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Abstract: Pneumocystis jirovecii is a fungus responsible for human Pneumocystis pneumonia, one of the
most severe infections encountered in immunodepressed individuals. The diagnosis of Pneumocystis
pneumonia continues to be challenging due to the absence of specific symptoms in infected patients.
Moreover, the standard diagnostic method employed for its diagnosis involves mainly PCR-based
techniques, which besides being highly specific and sensitive, require specialized personnel and
equipment and are time-consuming. Our aim is to demonstrate an optical biosensor methodology
based on surface plasmon resonance to perform such diagnostics in an efficient and decentralized
scheme. The biosensor methodology employs poly-purine reverse-Hoogsteen hairpin probes for
the detection of the mitochondrial large subunit ribosomal RNA (mtLSU rRNA) gene, related to
P. jirovecii detection. The biosensor device performs a real-time and label-free identification of the
mtLSU rRNA gene with excellent selectivity and reproducibility, achieving limits of detection of
around 2.11 nM. A preliminary evaluation of clinical samples showed rapid, label-free and specific
identification of P. jirovecii in human lung fluids such as bronchoalveolar lavages or nasopharyngeal
aspirates. These results offer a door for the future deployment of a sensitive diagnostic tool for fast,
direct and selective detection of Pneumocystis pneumonia disease.

Keywords: Prneumocystis jirovecii; surface plasmon resonance; optical biosensor; clinical diagnosis;
triplex; DNA capture

1. Introduction

Pneumocystis jirovecii is an atypical fungus exhibiting pulmonary tropism responsible for human
Pneumocystis pneumonia (PcP). PcP is one of the most serious and potentially fatal infections
encountered in AIDS patients. However, with the currently rising number of patients receiving
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immunosuppressive therapies for malignancies such as cancer, allogeneic organ transplantations and
autoimmune diseases, PcP is becoming more and more common in non-HIV immunosuppressed
individuals [1]. In fact, PcP remains an important cause of morbidity and mortality worldwide with a
mortality rate for HIV-infected patients ranging between 11 and 53% [2,3].

The clinical presentation of PcP may differ from HIV-infected patients to other
immunocompromised patients, and there are no specific symptoms or signs. Therefore, its diagnosis
continues to be challenging [4]. There is no universally agreed approach to the initial management of
patients with suspected PcP, and many institutions treat patients empirically, while others pursue a
definitive microbiological diagnosis [5].

Traditional diagnosis of PcP relies on clinical and radiological data but confirmation requires
microscopic visualization of the microorganism in stained respiratory specimens since they cannot
be grown in vitro [6]. Typically, the respiratory specimens are obtained using sputum induction or
fiberoptic bronchoscopy with bronchoalveolar lavage (BAL). Sputum induction by inhalation of a
hypertonic saline solution is the quickest and least-invasive method for definitively diagnosing PcP. If
sputum induction is non-diagnostic or cannot be performed, then a bronchoscopy with BAL is the
next step and remains the “gold standard” for diagnosis of PcP [2,4]. Nevertheless, all of the direct
organism visualization methods can lead to false-negative results, consequently, a negative sputum
induction cannot rule out a diagnosis of PcP [7].

On the other hand, Polymerase Chain Reaction-based (PCR-based) techniques have demonstrated
high efficacy to detect P. jirovecii DNA from diverse kinds of clinical specimens (BAL, induced sputum,
expectorated sputum, oropharyngeal or nasopharyngeal aspirates samples (NPA), biopsy specimens) [7,
8]. The sensitivity of the PCR depends on the selected target gene and primers. Nevertheless, a
comparison between PCR-based techniques and a staining method such as immunofluorescence
proved that PCR-based techniques are more sensitive and close-fitting to the histological evidence [9].
Conventional or real-time PCR assays based on the amplification of the mtLSU rRNA gene from the
microorganism are the most commonly used [4,10], but many other sequences have been targeted (major
surface glycoprotein, internal transcribed spacers, thymidylate synthase, dihydrofolate reductase,
heat-shock protein 70, among others) [2,4,7]. However, comparative evaluating studies are difficult
to perform because of different clinical contexts, sampling methods, laboratory reagents or technical
strategies used for DNA extraction, amplification or analysis of results [7]. A concrete limit of detection
has not been reported for PCR techniques due to the lack of standardization, but some publications
consider <10° copies/mL as the limit of detection to diagnostic Pneumocystis pneumonia [9,11].
In addition, these PCR-based techniques are time-consuming and require specialized personnel and
instruments. Identification of patients having PcP and classification into mild, moderate or severe
disease could provide a guide for the choice of the most suitable drug for treatment, as well as assist in
deciding if adjuvant corticosteroids are indicated [12].

