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Simple Summary: Fasciolosis, caused by the worm parasite Fasciola hepatica (liver fluke), is a global
disease of farm animals and a neglected disease of humans. Infection arises from the ingestion of
resistant metacercariae that contaminate vegetation. Within the intestine, the parasite excysts as an
active larvae, the newly excysted juvenile (NEJ), that borrows through the intestinal wall to infect
the host and migrates to the liver. NEJ release, tissue penetration and migration are facilitated by
enzymes secreted by the parasite, namely, cathepsin B1 (FhCB1), cathepsin B2 (FhCB2), cathepsin
B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these enzymes is growing, we have
yet to understand why the parasites require all four of them to invade the host. In this study, we
produced functional recombinant forms of these enzymes and demonstrated that they vary greatly
in terms of activity, optimal pH and substrate specificity, suggesting that, combined, these enzymes
provide the parasite with an efficient digestion system for different host tissues and molecules. We
also identified several compounds that inhibited the activity of these enzymes, but did not affect the
ability of the larvae to excyst or survive. However, this does not exclude these enzymes as targets for
development of drugs or vaccines.

Abstract: Fasciolosis caused by Fasciola hepatica is a major global disease of livestock and an important
neglected helminthiasis of humans. Infection arises when encysted metacercariae are ingested by
the mammalian host. Within the intestine, the parasite excysts as a newly excysted juvenile (NEJ)
that penetrates the intestinal wall and migrates to the liver. NEJ excystment and tissue penetration
are facilitated by the secretion of cysteine peptidases, namely, cathepsin B1 (FhCB1), cathepsin B2
(FhCB2), cathepsin B3 (FhCB3) and cathepsin L3 (FhCL3). While our knowledge of these peptidases
is growing, we have yet to understand why multiple enzymes are required for parasite invasion.
Here, we produced functional recombinant forms of these four peptidases and compared their
physio-biochemical characteristics. Our studies show great variation of their pH optima for activity,
substrate specificity and inhibitory profile. Carboxy-dipeptidase activity was exhibited exclusively
by FhCB1. Our studies suggest that, combined, these peptidases create a powerful hydrolytic cocktail
capable of digesting the various host tissues, cells and macromolecules. Although we found several
inhibitors of these enzymes, they did not show potent inhibition of metacercarial excystment or
NEJ viability in vitro. However, this does not exclude these peptidases as targets for future drug or
vaccine development.

Keywords: Fasciola hepatica; liver fluke; trematode; flatworm; parasites; cysteine peptidases;
cathepsin L; cathepsin B; drug targets; vaccines
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1. Introduction

Fasciolosis caused by the parasite Fasciola hepatica, or liver fluke, is a food- and
water-borne disease of humans and their livestock. The parasite has a global distribution
and results in major losses to the agricultural community, conservatively placed at EUR
2.5 billion each year, due to the reduced productivity of infected sheep, cattle, water buffalo
and goats [1,2]. Infections of humans are estimated to be between 2.4 and 17 million,
while >180 million people across 70 countries live at risk of infection [3]. Recently, the
disability-adjusted life years (DALYs) for this disease has been estimated at 35,000 per
annum [3,4] and it is now recognised as a major neglected helminth infection by the World
Health Organisation [3].

The parasitic flatworm infects its mammalian host following ingestion of the metac-
ercariae life stage, which is found encysted on vegetation, such as grass or edible aquatic
plants and floating in water. A newly excysted juvenile (NEJ) emerges from the cyst in the
small intestine and quickly penetrates the wall of the intestinal epithelium and surround-
ing tissues to make its way to the liver [5]. Here, the parasite spends about two months
tunnelling and feeding on the liver parenchymal tissue before moving into the bile ducts,
where it establishes a chronic infection, becomes fecund and produces thousands of eggs
each day. These eggs are carried with bile secretions to the intestine and then passed within
the faeces into the external surrounding environment where they fully develop and hatch
to release a miracidium that is infectious to aquatic snails such as Galba truncatula. After a
series of asexual cloning and developmental steps within the snail, the parasites emerge as
cercariae and then settle as encysted metacercariae to complete the cycle [6–8].

Parasites that are resistant to frontline anti-liver fluke treatments, such as triclaben-
dazole, have spread globally, causing concern for the control of the disease, particularly
since there are no commercially available vaccines. For the development of new control
treatments, detailed molecular biological studies are required to identify amenable targets
in the parasite. Recently, much research has focused on the NEJ stage and its means of
invasion, since it is this stage that initiates infection and leads to the more damaging later
developmental stages. Proteomic and transcriptomic studies have revealed the identity
of several peptidases that the NEJ secrete to facilitate infection by breaking down the
molecules, cells and tissues of the intestinal wall [5,9–11]. These peptidases include four
papain-like cysteine peptides, three F. hepatica cathepsins B (FhCBs), termed FhCB1, FhCB2
and FhCB3 [9,12–15], and a cathepsin L, termed FhCL3 [9,16,17].

Structural studies of papain-like cysteine peptidases show that they share a common
fold [18]. Mature enzymes are bi-lobed molecules consisting of two domains with an active
site located in the cleft between them. Substrates bind to the peptidases via a series of active
site subsites (S1, S2, S3, etc.) that determine the specificity of the enzyme. The proteolytic
activity of cysteine peptidases is conferred by the presence of three active site residues,
Cys-His-Asn, known as the catalytic triad, which are part of the S1 subsite [19]. The
carbonyl group of the substrate P1 residue is located in an oxyanion hole next to the active
site cysteine whose thiol group acts as a nucleophile in enzyme–substrate interactions,
while the P1 side chain is orientated outwards toward the solvent. The backbone amides of
the substrate residues at positions P2, P1 and P1′ form a network of hydrogen bonds with
surface residues in the corresponding substrate subsites S2, S1 and S1′ [18,20–24].

The cathepsins B and L are produced as zymogens that possess an N-terminal propep-
tide region that acts as an inhibitor of their cognate peptidase by acting as a ‘clamp’ to
block the peptidase active site. Removal of the propeptide may occur either auto- or
trans-catalytically, at acidic pH [25–27]. We have shown that the cathepsins B and L of
F. hepatica NEJs are located in the gastrodermal cells lining the parasite gut from which
they are secreted into the low pH environment of the gut lumen [9,28,29].

To date, no comparative study of the secreted cathepsins B and cathepsins L from
the infective F. hepatica NEJs has been published. Therefore, in the present study, we
conducted a physio-biochemical characterisation of the endopeptidase activity of the
recombinantly produced FhCB1, FhCB2, FhCB3 and FhCL3 to probe their specificity and
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identify differences and novelties that might help elucidate the roles of these enzymes in
the invasiveness and pathogenicity of F. hepatica.

