reported that increasing
fat accumulation leads to both excessive ROS release and mitochondrial dysfunction in
peripheral leukocytes [38]. Of note, and consistent with our previous study carried out in
both sexes [6], an amelioration of oxidative stress parameters was observed after bariatric
surgery. In this sense, Monzo-Beltran et al. also reported an adaptive antioxidant response
of leukocytes after RYGB, manifested by higher intracellular SOD1, GPX1 and catalase
activity [39].

Mitochondrial biogenesis is a self-renewal route by which new mitochondria originate
from those that already exist in order to reduce mitochondrial dysfunction, which is
regulated by AMP-activated protein kinase (AMPK), a major energy sensor of the cell [40].
Specifically, alterations in cellular energy consumption, energy production and AMP/ATP
ratio can lead to the activation of this Ser/Thr kinase. In such a scenario, AMPK shuts down
energy-consuming anabolic systems while switching on catabolic pathways to generate
ATP [40]. Simultaneously, the kinase downregulates the expression of lipid synthesis genes
while enhancing the expression of genes associated with glycolysis, glucose transport and
mitochondrial activity [41–43]. Regarding this last point, it is important to note that the
expression of genes involved in either mitochondrial activity or lipid oxidation in skeletal
muscle was induced in transgenic mice overexpressing an activated form of the AMPK-
γ-3 subunit. [44,45]. In contrast, increased mitochondrial respiration and biogenesis in
response to energy deprivation was not observed in mice expressing a dominant negative
form of AMPK [46]. In this way, these studies, and others [47], have identified AMPK as an
essential regulator of mitochondrial biogenesis. Interestingly, evidence suggests that AMPK
activity is reduced in obesity, suggesting it may be a therapeutic target [48]. In this regard,
we have recently reported an upregulation of this kinase after RYGB surgery [29]. This
tightly coordinated process implicates several transcriptional regulators (mainly PGC1α,
NRF1 and NRF2) that activate TFAM [49], thus, leading to mitochondrial transcription and
mitochondrial genome replication and, in turn, to the generation of new organelles. Among
these intricate transcriptional regulators, PGC1α has attracted great attention within the
field of obesity research due to its essential role in regulating the efficiency of energy
metabolism, as well as in mitochondrial quality control and fatty acid oxidation [25,50].
Its expression has been found to be reduced in the adipose tissue of obese humans [26,51],
while it is upregulated after weight loss induced by RYGB [23,24], thus, explaining the
increase in PGC1α we observed in leukocytes at one-year follow-up. Studies have suggested
that these changes were associated with a significant increase in TFAM, a key regulator
of mtDNA replication. TFAM deletion in mutant mice induces obesity and diabetes [52],
probably due to a remodelling of the respiratory chain through the downregulation of
multiple proteins involved in oxidative phosphorylation.

Alterations of mitochondrial content and activity have emerged as critical features of
obese in rodents [53] and humans [54,55]. In fact, OXPHOS failure can lead to ROS over-
production and accumulation of unhealthy mitochondria [56], which need to be repaired
or eliminated to preserve the stability and health of cells [57]. Recently, a novel mechanism
has been proposed for mitochondrial quality control, in which the regulator MIEAP in-
duces intramitochondrial structures that engulf and degrade damaged mitochondria by
the accumulation of lysosomes [58].
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Our results suggest that RYGB drives an upregulation of levels of the OXPHOS
proteins CI and CV (initial and final complexes in the electron transport chain), along
with an increase in MIEAP. This points to a post-surgical amelioration of mitochondrial
activity and function that could be associated with the improvement in metabolic outcomes
observed in our cohort. Previous studies focused on different target tissues (liver, adipose
or muscle) and models (cellular or animal) have highlighted the upregulation of OXPHOS
complex expression upon caloric restriction [59] or RYGB [22,60–62]. In accordance with
Nijhawan et al., who reported that mitochondrial basal and maximal respiration rates
in peripheral blood monocytes increased rapidly after surgery [28], we highlight the
effects of this surgical procedure on the mitochondrial dynamics of human leukocytes
from obese women. It is relevant to note that mitochondrial quality control also implies
events of fusion and fission, by which cells mediate morphological plasticity and regulate
energy expenditure and bioenergetic efficiency. These processes are in turn mediated
by large guanosine triphosphatases (GTPases), including MNF1, MTF2, OPA1, DRP1
and FIS1 [63,64], which help to balance the fusion and division of the two lipid bilayers
that surround mitochondria. In line with these findings, previous studies performed
on obese humans have revealed a direct relationship between mitochondrial dynamics
and the balance of nutrient supply/energy demand, suggesting that the remodelling of
mitochondrial morphology and networks constitutes bioenergetic adaptation to metabolic
requests [18,65]. In particular, several authors have argued that obesity is characterised by
a reduced gene expression of OPA1 and MFN1 in rat liver and skeletal muscle, which may
contribute to mitochondrial dysfunction [66]. Decreased MFN1 and MFN2 and increased
DRP1 have also been reported in the skeletal muscle of obese patients [65,67–69].

Although there is increasing evidence that RYGB can improve mitochondrial fu-
sion [70,71], data are limited and controversial. Saks et al. observed significant increases in
the expression of hepatic MFN1 and OPA1 in the liver of obese rats following RYGB
surgery [22], while, more recently, Kugler et al. found no changes in these proteins
when analysed in myotubes derived from severely obese individuals seven months after
RYGB [27]. In the case of mitochondrial fission proteins, there is controversy surrounding
the effects of RYGB on FIS1 and DRP1 protein levels [22,27,69], which calls for future
investigation. Our findings bring the knowledge a step further by illustrating how bariatric
surgery influences mitochondrial dynamics in leukocytes of obese humans through an
increase in MFN1. In contrast, the changes we observed in MNF2, OPA1, DRP1 or FIS1 did
not reach statistical significance, which points to a tissue-specific regulation. This boosted
mitochondrial fusion might contribute positively to the enlargement and functionality of
the mitochondrial network by stimulating OXPHOS expression and respiration, as reported
in the liver of obese rats [22].

The strengths of our study include its design, based on a population of women with
obesity, which allows an accurate comparison of the implications of weight loss. We
have evaluated intracellular responses to weight loss following RYGB, thus, representing,
as far as we know, the first study to address changes in mitochondrial dynamics in the
leukocytes of obese women. However, the present study has some limitations, including
the relatively small size of the study population, though we would like to point out that our
data are supported by sample size calculation. Additionally, we notice the impossibility
of demonstrating a causal relationship between the improvement in metabolic outcomes
induced by RYGB and the modulation of mitochondrial dynamics processes. Therefore,
future randomised investigations are needed to determine the mechanism underlying the
metabolic improvement detected in women after RYGB-induced weight loss. Such studies
will undoubtedly constitute an important step toward developing strategies for preventing
and treating obesity.

5. Conclusions

The present study endorses bariatric surgery as a novel strategy that improves the
clinical hallmarks of obesity and its related comorbidities. Our findings suggest that women
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undergoing RYGB benefit from an amelioration of their prooxidant and inflammatory status
and enhanced mitochondrial dynamics in their leukocytes, which could be responsible for
the overall improvement in anthropometric and clinical features reported after surgery.

Given the essential role of mitochondria in energy metabolism, a better understanding
of the molecular mechanisms that underlie mitochondrial dynamics may help to iden-
tify therapeutic targets to prevent and treat numerous diseases based on mitochondrial
dysfunction, such as obesity and its associated comorbidities.
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