Since PcP can be rapidly progressive and the mortality rate remains high, early therapy is essential.
Efforts focused on rapid, portable and low-cost techniques are needed for an early diagnosis, prevention
and clinical response to PcP [4]. In this sense, label-free optical biosensors, and specifically those
based on plasmonic technology, are excellent alternatives as analytical tools with great potential for
point-of-care diagnostics [13,14]. Plasmonic biosensors are characterized by high sensitivity, versatility
and capability for multiplexed detection and miniaturization. They can also be implemented in a
user-friendly scheme, making them very attractive as clinical diagnostic tools. Among plasmonic
biosensors, the surface plasmon resonance (SPR) biosensor is the most matured one and has been
widely commercialized by diverse companies worldwide, and is employed routinely in research
laboratories and in pharmaceutical industries for the study of virtually any type of biomolecular
interaction analysis [14,15]. The sensing mechanism is based on the generation of an optical surface
plasmon by coupling a light to a thin metal layer (usually 45-50 nm thick gold). This optical plasmon
wave generates a strong evanescent field very sensitive to minute refractive index changes at the
surface of a gold sensor chip, such as those generated by the ion interaction of the analyte with
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an immobilized bioreceptor at the sensor surface. These variation in the refractive index produce
an angle or wavelength variation of the reflected light, which is directly related to the amount of
analyte bounded on the bioreceptor surface. SPR has already proven to be an extremely useful tool for
nucleotide analyses [15,16]. In most of the cases, the sensing process is based on the recognition of
single DNA strands by forming a duplex structure with their complementary probe strand, which is
previously attached to the surface of the sensor chip. DNA-based probes can also interact in different
ways with their target molecules. For example, other DNA-based structures such as aptamers adopt a
determined complexion that is able to recognize their corresponding protein analytes [17,18]. Recently,
triplex forming DNA probes have been gaining increasing attention due to their ability to form nucleic
acid triplexes by the association of three nucleic acid strands. They are formed by the addition of a
third strand to a duplex, containing tracks of polypurine-polypyrimidine sequences [19]. The design,
synthesis and use of hairpins for the formation of triplexes in biosensing and gene inhibition have been
recently reviewed [20,21]. A marked enhancement for the detection when using the triplex structure
configuration compared with the conventional duplex approach has been reported, for example, for
the detection of miRNAs for cancer diagnosis [22] or RNAs from Listeria innocua with predicted
secondary structures [23,24]. More recently, polypurine reverse-Hoogsteen hairpins (PPRHs) formed
by two antiparallel polypurine mirror strands have been used as bioreceptors for DNA methylation
analysis using a SPR biosensor [25,26].

We have implemented here a SPR biosensor for the detection of Pneumocystis pneumonia. For that,
we have designed a specific PPRH probe able to detect the mtLSU rRNA gene from Preumocystis jirovecii,
with sensitivities of 2.11 nM. We have demonstrated, for the first time, how our innovative PPRH
probe can capture double-strand DNA (ds-DNA) from lung fluid samples and can diagnose PcP in
a direct, label-free and fast way, without any PCR amplification and using low volumes (50 pL) of
human samples (Figure 1). Our biosensor is demonstrated to be an efficient screening tool of PcP in
a fast, user-friendly and non-invasive way, evidencing its potential to be employed as the preferred
diagnostic solution for PcP diagnosis.
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Figure 1. Surface plasmon resonance (SPR) biosensor methodology for the specific detection of
P. jirovecii. The samples (BAL and NPA) after DNA extraction were injected to the SPR device in which
the PPRH probe is attached above the gold surface of the sensor. Wavelength variation of the reflected
light is directly related to the amount of the analyte bounded to the bioreceptor. (BAL: bronchoalveolar
lavage, NPA: nasopharyngeal aspirates, PPRH: polypurine reverse-Hoogsteen hairpin, 1: Wavelength
correspond to the baseline, 2: Wavelength correspond to target analyte recognition).
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2. Materials and Methods