2. Material and Methods
2.1. Production, Purification and In Vitro Autocatalytic Processing of Recombinant FhCBs
and FhCL3

The recombinant proteins, FhCB1, FhCB2, FhCB3 and FhCL3, were produced in the
methylotrophic yeast Pichia pastoris and isolated from the medium by Nickle-chelate affinity
chromatography as described previously [27]. Autocatalytic activation of recombinant
proenzymes to their mature forms was carried out in C-P activation buffer (0.1 M citrate-
phosphate, 100 mM NaCl and 2 mM DTT, at pH 4.5) supplemented with dextran sulphate
(10 µg/mL) at a concentration of 100 µg/mL at 37 ◦C for 2 h. Activated proteins were
dialysed against phosphate-buffered saline (PBS; Sigma-Aldrich, St. Louis, MO, USA) and
stored at −20 ◦C.

The Schistosoma mansoni cathepsin B1 (SmCB1) was also produced in our laboratory
using P. pastoris as described above. The human cathepsin B (HsCB) and cathepsin L1
(HsCL1) were produced in human embryonic kidney cells (Sigma-Aldrich).

2.2. Assessment of Enzymatic Activity by Fluorogenic Substrate Assay

Recombinant peptidases were assayed for enzymatic activity using a fluorogenic
substrate assay. The reactions were carried out in 0.1 M C-P buffer (pH 7.0) with 1 mM
DTT in a final volume of 200 µL, in a black 96-well plate. Each well contained activated
enzyme (140 nM) and 20 µM fluorogenic substrate, which was added to start the reaction.
All assays were run in triplicate at 37 ◦C for 1 h. Enzyme activity was monitored by
rate of hydrolysis and subsequent release of the AMC group on the synthetic peptide
substrates at an excitation wavelength of 370 nm and an emission wavelength of 460 nm, as
relative fluorescence units (RFU), in a PolarStar Omega Spectrophotometer (BMG Labtech,
Aylesbury, UK). All data were plotted and analysed using MARS Data Analysis Software
(BMG Labtech, UK) and GraphPad Prism version 5.

To determine pH optima for activity, fluorescence assays were performed in 0.1 M C-P
buffer with 1 mM DTT at a range of pH of 3.5–8.0. The fluorogenic substrates used were
Z-Phe-Arg-AMC (for FhCB1 and FhCB3) and Z-Gly-Pro-Arg-AMC (for FhCB2 and FhCL3).

The substrate specificities of the recombinant F. hepatica peptidases were investigated
using a panel of six fluorogenic peptide substrates (Bachem, St Helens, UK), Z-Phe-Arg-
AMC, Z-Arg-Arg-AMC, Z-Leu-Arg-AMC, Z-Gly-Pro-Arg-AMC, Z-Pro-Arg-AMC and
Z-Val-Ile-Arg-AMC in 0.1 M C-P buffer with 1 mM DTT, at the optimum pH for each
peptidase.

To determine the kinetic constants, Kcat, KM and Kcat/KM of the activated peptidases
against the Z-Phe-Arg-AMC, Z-Gly-Pro-Arg-AMC and Z-Val-Ile-Arg-AMC substrates were
used at concentrations of 2000–4 µM over a series of 10 dilutions using enzymes, buffer and
assay conditions as described above. The kinetic constants, KM and Vmax, were calculated
using the Michaelis–Menten equation (Equation (1)) in a non-linear regression analysis of
initial reaction velocity against substrate concentration (built into GraphPad Prism 5). The
value of KM can then be fitted to Equation (2) to determine the catalytic constant Kcat.

ν =
d[P]
dt

=
Vmax[S]

KM + [S]
(1)

where ν is the initial reaction velocity, [P] is the concentration of the formed product, [S] is
the substrate concentration, Vmax is the maximum rate achieved by the system and KM is
the Michaelis–Menten constant, which represents the concentration of substrate at which
the reaction has a rate equal to half of Vmax.

ν =
Kcat[Et]{}[S]

KM + [S]
(2)
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where [Et] is the enzyme concentration and Kcat is the catalytic constant, representing the
measure of substrate molecules converted to product by enzyme per second.

2.3. Determination of Inhibitor Specificity against Recombinant FhCBs and FhCL3

Commercially available inhibitors of cathepsin B (Ca074 and Ca074-OMe), cathepsin
L (L, L1, LII, LIII and LIV), cathepsin K (KI, KII and KIII) and cathepsin S were purchased
from Merck Millipore (Cork, Ireland; Supplementary Figure S2). The broad-spectrum
papain peptidase inhibitor Z-Phe-Ala-FMK was purchased from Enzo Life Sciences (Exeter,
UK). These were used to determine and compare the inhibition constant (Ki) against the
recombinant FhCBs and FhCL3. All the assays were carried out in 0.1 M C-P buffer with 1
mM DTT and 0.01% Brij® L23, at the pH corresponding to the optimum for each enzyme
in a total 200 µL reaction volume. The peptidases (140 nM) were pre-incubated with
the inhibitor (1000-15 nM) at room temperature, for 30 min, before starting the reaction
by the addition of the substrate that was optimal for each enzyme (FhCB1, Z-Phe-Arg-
AMC; FhCB2 and FhCB3, Z-Val-Ile-Arg-AMC; FhCL3, Z-Gly-Pro-Arg-AMC). Substrate
concentrations were equal to KM (shown in Table 1) and the apparent inhibition constant
(Ki

app) values were calculated with GraphPad Prism 5, using the Morrison equation for
tight binding inhibition (Equation (3)). For competitive inhibitors, such as those used
in this study, Ki

app was fitted to a second equation (Equation (4)) from which Ki can be
determined [30].

vi
vo

= 1−
([E]) + [I] + Kapp

i )−
√
([E] + [I] + Kapp

i )
2 − 4[E][I]

2[E]
(3)

Kapp
i = Ki

(
1 +

[S]
KM

)
(4)

Table 1. Kinetics of cleavage of fluorogenic peptide substrates by recombinant FhCBs and FhCL3,
represented by KM (µM), Kcat (s−1) and Kcat/KM (M−1S−1).

Peptidase Z-Phe-Arg-AMC Z-Gly-Pro-Arg-AMC Z-Val-Ile-Arg-AMC

FhCB1
KM 69 ± 5 *
Kcat 1.0 ± 0.2 - -

Kcat/KM 13,596

FhCB2
KM 52 ± 4 71 ± 7
Kcat - 0.4 ± 0.001 0.5 ± 0.004

Kcat/KM 4933 6876

FhCB3
KM 27 ± 2 40 ± 4 42 ± 4
Kcat 0.05 ± 0.007 0.02 ± 0.002 0.1 ± 0.004

Kcat/KM 1708 579 2266

FhCL3
KM 27 ± 2
Kcat - 0.5 ± 0.07 -

Kcat/KM 17,960
* Values are represented ± standard deviation.

2.4. Exo-Carboxypeptidase Activity of Recombinant FhCBs and FhCL3

The exo-carboxypeptidase activity of the FhCBs and FhCL3 was compared with the
activity of the Schistosoma mansoni cathepsin B1 (SmCB1), human cathepsin B (HsCB) and
cathepsin L (HsCL1) (positive controls). The exopeptidase activity was examined using two
fluorescent substrates, Abz-Phe-Arg-Ala-Lys(Dnp)-OH and Abz-Phe-Arg-Ala-Lys(Dnp)-
NH2, where Abz is 2-aminobenzoyl and Dnp is 2,4-dinitrophenyl (Biomatik, Cambridge,
Canada). The peptidases were assayed using a similar protocol to that described above
for measuring endopeptidase activity. The reactions were carried out in 0.1 M C-P buffer,
pH 5.0, with a final substrate concentration of 20 µM. The enzymatic activity of the pep-
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tidases was monitored as RFU, in a PolarStar Omega Spectrophotometer, with readings
taken at excitation and emission wavelengths of 355 nm and 460 nm, respectively.

2.5. Effects of Inhibitors on the Excystment of F. hepatica Metacercariae and Viability of NEJ

F. hepatica metacercariae (Italian isolate; Ridgeway Research, Saint Briavels, UK) were
prepared for excystment as previously described by Robinson et al. [10]. To verify the
effect of the cathepsin peptidase inhibitors on the ability of the metacercariae to excyst, 50
metacercariae per well were placed into a 24-well plate and 1 mL of excystment medium
(0.6% sodium bicarbonate, 0.45% sodium chloride, 0.4% sodium tauroglycocholate, 0.025
N HCl and 0.4% L-cysteine) supplemented with 100 µM of the inhibitor was added to
the well. As controls, we used PBS and dimethylsulfoxide (DMSO, 1:100; Sigma-Aldrich)
alone. The plate was then incubated at 37 ◦C with 5% CO2, for 3 h to allow metacercarial
excystment. Using a light microscope (25× magnification), the number of excysted NEJ
was determined.

NEJ were washed three times in a culturing medium (RPMI-1640 medium supple-
mented with 30 mM HEPES, 0.1% glucose, 10% foetal bovine serum and 50 µg/mL of
gentamicin) and their viability assessed by culturing the parasites in 1 mL of culture
medium containing 100 µM of the inhibitor at 5% CO2 at 37 ◦C for 24 h. After incubation,
the number of moribund/dead parasites were counted using a light microscope (25×
magnification). The criteria used to assess the NEJ viability were loss of motility and
peristaltic movement and any obvious damage to the tegument or internal structures,
as previously standardized by [31]. The experiments were performed in triplicate. The
average of the replicate experimental data was subjected to a two-way ANOVA comparing
the values obtained with each inhibitor against the mean of the DMSO control group, with
minimum 95% confidence intervals. All the statistical analyses were performed using
GraphPad Prism 5.

3. Results
3.1. Production and Isolation of Recombinant F. hepatica FhCB1, FhCB2, FhCB3 and FhCL3

Utilising the yeast P. pastoris system, the recombinant forms of FhCB1, FhCB2, FhCB3
and FhCL3 were produced as zymogens that could be purified to homogeneity using
affinity chromatography at a yield from 5 to 15 milligrams per litre. The peptidases were
resolved in SDS-PAGE, producing bands in the expected molecular weight of ~37 kDa
(Figure 1A). All four proenzymes could be auto-catalytically activated to functional mature
forms under acidic conditions, when incubated in C-P activation buffer with the addition of
dextran sulphate at pH 4.5 (Figure 1B). The mature cathepsin peptidases were demonstrated
to be active enzymes when assayed against fluorogenic peptide substrates (see below).

3.2. pH Dependency of Mature F. hepatica FhCB1, FhCB2, FhCB3 and FhCL3

To first establish the pH dependency of FhCB1, FhCB2, FhCB3 and FhCL3, their
ability to cleave fluorogenic peptide substrates was determined over the pH range 3.5–8.0
(Figure 2). The various mature peptidases displayed optimum activity at different pH
values; FhCB1 and FhCB2 exhibited the greatest enzymatic activity against Z-Phe-Arg-
AMC and Z-Gly-Pro-Arg-AMC, respectively, at pH 5.0. By contrast, both FhCB3 and FhCL3
efficiently cleaved Z-Phe-Arg-AMC and Z-Gly-Pro-Arg-AMC at an optimum pH of 7.0 and
pH 6.5, respectively.

3.3. FhCB1, FhCB2, FhCB3 and FhCL3 Exhibit Distinct Substrate Preference Profiles

The endopeptidase substrate specificity of FhCB1, FhCB2, FhCB3 and FhCL3 was
examined using six different N-terminally blocked fluorogenic peptide substrates at the
optimum pH for each enzyme. Under these conditions, FhCB1 showed a clear preference
for substrates Z-Phe-Arg-AMC and Z-Leu-Arg-AMC (Figure 3A). By contrast, FhCB2
exhibited low activity against these two substrates, while, at the same time, showing a
preference for Z-Gly-Pro-Arg-AMC, Z-Pro-Arg-AMC and Z-Val-Ile-Arg-AMC (Figure 3B).
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FhCB3 displayed a more promiscuous activity, as it hydrolysed all six fluorogenic peptide
substrates examined, although it preferred the substrates Z-Phe-Arg-AMC and Z-Val-
Ile-Arg-AMC (Figure 3C). Surprisingly, all three FhCBs showed relatively weak activity
against Z-Arg-Arg-AMC, a substrate generally considered to show selectivity towards
cathepsins B [32,33].
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Figure 2. pH optima for activity of FhCB1, FhCB2, FhCB3 and FhCL3. The enzymatic activity of the
F. hepatica peptidases was assessed in 0.1 M C-P buffer with 1 mM DTT at a pH range 3.5–8.0 using
the fluorogenic peptide substrates Z-Phe-Arg-AMC [for FhCB1 (A) and FhCB3 (C)] and Z-Gly-Pro-
Arg-AMC [for FhCB2 (B) and FhCL3 (D)]. Activity is represented as percentage activity based on
the pH where the greatest activity was observed. Error bars indicate standard deviation of three
replicates performed in two experiments.
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for each peptidase (see Figure 2). Enzyme activity is represented as relative fluorescent units (RFU/s).
Error bars indicate standard deviation of three replicates performed in two experiments.

FhCL3 exhibited a unique substrate profile compared to FhCB1, -2 and -3; it effectively
hydrolysed Z-Gly-Pro-Arg-AMC (Figure 3D). This peptidase also cleaved Z-Pro-Arg-AMC
but with relatively reduced efficiency, highlighting the importance of Gly in the P3 position
for binding to the enzyme’s active site. FhCL3 also cleaved Z-Leu-Arg-AMC but not
Z-Phe-Arg-AMC.

3.4. Kinetic Analyses of the Enzymatic Efficiency of FhCB1, FhCB2, FhCB3 and FhCL3

The comparative kinetic parameters, KM and Kcat, of the various enzyme–substrate in-
teractions were determined. The substrates employed for these analyses were the substrates
with greater preference for one or more enzymes, as shown in Figure 3: Z-Phe-Arg-AMC
(FhCB1, FhCB3), Z-Gly-Pro-Arg-AMC (FhCB2, FhCB3, FhCL3) and Z-Val-Ile-Arg-AMC
(FhCB2, FhCB3) (Table 1). Based on the terminology derived by Koshland [34], the catalytic
efficiency of the enzyme against each substrate was determined by the ratio Kcat/KM.