2.1. Synthesis of the Oligonucleotides

The PPRHs were designed to carry two antiparallel polypurine sequences (green and blue)
complementary to the pyrimidine region of the gene (red) encoding the mitochondrial large subunit
ribosomal RNA of Pneumocystis jirovecii, to form the antiparallel triplex structure. The purine part of
the hairpin is connected head-to-head with the reverse-Hoogsteen sequence using a tetrathymidine
sequence. For biosensing purposes, the oligonucleotides were prepared as described with an additional
15 thymines (T15) and Thiol-Modifier C6 S-S CE Phosphoramidite (Link Technologies, Bellshill, Scotland)
in the 5"-end (Figure 2a). The complementary sequence to form a duplex structure is designed to carry
the polypurine sequence (green) with additional bases complementary to the analyte (red) (Figure 2b).
Finally, a control hairpin was prepared using the same strategy but the polypurine sequence of the
reverse-Hoogsteen has an incorrect sequence (pink) that prevents the formation of a triplex structure
(Figure 2c). Sequences were prepared on an Applied Biosystems 3400 (Applied Biosystems, Foster
City, CA, USA) synthesizer using controlled-pore supports (scale 1uM) according to the protocols of
the manufacturer. Standard protecting groups were used for DNA sequences (AP?, GPY, CB?, T). After
assembling of the sequences, oligonucleotide supports were treated with aqueous ammonia (32%)
for 16 h at 55 °C with 0.1 M DL-Dithiothreitol (DTT). The resulting solutions were evaporated and
used directly.
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Figure 2. Sequences designed for use as bioreceptors in the SPR biosensor for the detection of the mtLSU
rRNA gene of Pneumocystis jirovecii. (a) PPRH-T15SH capture probe recognizes the pyrimidine sequence
of the mtLSU rRNA gene and forms a stable antiparallel triplex structure. (b) Complementary-T;5SH
forms a duplex structure with the pyrimidine sequence of the mtLSU rRNA. (c) Control PPHR-T5SH
forms a duplex with the pyrimidine sequence of the mtLSU rRNA gene.
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2.2. Preparation of the Samples

BAL or sputum specimens as NPA were obtained from patients with PcP or chronic obstructive
pulmonary disease (COPD) admitted to Virgen del Rocio University Hospital (Seville, Spain). DNA
from respiratory specimens was extracted and purified using a Nucleospin Tissue Kit (Macherey-Nagel,
Bethlehem, PA, USA) after digestion with proteinase K at 56 °C and conserved at —80 °C for
further assays.

Detection of P. jirovecii DNA was done using nested-PCR amplification of the Pneumocystis mtLSU
rRNA gene, as described elsewhere [27]. Identification of other fungi was performed, amplifying the
fungal nuclear ribosomal internal transcribed spacer ITS2 region [28] using a semi-nested protocol using
the primers ITS-1(5’-TCCGTAGGTGAACCTGCGG-3’) and ITS-4 (5'-TCCTCCGCTTATTGATATGC-3')
in the first PCR round and ITS-3 (5’- GCATCGATGAAGAACGCAGC-3’) and ITS-4 in the second PCR
round; subsequently, the amplification product was cloned and sequenced. Pseudomonas aeruginosa
presence was checked using conventional PCR targeting the oprL gene using the primers PAO1 S
(5’-ACCCGAACGCAGGCTATG-3') and PAO1 A(5’-CAGGTCGGAGCTGTCGTACTC) [29].

We purified the PCR amplification product (PCR clean up and gel extraction kit of Macherey-Nagel
(Bethlehem, PA, USA) from the first and second round of mtLSU rRNA nested-PCR for
“short-sequence triplex control detection”. In addition, we produced clones of these sequences
using the pGEM-T Easy Vector System (Promega, Madison, WI, USA) in JM109 High Efficiency
Competent Cells selected on Lysogeny Broth (LB)/ampicillin/Isopropyl 3-D-1-thiogalactopyranoside
(IPTG)/5-bromo-4-chloro-3-indolyl-p-D-galactopyranoside (X-Gal) plates, cultivated in LB/ampicillin
medium and plasmid purified with NucleoSpin Plasmid (Macherey-Nagel, Bethlehem, PA, USA). To
linearize vectors, some of the purified plasmids were digested with EcoRI (Promega, Madison, WI,
USA) in buffer H for 1 h at 37 °C and subsequently diluted to the desired concentration.

Pipettes with filters were used in all stages. DNA extraction, preparation of the PCR reaction
mixture, ligation, cloning and sequencing were performed in different areas and under laminar air
flow hoods or PCR workstations. To detect any cross-contamination, all DNA extraction and PCR
reactions were performed with a negative control of sterile water.

2.3. Experimental Procedure for Detection Using the SPR Biosensor

2.3.1. Chemicals

See Appendix A.

2.3.2. SPR Biosensor Device

We utilized a portable custom-made SPR sensor. The device is based on the Kretschmann
configuration and works at a fixed angle of incidence (6 = 70°). The SPR sensor monitors the binding
events in real time by tracking the SPR-wavelength displacements (AA). For more information, see
Appendix B and Figure Al.

2.3.3. SPR Sensor Chips Fabrication and Cleaning

See Appendix C.