The hydrolysis of Z-Phe-Arg-AMC was observed to be the most efficient for FhCB1
(Kcat/KM of 13,596 M−1S−1), which exhibited a value at least eight times greater than that
obtained with FhCB3 (Kcat/KM of 1708 M−1S−1).

The catalytic efficiency of FhCB2 against Z-Gly-Pro-Arg-AMC and Z-Val-Ile-Arg-AMC
was similar (Kcat/KM of 4933 and 6876 M−1S−1, respectively) and more efficient than that
observed for FhCB3 (Kcat/KM of 579 and 2266 M−1S−1, respectively). For both enzymes,
Z-Val-Ile-Arg-AMC was the best peptide substrate.

FhCL3 hydrolysed Z-Gly-Pro-Arg-AMC very effectively with a Kcat/KM value of
17,960 M−1S−1, which is 2.3 and 31 times greater than the ratio obtained with FhCB2 and
FhCB3, respectively.
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3.5. Exo-Carboxypeptidase Activity

The exopeptidase activity of the four recombinant peptidases was assayed against two
fluorogenic exopeptidase substrates, Abz-Phe-Arg-Ala-Lys(Dnp)-OH (Exo-OH) and Abz-
Phe-Arg-Ala-Lys(Dnp)-NH2 (Exo-NH2), designed to span the S2-S2′ subsites of the active
peptidases [35]. Of the four F. hepatica cathepsin peptidases assessed, only the recombinant
FhCB1 cleaved Exo-OH and Exo-NH2; however, this activity was similar to that observed
for SmCB1, but both were relatively low compared with the positive human control, HsCB
(Figure 4).
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Figure 4. Exo-carboxypeptidase activity of FhCB1, FhCB2, FhCB3 and FhCL3. The exopeptidase
activity was examined using two fluorescent substrates, Abz-Phe-Arg-Ala-Lys(Dnp)-OH (Exo-OH)
and Abz-Phe-Arg-Ala-Lys(Dnp)-NH2 (Exo-NH2), where Abz is 2-aminobenzoyl and Dnp is 2,4-
dinitrophenyl. The reactions were carried out in 0.1 M C-P buffer, pH 5.0, with a final substrate
concentration of 20 µM. The exo-carboxypeptidase activity of the FhCBs and FhCL3 was compared
with the activity of the Schistosoma mansoni cathepsin B1 (SmCB1) and human cathepsin B (HsCB),
represented as relative fluorescent units (RFU/s). Error bars indicate standard deviation of three
replicates performed in two experiments.

3.6. Inhibitors Screening against FhCB1, FhCB2, FhCB3 and FhCL3

A panel of 12 commercially available cysteine peptidase inhibitors that preferentially
target mammalian cathepsin B (Ca074 and Ca074-OMe), cathepsin L (L, L1, LII, LIII and
LIV) cathepsin S (S) and cathepsin K (KI, KII and KIII) were screened against the FhCBs,
FhCL3 and, as controls, HsCB and HsCL1. The broad-range cysteine peptidase inhibitor
Z-Phe-Ala-FMK was also included (Figure 5).

Each F. hepatica peptidase displayed a distinct profile against the inhibitors tested.
However, it is noteworthy that the epoxysuccinyl cathepsin B inhibitors, Ca074 and Ca074-
OMe, which we confirmed to be selective for HsCB compared to HsCL1, were poor
inhibitors of all three FhCBs and of FhCL3 (Figure 5). Our studies show that the inhibitory
constants (Ki) were relatively high for these inhibitors against all FhCBs (Table 2). However,
FhCB1, FhCB2 and FhCB3 were most potently inhibited by Z-Phe-Ala-FMK, LII, LIV and
inhibitor S (Ki = 345 nM). The compounds KII and KIII abrogated the activity of FhCB3,
whilst they were only weak inhibitors of FhCB1 and had no effect against FhCB2.
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Figure 5. Profile of inhibition of FhCB1, FhCB2, FhCB3 and FhCL3. Commercially available inhibitors
of cathepsin B (Ca074 and Ca07a-OMe), cathepsin L (L, L1, LII, LIII and LIV), cathepsin K (KI, KII
and KIII), cathepsin S and the broad-spectrum papain peptidase inhibitor Z-Phe-Ala-FMK (A–L)
were used to determine and compare the inhibition constant against recombinants FhCB1, FhCB2,
FhCB3, FhCL3, HsCB and HsCL1. Activity is represented as the percentage of enzymatic activity
observed by hydrolysis of a fluorogenic quenched peptide substrate following a pre-incubation with
inhibitor in relation to the activity of the enzyme alone. Error bars indicate standard deviation of
three replicates.

Compared to the FhCBs, the activity of FhCL3 peptidase was potently abrogated by
the inhibitor KII (Ki = 0.7 nM). In addition, Phe-Ala-FMK, LII and S also strongly inhibited
FhCL3 (Ki =15 nM, 8 nM and 35 nM, respectively).

3.7. Effect of Cysteine Peptidases Inhibitors on F. hepatica Metacercarial Excystment In Vitro

The excystment of F. hepatica metacercariae was examined in the presence of the most
efficient inhibitors, namely, Phe-Ala-FMK, LII, KII, S, Ca074 and Ca074-OMe, each at a
final concentration of 100 µM (Figure 6). In the untreated group (PBS and DMSO control),
the average excystment rate of metacercariae was 73–83%. While most of the inhibitor
compounds just slightly decreased the F. hepatica metacercariae excystment rate, the broad-
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range inhibitor Z-Phe-Ala-FMK was shown to significantly impact excystment by reducing
it by more than 50% (p ≤ 0.005) (Figure 6A).

Table 2. Inhibition constants of various papain-like peptidase inhibitors against recombinants FhCB1,
FhCB2, FhCB3 and FhCL3 represented by the inhibition constant Ki (nM ± SEM).

Inhibitor FhCB1 FhCB2 FhCB3 FhCL3

Z-Phe-Ala-FMK 3 ± 0.20 904 ± 271 246 ± 55.74 15 ± 5.95
LII 7 ± 1.25 1840 ± 77 211 ± 34.84 8 ± 0.60
KII 466 ± 40.59 NI * 227 ± 28.32 0.7 ± 0.19
S 14 ± 2.42 345 ± 18.6 696 ± 94.80 35 ± 2.4

Ca074 7317 ± 934 5930 ± 567.1 540 ± 45.22 603 ± 133.3
Ca074ME 5500 ± 1187 3892 ± 299 785 ± 130.4 249 ± 35.48

* NI—no inhibition.
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Figure 6. Effect of cysteine proteases inhibitors on metacercariae excystment and NEJ survival.
Effects of inhibitors on (A) the excystment of F. hepatica metacercariae and (B) viability of NEJ.
(A) Fifty metacercariae per well were placed into a 24-well plate and 1 mL of excystment medium
supplemented with 100 µM of either inhibitor was added to the well. PBS and dimethylsulfoxide
(DMSO, 1:100) were used as controls. (B) NEJ viability was assessed by culturing the parasites in 1
mL of culture medium containing 100 µM of the inhibitor at 5% CO2 at 37 ◦C for 24 h. Percentage
excystment rate and survival rate were calculated based on the starting number of parasites in each
well. Error bars indicate standard deviation of three replicates. * p > 0.05; ** p > 0.01.

The survival rate of NEJ in culture in the presence of the inhibitors was also examined.
A significant effect was only observed with inhibitor S, which reduced the viability of the
parasites by ~55% compared to the DMSO group (p ≤ 0.001). None of the other inhibitors
tested significantly influenced the survival of this stage of the parasite (Figure 6B).
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4. Discussion

To establish infection in their host, NEJ of F. hepatica must migrate from the intestinal
lumen, through the intestinal wall and to the liver. During this migration the juvenile
parasites encounter several layers of host tissues and various macromolecules that create
physical barriers. Immunolocalisation studies using polyclonal antibodies showed that NEJ
produce copious amounts of FhCBs and FhCLs by the gastrodermal cells of the parasite
gut [36–38]. Their secretion from these cells is critical in parasite virulence, as RNAi-induced
silencing of these peptidases significantly reduces tissue penetration in vitro [36]. However,
it is still unclear whether each peptidase plays similar or distinct roles in virulence. Here,
we comprehensively characterised recombinant forms of the four major NEJ peptidases,
FhCB1, FhCB2, FhCB3 and FhCL3, and show that they displayed major biochemical
differences.

The optimal pH for proteolysis by FhCB1 and FhCB2 was observed at pH 5.0, while
that observed for FhCB3 and FhCL3 was closer to neutral, pH 7.0 and pH 6.5, respectively.
The optimal pH for activity is often indicative of the physiological pH found at the site
of action for a given peptidase; therefore, these results suggest that peptidases function
in different places within the parasite or host [28]. Significantly, the digestive tract of F.
hepatica is maintained at slightly acidic pH, around pH 5.5 [28,39], while the pH of the
host intestinal tract is between 6.0 and 7.4 [40]. This could suggest that FhCB1 and FhCB2
function predominantly in the parasite gut lumen, while FhCB3 and FhCL3 play a more
prominent role in the penetration of the host tissues. Indeed, FhCB3 and FhCL3 are the most
prominent peptidases found in the ES of juvenile parasites maintained in vitro [10,37,41,42].

FhCL3, FhCB2 and, to a lesser extent, FhCB3, showed selectivity toward cleavage of
the substrate, Z-Gly-Pro-Arg-AMC, that is indicative of collagenolytic activity. Orthologous
peptidases of FhCB2 and FhCB3 from F. gigantica, FgCB2 and FgCB3, respectively, were also
shown to digest type I collagen [43]. We have previously reported that FhCL3 exhibits a
similar substrate specificity to the collagenolytic enzyme cathepsin K and likely aids in the
degradation of host tissue in order to facilitate migration of parasite NEJ from the intestinal
lumen to the liver [44]. This present study is the first to indicate that NEJ FhCB2 and FhCB3
may function in concert with FhCL3 to degrade the interstitial matrix of tissues to facilitate
the parasite’s migration through the intestinal wall. However, kinetics studies show that
FhCL3 displays the greatest activity on Z-Gly-Pro-Arg-AMC and its performance constant
was found to be 2.3 and 31 times greater than FhCB2 and FhCB3, respectively.

By contrast to the other three peptidases, FhCB1 showed little activity towards sub-
strates containing a Pro residue at the P2 position, suggesting that this peptidase is not
directly involved with collagen degradation. However, FhCB1 also differed in having very
low activity against Z-Arg-Arg-AMC, a substrate typically cleaved by cathepsins B. Greater
activity was observed for FhCB1 against substrates containing the peptides Z-Phe-Arg-
AMC and Z-Leu-Arg-AMC, indicating a preference for hydrophobic P2 residues, which is
more typical of cathepsin L endopeptidase activity [44]. This unique property may suggest
a distinctive function worth elucidating in the future.

The S2 subsite of the active site of cathepsin B peptidases are of prime importance for
holding substrates in position; these are largely conserved in cathepsin B peptidases (Sup-
plementary Figure S1). Of particular note is the residue Glu316, which, in SmCB1, is found
at the bottom of the S2 subsite and is shown to interact directly with the substrate/inhibitor
P2 residue and change its orientation within the S2 subsite (Glu246 in SmCB) [24]. However,
in FhCB1 and FhCB3, this residue is replaced by the smaller hydrophobic Ile and basic
Arg, respectively, while FhCB2 retains the acidic Glu. This single residue difference has
a significant impact on the substrate specificities of the enzymes as, for example, when
Glu316 was replaced by Gln, in rat cathepsin B, it significantly decreased its ability to
accommodate an Arg residue in its S2 site [45]. Using the substrate Z-Phe-Arg-AMC,
we found that FhCB1 had a value of Kcat (substrate turnover) more than 20 times higher
than that of FhCB3, while this substrate was not cleaved by FhCB2. On the other hand,
both FhCB2 and FhCB3 preferably cleaved Z-Val-Ile-Arg-AMC over all other substrates
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examined, whereas this was a poor substrate for FhCB1. Collectively, these data indicate
major difference in the substrate specificity of the three F. hepatica cathepsin B peptidases.

Cathepsin B peptidases are uniquely characterised by having a flexible loop structure,
termed the occluding loop, which is located at the apical region of the active site cleft and
confers these enzymes with unique carboxy-peptidyl-dipeptidase activity. This activity
brings about the removal of two amino acid residues from the carboxy-terminus of protein
substrates [24,35,46,47]. Deletion of the occluding loop sequence not only obliterates this
exopeptidase activity but also increases the endopeptidase activity of the enzyme [48].
This exopeptidase activity is facilitated by the presence of two neighbouring His residues
in the occluding loop, at positions 110 and 111 (S. mansoni mature cathepsin B1 enzyme
numbering in Jílková et al. [24]; Supplemental material Figure S1), which provides a
positively charged anchor for the C-terminal carboxy group of the substrate. However,
only His110 is thought to be critical for exopeptidase activity, while His111 increases the
positive charge on the loop and increases the binding potential. To hold the occluding
loop in an appropriate conformation for exopeptidase activity, in human cathepsin B, the
His110 forms a salt-bridge interaction with Asp93, which is strengthened by the presence
of His181 [35].

Sequence alignments show that FhCB1, FhCB2 and FhCB3 possess an occluding loop,
but, while these retain His110, they each lack His 111 (Supplemental Material Figure S1).
Absence of this residue has been previously shown to deplete the carboxydipeptidyl activity
of FhCB2 [15], while F. gigantica cathepsin B5, which possesses both His110 and His111,
exhibits exopeptidase activity [49]. Our studies add support to these previous reports by
showing that FhCB2 and FhCB3 do not possess carboxydipeptidyl activity, while FhCB1
exhibits low but significant exopeptidase activity. Of further interest is the fact that the
compounds Ca074 and Ca074-OMe, that specifically bind and inhibit mammalian cathepsin
B by forming H-bonds with His110 and His111 on the occluding loop [21], were very poor
inhibitors of the F. hepatica cathepsins B.