2.3.4. Bioreceptor Immobilization

Assays were performed to test the different DNA probes (Figure 2). Each DNA probe was modified
at the 5'-end of the reverse-Hoogsteen track with a thiol group for their attachment to the gold surface
by chemisorption. A Ty5 was included as a vertical spacer to separate the recognition sequence from
the sensor surface and to improve the accessibility of the mtLSU rRNA sequence to the bioreceptor
monolayer [10]. In addition, we used CH3-PEG-SH (2000 MW) as a lateral spacer to minimize steric
hindrance and also to increase the mtLSU rRNA accessibility [25] (Appendix D, Figure A2a).
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Clean gold sensor chips were placed on the biosensor and biofunctionalized via thiol-gold
chemistry. Gold sensor chips were coated in-situ by flowing the immobilization solution through the
sensor flow cell (1 uM DNA bioreceptor with 1 pM CH3-PEG-SH and 1 uM TCEP diluted in PBS
50 mM and previously incubated at 70 °C, 650 rpm for 20 min). During the immobilization process,
thiolated bioreceptors arrange themselves spontaneously into a so-called self-assembled monolayer
(SAM).

Target hybridization was performed at room temperature (RT) and monitored in real time.
Different concentrations of the mtLSU rRNA target (5-200 nM) were diluted in 2.5 X SSC buffer + 5%
fomamide (FA) and injected into the SPR sensor device at a constant flow rate (18 uL-min~1). For more
information about the assay optimization, see Appendix D, Figure A2.

In order to dissociate the hybrids and regenerate the sensor surface to allow the analysis of a high
number of interactions, a solution of NaOH 5 mM was injected for 60 s at the same rate (18 uL-min1).

For the optimization of the evaluation of the real samples, the analysis was performed by flowing
different concentrations of mtLSU rRNA analyte (50-1000 nM) in diethyl pyrocarbonate (DEPC)-H,O
at a constant flow rate (18 uL-min™).

2.3.5. Data Analysis

See Appendix E.
3. Results and Discussion

3.1. PPRH Probe Design

First, we analyzed the mtLSU rRNA gene with the aim of searching for
homopurine-homopyrimidine tracks susceptible to forming stable triplexes using the Triplex-Forming
Oligonucleotide Target Sequence Search Tool of the University of Texas MID Anderson Cancer Center
(Austin, TX, USA) [30]. We found contiguous homopurine-homopyrimidine track sequences with the
restriction of at least ten nucleotides. Two sequences were obtained. The first one was a purine track
target of 13 nucleotides with a single mismatch. The second sequence contained 17 nucleotides, the
maximum for a purine consecutive sequence, with three mismatches. We decided to choose the first
sequence in order to keep the number of mismatches to a minimum.

PPRHs are able to recognize in a sequence-specific manner polypyrimidine analyte sequences
in ds-DNA via Watson-Crick bonds, by producing a triplex structure and strand displacement of
the ds-DNA.

We have designed a PPRH probe consisting of two antiparallel poly-purine domains connected by
a tetra-thymidine loop. The PPRH probe was designed to capture the complementary homopyrimidine
analyte sequence of the fragment of interest. The PPRH is formed by a homopurine strand that
hybridizes the analyte sequence using Watson-Crick hydrogen bonds (WC track) and the inverted
homopurine portion of the oligonucleotide that forms a triplex helix, by reverse-Hoogsteen hydrogen
interactions (RH track). The capture of the analyte pyrimidine sequence using the PPRH produces a
strand displacement of the gene mtLSU rRNA in the region of interest (Figure 3).

Antiparallel triplex formation with the PPRH and the target pyrimidine sequence of the mtLSU
rRNA gene was studied using Circular Dichroism spectrometry (Appendix F, Figure A3) and compared
with duplex. CD of triplex show positive bands at 275 nm with a shoulder at 271 nm and negative
bands at 248 and 210 nm.

The synthesis of the PPRH for biosensing purposes is completed after the reverse-Hoogsteen
homopurine moiety using a sequence consisting of poly-thymidines (T;5) that function as a vertical
spacer between the PPRH and the end thiol functional group for gold sensor surface coupling.

Two control probes were also designed: a duplex containing a complementary sequence to the
analyte pyrimidine in order to form a duplex and a PPRH control that consists of the complementary
sequence and a random sequence instead of the correct reverse-Hoogsteen strand that prevents the
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formation of the triplex. As previously, for biosensor purposes, both oligonucleotides were modified
with a Ty5 vertical spacer and a thiol group.

— mtLSU sequence 3 g’
— RH track T,
— Incorrect RHtrack 5, —~5" / (a) (b) (c)
— WC track i
@ Thiol group [T
5 3 \
5 3
Vertical
spacer (Ts)
-,

Gold sensor
surface

Figure 3. Schematic representation of the mtLSU rRNA gene capture using the PPRH probe, forming
an antiparallel triplex structure. In addition, different bioreceptors employed in the SPR biosensor are
shown: (a) PPRH probe, (b) complementary probe, (c) control PPRH probe. (Colors correspond to
Figure 2).