Interestingly, we found that the occluding loops of the F. hepatica and S. mansoni
cathepsins B were not highly conserved. This region only shares 11–23% sequence identity
between the FhCBs, whereas it is generally conserved in cathepsins B from mammalian
species [24]. This unusual non-conserved region could contribute to the lack of carboxy-
dipeptidyl activity found in the F. hepatica cathepsins B and/or could confer unique, so far
undisclosed, exopeptidase activities.

A screen of commercially available cathepsin inhibitors revealed that the three FhCBs
and FhCL3 exhibited distinct inhibition profiles. While the five cathepsin L inhibitors (L, LI,
LII, LIII and LIV) showed specificity for HsCL1 over HsCBs, they exhibited high variability
against the FhCBs and FhCL3, again emphasising the difference between the parasite
enzymes and their mammalian hosts. For example, the epoxysuccinyl peptide inhibitor, L,
which did not inhibit FhCB1 or FhCB2, significantly reduced FhCB3 and FhCL3 activity,
whereas L1, containing a Phe-Phe peptide, was the most effective at blocking FhCB1
and FhCB3 activity. LII, which contains the dipeptide Phe-Tyr, was the most effective
at reducing the enzymatic activity of all F. hepatica peptidases but this compound also
inhibited human cathepsin L and B demonstrating a potent but less specific interaction of
this inhibitor with the parasite and host enzymes.

The mammalian cathepsin K inhibitors (KI, KII and KIII) were generally poor in-
hibitors of FhCB1 and FhCB2 but reduced FhCB3 and FhCL3 activity. This observation
is in agreement with our earlier finding that FhCL3 exhibits cathepsin K-like collagenase
activity [44] and further implies that FhCB3, which can also cleave the substrate Z-Gly-Pro-
Arg-AMC, may collaborate with FhCL3 to perform this activity in vivo. However, despite
the fact that FhCB2 can cleave Z-Gly-Pro-Arg-AMC, it was not inhibited by the KI, KII or
KIII compound.

Detailed kinetics studies were performed with six inhibitors and confirmed the poor
inhibition of all four parasite enzymes with the inhibitors Ca074 and Ca074-OMe. In
general, FhCB1 and FhCL3 were more susceptible to inhibition by cysteine peptidase
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inhibitors than FhCB2 and FhCB3. Nevertheless, we found that the cathepsin L inhibitor,
LII and the broad range inhibitors Z-Phe-Ala-FMK were extremely potent inhibitors of
FhCB1 and FhCL3 with Ki values in the low nM range, <15 nM. The cathepsin S inhibitor,
S, a Phe-Leu dipeptide with a keto-aldehyde (COCHO) group, which has reported Ki
values for inhibition of human cathepsins S and B of 0.185 nM and 76 nM, respectively,
ref. [50] was the next best inhibitor (Ki values of 14 nM and 35 nM for FhCB1 and FhCL3,
respectively).

Our NEJ excystment experiments revealed that the majority of cysteine protease in-
hibitors examined at a 100 µM final concentration had little effect on the ability of the fluke
to emerge from the cysts. The only compound to show significant inhibition of excystment
was Z-Phe-Ala-FMK. Previous studies from our laboratory have shown that a final concen-
tration of 1 mM of this compound completely prevented metacercariae excystment [10].
This suggests that the inhibitors do not readily pass through the metacercarial cyst walls
and supports the suggestion by of Dixon and Mercer [51] that the metacercarial cyst walls
are generally impenetrable to small compounds.

When NEJ were cultured for 24 h with each inhibitor, we observed that most of the
cysteine peptidase inhibitors did not elicit a significant effect on parasite viability. Our
data differ from those of Beckham et al. [15], who reported that the cathepsin B inhibitor,
Ca074-OMe, had a sub-lethal effect on NEJ cultured in a concentration of 6.25 µM. In our
studies, we found that the inhibitor S, an effective inhibitor of FhCBs and FhCL3, was
the only effective flukicide against NEJ within 24 h of in vitro culture. The compound S
belongs to a group of inhibitors known as alpha-keto-beta-aldehydes that contain two
highly electrophilic carbons (α and β) in their C-terminal group that facilitate strong and
irreversible binding to the cathepsin cysteine peptidases [52,53]. However, the potency
and indiscriminate nature of alpha-keto-beta-aldehydes in protease inhibition (since they
also inhibit serine peptidases) may have implications for their toxicity to host biology and
potentially prevent their use as therapeutics.

In summary, we undertook a series of experiments on enzyme–substrate/inhibitor
kinetics and revealed distinct differences in the specificity of the NEJ FhCB1, FhCB2,
FhCB3 and FhCL3. This variation provides evidence for distinct and over-lapping func-
tional roles of the peptidases that would allow the parasite to degrade a multitude of
macromolecular substrates. Investigations into the digestion of protein substrates from
mammalian hosts susceptible to Fasciola infection have shown that NEJ proteinases catalyse
the hydrolysis of gelatin [54,55], collagen [43,44,56], fibronectin [57], serum albumin [12],
immunoglobulins [58] and haemoglobin [28]. Collectively, the data support our hypothesis
that peptidases secreted by juvenile flukes act together as a powerful hydrolytic mix to
facilitate tissue migration through digestion of host tissues, which would otherwise act
as physical barriers to invasion, with complementary functions in feeding and immune
evasion. The blocking of the peptidase activity in vitro did not affect parasite viability, but
this may be because the enzymes predominantly function extra-corporeally. However, we
have previously shown that RNAi-mediated knockdown of FhCL and FhCB expression in
NEJ did prevent the parasites’ migration through the gut wall in culture [36]. Hence, the
blocking of their activities in vivo by chemical or immunological means could still offer a
route towards developing new anti-fluke treatments.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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24. Jílková, A.; Řezáčová, P.; Lepšík, M.; Horn, M.; Váchová, J.; Fanfrlík, J.; Brynda, J.; McKerrow, J.H.; Caffrey, C.R.; Mareš, M.
Structural basis for inhibition of cathepsin B drug target from the human blood fluke, Schistosoma mansoni. J. Biol. Chem. 2011,
286, 35770–35781. [CrossRef] [PubMed]

25. Pritsch, I.C.; Tikhonova, I.G.; Jewhurst, H.L.; Drysdale, O.; Cwiklinski, K.; Molento, M.B.; Dalton, J.P.; Verissimo, C.M. Regulation
of the Fasciola hepatica newly excysted juvenile cathepsin L3 (FhCL3) by its propeptide: A proposed ‘clamp-like’ mechanism of
binding and inhibition. BMC Mol. Cell Biol. 2020, 21, 90. [CrossRef] [PubMed]

26. Groves, M.R.; Coulombe, R.; Jenkins, J.; Cygler, M. Structural basis for specificity of papain-like cysteine protease proregions
toward their cognate enzymes. Proteins 1998, 32, 504–514. [CrossRef]

27. Stack, C.M.; Caffrey, C.R.; Donnelly, S.M.; Seshaadri, A.; Lowther, J.; Tort, J.F.; Collins, P.R.; Robinson, M.W.; Xu, W.;
McKerrow, J.H.; et al. Structural and functional relationships in the virulence-associated cathepsin L proteases of the parasitic
liver fluke, Fasciola hepatica. J. Biol. Chem. 2008, 283, 9896–9908. [CrossRef]

28. Lowther, J.; Robinson, M.W.; Donnelly, S.M.; Xu, W.; Stack, C.M.; Matthews, J.M.; Dalton, J.P. The importance of pH in regulating
the function of the Fasciola hepatica cathepsin L1 cysteine protease. PLoS Negl. Trop. Dis. 2009, 3, e369. [CrossRef]

29. Collins, P.R.; Stack, C.M.; O’Neill, S.M.; Doyle, S.; Ryan, T.; Brennan, G.P.; Mousley, A.; Stewart, M.; Maule, A.G.; Dalton, J.P.; et al.
Cathepsin L1, the major protease involved in liver fluke (Fasciola hepatica) virulence: Propetide cleavage sites and autoactivation
of the zymogen secreted from gastrodermal cells. J. Biol. Chem. 2004, 279, 17038–17046. [CrossRef]

30. Copeland, R.A. Enzymes: A Practical Introduction to Structure, Mechanism, and Data Analysis, 2nd ed.; John Wiley & Sons, Inc.: New
York, NY, USA, 2000; p. 461.

31. Piedrafita, D.; Parsons, J.C.; Sandeman, R.M.; Wood, P.R.; Estuningsih, S.E.; Partoutomo, S.; Spithill, T.W. Antibody-dependent
cell-mediated cytotoxicity to newly excysted juvenile Fasciola hepatica in vitro is mediated by reactive nitrogen intermediates.
Parasite Immunol. 2001, 23, 473–482. [CrossRef]

32. Barrett, A.J.; Kirschke, H. Cathepsin B, cathepsin H, and cathepsin L. Methods Enzymol. 1981, 80 Pt C, 535–561.
33. Barrett, A.J. Fluorimetric assays for cathepsin B and cathepsin H with methylcoumarylamide substrates. Biochem. J. 1980, 187,

909–912. [CrossRef]
34. Koshland, D.E. The Application and Usefulness of the Ratio kcat/KM. Bioorg. Chem. 2002, 30, 211–213. [CrossRef] [PubMed]
35. Krupa, J.C.; Hasnain, S.; Nägler, D.K.; Ménard, R.; Mort, J.S. S2′ substrate specificity and the role of His110 and His111 in the

exopeptidase activity of human cathepsin B. Biochem. J. 2002, 361 Pt 3, 613–619. [CrossRef]
36. McGonigle, L.; Mousley, A.; Marks, N.J.; Brennan, G.P.; Dalton, J.P.; Spithill, T.W.; Day, T.A.; Maule, A.G. The silencing of cysteine

proteases in Fasciola hepatica newly excysted juveniles using RNA interference reduces gut penetration. Int. J. Parasitol. 2008, 38,
149–155. [CrossRef]

37. Cwiklinski, K.; Jewhurst, H.; McVeigh, P.; Barbour, T.; Maule, A.G.; Tort, J.; O’Neill, S.M.; Robinson, M.W.; Donnelly, S.; Dalton,
J.P. Infection by the helminth parasite Fasciola hepatica requires rapid regulation of metabolic, virulence, and invasive factors to
adjust to its mammalian host. Mol. Cell. Proteom. 2018, 17, 792–809. [CrossRef] [PubMed]

38. Creaney, J.; Wilson, L.; Dosen, M.; Sandeman, R.M.; Spithill, T.W.; Parsons, J.C. Fasciola hepatica: Irradiation-induced alterations
in carbohydrate and cathepsin-B protease expression in newly excysted juvenile liver fluke. Exp. Parasitol. 1996, 83, 202–215.
[CrossRef]

39. Stack, C.M.; Donnelly, S.; Lowther, J.; Xu, W.; Collins, P.R.; Brinen, L.S.; Dalton, J.P. The major secreted cathepsin L1 protease
of the liver fluke, Fasciola hepatica: A Leu-12 to Pro-12 replacement in the nonconserved C-terminal region of the prosegment
prevents complete enzyme autoactivation and allows definition of the molecular events in prosegment removal. J. Biol. Chem.
2007, 282, 16532–16543. [PubMed]

40. Fallingborg, J. Intraluminal pH of the human gastrointestinal tract. Dan. Med. Bull. 1999, 46, 183–196.
41. Morphew, R.M.; Wright, H.A.; Lacourse, E.J.; Porter, J.; Barrett, J.; Woods, D.J.; Brophy, P.M. Towards delineating functions within

the fasciola secreted cathepsin l protease family by integrating in vivo based sub-proteomics and phylogenetics. PLoS Negl. Trop.
Dis. 2011, 5, e937. [CrossRef]

42. Di Maggio, L.S.; Tirloni, L.; Pinto, A.F.; Diedrich, J.K.; Yates Iii, J.R.; Benavides, U.; Carmona, C.; da Silva Vaz, I., Jr.; Berasain, P.
Across intra-mammalian stages of the liver fluke Fasciola hepatica: A proteomic study. Sci. Rep. 2016, 6, 32796. [CrossRef]

43. Chantree, P.; Wanichanon, C.; Phatsara, M.; Meemon, K.; Sobhon, P. Characterization and expression of cathepsin B2 in Fasciola
gigantica. Exp. Parasitol. 2012, 132, 249–256. [CrossRef]

44. Corvo, I.; O’Donoghue, A.J.; Pastro, L.; Pi-Denis, N.; Eroy-Reveles, A.; Roche, L.; McKerrow, J.H.; Dalton, J.P.; Craik, C.S.;
Caffrey, C.R.; et al. Dissecting the active site of the collagenolytic cathepsin L3 protease of the invasive stage of Fasciola hepatica.
PLoS Negl. Trop. Dis. 2013, 7, e2269. [CrossRef]

http://doi.org/10.1093/oxfordjournals.jbchem.a021682
http://www.ncbi.nlm.nih.gov/pubmed/9192742
http://doi.org/10.1074/jbc.270.10.5527
http://doi.org/10.1016/0014-5793(96)00309-2
http://doi.org/10.1074/jbc.M111.271304
http://www.ncbi.nlm.nih.gov/pubmed/21832058
http://doi.org/10.1186/s12860-020-00335-5
http://www.ncbi.nlm.nih.gov/pubmed/33287692
http://doi.org/10.1002/(SICI)1097-0134(19980901)32:4&lt;504::AID-PROT8&gt;3.0.CO;2-F
http://doi.org/10.1074/jbc.M708521200
http://doi.org/10.1371/journal.pntd.0000369
http://doi.org/10.1074/jbc.M308831200
http://doi.org/10.1046/j.1365-3024.2001.00404.x
http://doi.org/10.1042/bj1870909
http://doi.org/10.1006/bioo.2002.1246
http://www.ncbi.nlm.nih.gov/pubmed/12406705
http://doi.org/10.1042/bj3610613
http://doi.org/10.1016/j.ijpara.2007.10.007
http://doi.org/10.1074/mcp.RA117.000445
http://www.ncbi.nlm.nih.gov/pubmed/29321187
http://doi.org/10.1006/expr.1996.0067
http://www.ncbi.nlm.nih.gov/pubmed/17403677
http://doi.org/10.1371/journal.pntd.0000937
http://doi.org/10.1038/srep32796
http://doi.org/10.1016/j.exppara.2012.07.011
http://doi.org/10.1371/journal.pntd.0002269