3.2. Biosensor for the Diagnosis of PcP

We employed the SPR biosensor and the methodology shown in Figures 1 and A1, respectively,
for the diagnosis of PcP. Our specific PPRH probes were attached to the gold sensor surface and were
capable of interacting with the ds-DNA contained in the BAL and NPA lung fluid samples. PPRH
probes identified specifically the mtLSU rRNA gene by forming a triplex structure due to the strand
displacement. The SPR biosensor is very sensitive to refractive index (RI) changes taking place within
the evanescent field (Figure Alb), detecting biomolecular interactions in real time and quantifying
the concentration of DNA in the sample, by observing the wavelength displacement (Figure Alc).
Therefore, in positive samples, the mtLSU rRNA sequence from P. jirovecii will interact with our probe,
producing an increment in the RI and shifting the resonance curve to higher wavelengths. The tracking
of the resonance peak (AA) can be followed, making it possible to detect interactions in real time.

As a first step, we evaluated the selectivity and efficiency of the PPRH probe for the detection
of the mtLSU rRNA sequence by employing a single strand DNA (ss-DNA) of this gene as analyte.
The performance of the PPRH probe was compared with the control duplex formation capture
(complementary probe). In addition, we studied the PPRH control probe in which the triplex could not
be formed properly. To assess the performance of each bioreceptor, they were immobilized in-situ using
a 1:1 ratio (PPRH probe: CH3-PEG-SH) on the sensor surface and we monitored their response to the
flow of samples containing different ss-DNA mtLSU rRNA concentrations, ranging from 5 to 200 nM
in triplicates (Figure 4a). As can be observed in the figure, increasing concentrations generated a sensor
signal with increasing resonance shifts, which demonstrates that the sensor responded to the presence
of mtLSU rRNA in a concentration-dependent way and it can be used for quantitative analyses. The
specificity of the assay was confirmed by evaluating a different sequence with identical length and CG
content (Table 1). The presence of 5% formamide in the hybridization buffer eliminated non-specific
interactions between the PPRH probe and the DNA control sequence, although it is identical in length
and GC content to the mtLSU rRNA sequence (Figure 4b).
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Figure 4. mtLSU rRNA gene detection. (a) Calibration curves of mtLSU rRNA on SSC 2.5 X + 5%
FA buffer. Sensor response represents the mean + SD of three measurements in a PPRH: CH3;-PEG
(1:1) receptor monolayer. (b) Real-time monitoring of the wavelength displacements (AA vs. time)
corresponding to the hybridization of 100 nM mtLSU rRNA analyte and DNA control sequences using
SSC 2.5 X + 5% FA buffer.

Table 1. Nucleotide sequences, length and CG percentage of the employed mtLSU rRNA analyte and
control sequence.

Target Sequence Length GC Content (%)
mtLSU 5-CTGGGCTGTTTCCCTTTC-3’ 18 55.55
Control 5-TTCCGTGGCTGTTCTCCT-3’ 18 55.55

The limit of detection (LOD) for each probe was calculated as the concentration corresponding
to the blank signal plus three times its standard deviation. The LOD of the PPRH was 2.11 nM
(R? =0.9706). LODs calculated from the complementary and the control PPRH were 3.14 nM
(R? = 0.9576) and 4.40 nM (R? = 0.9246), respectively.

According to these results, the triplex helix capture approach enabled a more sensitive detection,
recognizing lower concentrations of ss-mtLSU rRNA analyte by the formation of a triplex helix. The
complementary probe also detected ss-mtLSU rRNA analyte fairly, but the duplex hybridization
achieved through Watson-Crick bonds was not as strong as the link generated by the triplex helix.
Finally, the control PPRH probe showed a poorer performance, achieving the worst limit of detection.
We suggest that the fact of having non-symmetrical two-polypurines sequences (even if one is
complementary and antiparallel to the mtLSU rRNA analyte) avoided the formation of a triplex
helix but might also interfere in the complementary hybridization for the duplex approach with
Watson-Crick bonds.

To corroborate these results, the calibration curves, shown in Figure 4a, and their equations,
described in the data analysis section in Appendix E, have been studied. They not only enable the
sensitivity of the interactions to be evaluated through the limit of detection but also the saturation of
the number of bioreceptors in the sensor surface (Brmax) and their affinity with the analyte (Kd).

Kd and Bmax (Table 2) provide information about the affinity and the number of bioreceptors on
the sensor surface, respectively. The lower equilibrium binding constant implies a faster recognition
event and, hence, a greater affinity between receptor and analyte. Comparing the Kd of each bioreceptor,
there were not substantial differences between the PPRH (Kd = 44.06 nM) and the complementary
probe (Kd = 43.36 nM), therefore, the PPRH probe had a similar capture capability to the duplex for
ss-DNA mtLSU rRNA detection. However, the complementary probe provided a very slightly better
affinity since the recognition only involved the creation of duplex hybrids and not the triplex helix,
which is a more complex structure. In contrast, the control PPRH (Kd = 78.76 nM) achieved the worst
affinity, since it did not generate the triplex helix, although the complementary part was able to detect
the mtLSU rRNA analyte. As previously suggested, the non-symmetrical polypurine sequence in the
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control PPRH could interfere in the recognition between the complementary sequence and the mtLSU
rRNA analyte, deteriorating the interaction. Regarding Bmayx, it has a similar value in all the cases. This
means that the biofunctionalization methodology is reproducible, allowing the attachment of the same
number of bioreceptors on the sensor surface independently of the DNA sequence or configuration.

Table 2. Kinetics parameters, equilibrium binding constant (Kd) and extrapolated maximum
number of bioreceptors in the surface (Bmax), corresponding to the hybridization interaction mtLSU
rRNA analyte—bioreceptor.

PPRH Probe Control PPRH Probe Complementary Probe
Kd (nm) 44.06 78.76 43.36
Bmax (nm/nM) 0.1593 0.1473 0.1306

In addition to an adequate sensitivity, two of the most important requirements of a biosensor device
are the reproducibility and the accuracy. Both parameters were assessed through the coefficient of
variation (CV) intra- and inter-sensor chips (evaluations done using the same SPR functionalized surface
and for different sensor surfaces, respectively) (see Appendix G Table A1). The coefficients of variation
were obtained as the ratio of the standard deviation of the mean, expressed in percentages (% CV). CV
values for the PPRH and complementary probe were close to the maximum variability recommended
for clinical analysis (15%) [31], which reflected a good reproducibility and the suitability of these
bioreceptors for mtLSU rRNA detection. Nevertheless, the inter-sensor chip CV was substantially higher
in the control PPRH case, which reflected the poor accuracy and reproducibility of the control PPRH for
mtLSU rRNA recognition. We conclude that PPRH is the most suitable and appropriated bioreceptor
for mtLSU rRNA detection. In addition, this probe can generate DNA strand displacement, directly
capturing ds-DNA through the formation of the triplex helix, as demonstrated by Huertas et al. [25].

All the results obtained from the calibration curves are shown in Figure 4. The evaluation of the
kinetics parameters (Table 2) and the reproducibility of the assay (Table A1) demonstrated that PPRHs
were the ideal bioreceptors to detect the mtLSU rRNA gene. The capability of PPRHs to create the
triplex helix allowed them to exhibit better sensitivity and similar affinity to the mtLSU rRNA gene
than the complementary probe. Moreover, the property of forming triplex helix was an advantage
compared to the traditional duplex approach since PPRHs were able to capture ds-DNA.

3.3. Analysis of mtLSU rRNA in Patients” Samples

In order to demonstrate the capabilities of the SPR biosensor for clinical analysis, the next step
was the assessment of human samples. As previously described, Pneumocystis jirovecii is involved in
pneumonia, a lung disease, and its presence has been demonstrated in pulmonary fluids [2,4]. Hence,
we employed clinical samples from bronchoalveolar lavage or nasopharyngeal aspirates. DNA from
respiratory samples was extracted, purified and diluted in highly pure water (mili-Q water) in a very
low volume (30-50 uL).

Prior to the assessment of the respiratory samples, we analyzed the effect of water on the sensor
response and the hybridization event. Water could affect the performance of the PPRH probe for
ss-DNA mtLSU rRNA sequence identification. Thus, we monitored PPRH response to samples
containing different ss-DNA mtLSU rRNA concentrations, ranging from 50 to 1000 nM in triplicates
(Figure 5).

As can be observed in Figure 5, the water flowing on the sensor surface generated a decrease in
the real-time sensor signal since water has a value of refractive index less than that of the running
buffer. However, the signal returned, finally, to the baseline, proving that there is no interaction with
the sensor surface or the monolayer, similar to the case of the DNA control (Figure 5a). Regarding
the hybridization event, the absence of salts in these samples could deteriorate the hybridization
event. In Figure 5, we observed that the sensor response increased as the mtLSU rRNA concentration
increased. Therefore, we were able to identify the mtLSU rRNA analyte specifically without non-specific
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interactions. Nevertheless, the hybridization efficiency was hindered due to the absence of salts and
FA. The sensitivity of the SPR biosensor obtained for mtLSU rRNA detection was reduced by five times,
from 2.11 nM to 10.14 nM (R? = 0.9413). Although the sensitivity had been affected, the reproducibility
continued to be extremely adequate, as shown in Table A2, where CV values for inter- and intra-sensor
chips are below or near to 15%.