Animals 2021, 11, 3495 16 of 16

45. Hasnain, S.; Hirama, T.; Huber, C.P.; Mason, P.; Mort, J.S. Characterization of cathepsin B specificity by site-directed mutagenesis.
Importance of Glu245 in the S2-P2 specificity for arginine and its role in transition state stabilization. J. Biol. Chem. 1993, 268,
235–240. [CrossRef]

46. Aronson, N.N., Jr.; Barrett, A.J. The specificity of cathepsin B. Hydrolysis of glucagon at the C-terminus by a peptidyldipeptidase
mechanism. Biochem. J. 1978, 171, 759–765. [CrossRef] [PubMed]

47. Musil, D.; Zucic, D.; Turk, D.; Engh, R.A.; Mayr, I.; Huber, R.; Popovic, T.; Turk, V.; Towatari, T.; Katunuma, N.; et al. The refined
2.15 A X-ray crystal structure of human liver cathepsin B: The structural basis for its specificity. EMBO J. 1991, 10, 2321–2330.
[CrossRef]

48. Illy, C.; Quraishi, O.; Wang, J.; Purisima, E.; Vernet, T.; Mort, J.S. Role of the occluding loop in cathepsin B activity. J. Biol. Chem.
1997, 272, 1197–1202. [CrossRef] [PubMed]

49. Siricoon, S.; Vichasri Grams, S.; Lertwongvisarn, K.; Abdullohfakeeyah, M.; Smooker, P.M.; Grams, R. Fasciola gigantica cathepsin
B5 is an acidic endo- and exopeptidase of the immature and mature parasite. Biochimie 2015, 119, 6–15. [CrossRef] [PubMed]

50. Walker, B.; Lynas, J.F.; Meighan, M.A.; Brömme, D. Evaluation of dipeptide alpha-keto-beta-aldehydes as new inhibitors of
cathepsin S. Biochem. Biophys. Res. Commun. 2000, 275, 401–405. [CrossRef]

51. Dixon, K.; Mercer, E. The fine structure of the cyst wall of the metacercaria of Fasciola hepatica. J. Cell Sci. 1964, 3, 385–389.
[CrossRef]

52. Lynas, J.F.; Hawthorne, S.J.; Walker, B. Development of peptidyl alpha-keto-beta-aldehydes as new inhibitors of cathepsin
L—Comparisons of potency and selectivity profiles with cathepsin B. Bioorg. Med. Chem. Lett. 2000, 10, 1771–1773. [CrossRef]

53. Lynas, J.F.; Martin, S.L.; Walker, B. Synthesis and kinetic evaluation of peptide alpha-keto-beta-aldehyde-based inhibitors of
trypsin-like serine proteases. J. Pharm. Pharmacol. 2001, 53, 473–480. [CrossRef]

54. Thorsell, W.; Bjoerkman, N. Morphological and biochemical studies on absorption and secretion in the alimentary tract of Fasciola
hepatica L. J. Parasitol. 1965, 51, 217–223. [CrossRef] [PubMed]

55. Dalton, J.P.; Heffernan, M. Thiol proteases released in vitro by Fasciola hepatica. Mol. Biochem. Parasitol. 1989, 35, 161–166.
[CrossRef]

56. Howell, R.M. Collagenase activity of immature Fasciola hepatica. Nature 1966, 209, 713–724. [CrossRef]
57. Sethadavit, M.; Meemon, K.; Jardim, A.; Spithill, T.W.; Sobhon, P. Identification, expression and immunolocalization of cathepsin

B3, a stage-specific antigen expressed by juvenile Fasciola gigantica. Acta Trop. 2009, 112, 164–173. [CrossRef] [PubMed]
58. Chapman, C.B.; Mitchell, G.F. Proteolytic cleavage of immunoglobulin by enzymes released by Fasciola hepatica. Vet. Parasitol.

1982, 11, 165–178. [CrossRef]

http://doi.org/10.1016/S0021-9258(18)54140-5
http://doi.org/10.1042/bj1710759
http://www.ncbi.nlm.nih.gov/pubmed/666735
http://doi.org/10.1002/j.1460-2075.1991.tb07771.x
http://doi.org/10.1074/jbc.272.2.1197
http://www.ncbi.nlm.nih.gov/pubmed/8995421
http://doi.org/10.1016/j.biochi.2015.10.005
http://www.ncbi.nlm.nih.gov/pubmed/26453811
http://doi.org/10.1006/bbrc.2000.3311
http://doi.org/10.1242/jcs.s3-105.72.385a
http://doi.org/10.1016/S0960-894X(00)00340-1
http://doi.org/10.1211/0022357011775767
http://doi.org/10.2307/3276086
http://www.ncbi.nlm.nih.gov/pubmed/14275211
http://doi.org/10.1016/0166-6851(89)90118-7
http://doi.org/10.1038/209713a0
http://doi.org/10.1016/j.actatropica.2009.07.016
http://www.ncbi.nlm.nih.gov/pubmed/19632187
http://doi.org/10.1016/0304-4017(82)90039-5

	Introduction 
	Material and Methods 
	Production, Purification and In Vitro Autocatalytic Processing of Recombinant FhCBs and FhCL3 
	Assessment of Enzymatic Activity by Fluorogenic Substrate Assay 
	Determination of Inhibitor Specificity against Recombinant FhCBs and FhCL3 
	Exo-Carboxypeptidase Activity of Recombinant FhCBs and FhCL3 
	Effects of Inhibitors on the Excystment of F. hepatica Metacercariae and Viability of NEJ 

	Results 
	Production and Isolation of Recombinant F. hepatica FhCB1, FhCB2, FhCB3 and FhCL3 
	pH Dependency of Mature F. hepatica FhCB1, FhCB2, FhCB3 and FhCL3 
	FhCB1, FhCB2, FhCB3 and FhCL3 Exhibit Distinct Substrate Preference Profiles 
	Kinetic Analyses of the Enzymatic Efficiency of FhCB1, FhCB2, FhCB3 and FhCL3 
	Exo-Carboxypeptidase Activity 
	Inhibitors Screening against FhCB1, FhCB2, FhCB3 and FhCL3 
	Effect of Cysteine Peptidases Inhibitors on F. hepatica Metacercarial Excystment In Vitro 

	Discussion 
	References