0.20 —~0.12
LY —— 1000 nM E
E 015 —— 500nM = 0.104
<
=5 100 nM 4
3 0.104 50 nM g 0.081 ¢
@ —— Control c
=
S 0051 — Water S 0.06+
7] (]
2 0.00 2 0.04-
S 5 e~ mtLSU
S -0.05- g 0.02-
[72]
-0.10 5 . ® 0.00 T T T T
o 500 1000 1500 0 250 500 750 1000
Time (s) mtLSU (nM)
(a) (b)

Figure 5. mtLSU rRNA detection. (a) Real-time monitoring of wavelength displacements (AA vs
time) corresponding to the hybridization of different mtLSU rRNA concentrations (1000, 500, 100
and 50 nM, respectively) diluted in water, control DNA and water in a PPRH: CH3-PEG-SH (1:1)
monolayer. (b) Calibration curves of mtLSU rRNA on water using SSC 2.5 X + 5% FA as running buffer.
Sensor response represents the mean + SD of three measurements.

In spite of the decrease in sensitivity due to the sample dissolution in water, we were able to detect
the ss-DNA mtLSU rRNA sequence. Previously to clinical sample evaluation, we also analyzed the
efficiency of PPRH probes for mtLSU rRNA detection in double strand complexions and more complex
DNA structures such as plasmids or ds-DNA fragments. We employed pGEM-T Easy plasmids and
other DNA fragments that contained the mtLSU rRNA sequence (Figure 6).

—~0.15 —~0.8
€ €
£ £
< <
< S 0.6
Q 010' [}
[72] 7]
5 S 0.4-
o o
/2] 7]
2 0.05- o
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Q Q
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P1 P2 P3 P4 P5 F1 F2 F3 F4 F5 P1 P2 P3 P4 P5 P6 D1 D2 D3 D4

() (b)

Figure 6. Detection of mtLSU rRNA gene contained in synthetic pPGEM-T Easy plasmids and DNA
fragments. (a) Sensor signal corresponding to pGEM-T Easy plasmids (P) and ds-DNA fragments (F).
(b) Sensor signal corresponding to pGEM-T Easy plasmids (P) and pGEM-T Easy plasmids digested (D)
by EcoRI enzyme. For all the measurements SSC 2.5 X + 5% FA as running buffer and PPRH: CH3;-PEG
(1:1) monolayers were performed.

The assessment of plasmids and ds-DNA fragments was carried out by flowing all the sample
volume (50 pL) over the sensor surface at a rate of 18 uL-min~!. As shown in Figure 6, the sensor
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signals obtained for plasmid samples are low since the PPRH bioreceptor could not identify the mtLSU
rRNA sequence in pGEM-T Easy plasmids due to their large size and molecular weight (3400 bp)
and their circular conformation, which means complex structures of DNA. These features hindered
the accessibility to the mtLSU rRINA sequence and the strand displacement using PPRH probes.
Nevertheless, PPRH probes were able to detect shorter and linear fragments of ds-DNA, which show
higher sensor responses in Figure 6a. To reaffirm this fact, we digested some plasmids in order to
obtain simpler and shorter DNA structures, and as can be appreciated in Figure 6b, PPRH identified
mtLSU rRNA in digested samples, but it could not hybridize with the gene sequence in whole plasmid
structures. Therefore, the mtLSU rRNA sequence was more accessible due to the simpler conformation
of linear DNA. PPRH probes were able to displace DNA strands and form triplex helix in order to
detect ds-DNA containing the mtLSU rRNA sequence.

As we previously suggested, SPR sensitivity was affected and reduced due to the dissolution
of samples in water. This is also reflected in Table A3, where the SPR biosensor underestimated the
DNA sample concentrations compared to the PCR technique. However, we must stress that the SPR
biosensor was able to detect the presence or absence of mtLSU rRNA in ds-DNA samples, and therefore,
this biosensor could become a very useful tool for clinical diagnosis.

Different clinical patients’ samples of BAL and NPA were evaluated (Figure 7). These clinical
samples included four positive samples for P. jirovecii. In addition, eight control samples positive for
two other different microorganisms (i.e., Pseudomones and Cladosporium) were included. To perform the
assay, DNA was extracted from BAL or NPA samples, purified, dissolved in highly pure water (milli-Q
water), flowed over the biosensor surface at a rate of 18 uL-min~! and measured in real time.

e
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o
t

e
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Microorganism

Figure 7. Analysis of mtLSU rRNA in clinical samples from patients infected by (i) Pseudomones
(n = 4), (ii) Cladosporium (n = 4) and (iii) Pneumocystis (n = 4), performed using the SPR biosensor
biofunctionalized with PPRH: CH3-PEG (1:1) monolayer. Representation of one-way ANOVA test
where median, maximum and minimum values are shown. One-way ANOVA test, p-value = 0.0258.

Figure 7 compares the results obtained for each infection based on the determined statistical
median of the sensor response. The results of the SPR biosensor assessment of the clinical samples
indicated that mtLSU rRNA levels were higher in positive samples compared to negative ones, showing
a significant statistical difference in the expression of mtLSU rRNA between patients infected with
P. jirovecii and the ones infected with others microorganisms such as Cladosporium and Pseudomones
(Figure 7). The positive signal in the SPR biosensor was obtained due to the specific hybridization
of ds-DNA mtLSU rRNA to the PPRH probe at the SPR biosensor surface. An ANOVA test with a
p-value < 0.05 confirmed that mtLSU rRNA from P. jirovecii was detected using the PPRH bioreceptor
specifically, without cross-hybridization with other microorganism sequences.

The most used methods for the detection of P. jirovecii in clinical laboratories include staining and
microscopic detection [6] and PCR-based techniques [7-11]. In this paper we demonstrated that a
direct detection of mtLSU rRNA gene is possible, without any modification, amplification or labelling,
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which is related to pneumonia offset. In addition, the methodology was extremely specific and avoided
cross-reactivity with other microorganisms. Nevertheless, in order to obtain an adequate and precise
quantification of mtLSU rRNA presence in clinical samples, a pre-treatment of the sample should
be performed in order to cleavage the DNA and create shorter fragments, improving mtLSU rRNA
sequence accessibility and increasing the biosensor sensitivity.

4. Conclusions

We have demonstrated the efficiency of a SPR biosensor for the direct and rapid detection of
Pneumocystis pneumonia in human fluid samples without amplification or labelling steps in a reduced
volume (50 pL). Concretely, we employed PPRH probes, which perform a triplex helix approach to
detect ds-DNA, specifically the mtLSU rRNA gene of P. jirovecii. The triplex approach ensured better
and stronger capture of the mtLSU rRNA gene as compared to the traditional approach based on duplex
hybrids through linear DNA probes. The described biosensor methodology allowed mtLSU rRNA to
be detected with a LOD of 2.11 nM and was able to discriminate clinical samples for patients infected
with P. jirovecii from samples infected by other microorganisms such as Pseudomones or Cladosporium.
Nevertheless, more extended studies should be performed to transfer this methodology to a clinical
application. The establishment of cleavage protocols as a pre-treatment step of the samples is required
in order to obtain shorter DNA fragments. The reduction of the DNA length decreases the presence of
complex structures and creates linear fragments, facilitating the accessibility of mtLSU rRNA to the
PPRH probes. Thus, the sensitivity of the SPR biosensor for the detection of P. jirovecii would improve
and similar DNA quantification values would be obtained compared to conventional techniques such
as PCR-based ones.

Our SPR biosensor was demonstrated to be an effective and potential tool for PcP clinical diagnosis
in a rapid, label-free and user-friendly way. By reducing diagnosis time, it would allow an early clinical
response, stopping illness progression and decreasing the mortality rate. It could be being used as the
dearest diagnostic tool for PcP diagnosis.
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Appendix A

Chemicals

Organic solvents for sensor chip cleaning (acetone and ethanol) were purchased from Panreac
(Barcelona, Spain). All the buffer compounds, PBS 50 mM (50 mM phosphate buffer, 0.75 M
NaCl, 2 mM ethylenediaminetetraacetic acid (EDTA), pH 7), 2.5 X SSC (Saline-sodium citrate
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buffer) (0.375 M NaCl, 0.0375 M sodium citrate, 2 mM EDTA, pH 7), diethyl pyrocarbonate (DEPC)
and formamide (FA) were purchased from Sigma-Aldrich (Steinhem, Germany). Bond-Breaker™
TCEP Solution was purchased from ThermoFisher (Waltham, MA, USA). Thiol-polyethylene glycols
(SH-PEGs) with functional groups (amine (-NH2), methyl (-CH3) and carboxyl (-COOH)) were
purchase from Laysan Bio (Arab, AL, USA).

All the buffers and other solutions for DNA detection were prepared using DEPC-H,O (MilliQ
water incubated overnight with 0.1% DEPC and autoclaved for 1 h at 121 °C). All solid plastic and
glass materials were autoclaved for 1 h at 121 °C.

Appendix B

Portable Custom-Made SPR Biosensor

Plasmonic sensor chips were clamped between a trapezoidal glass prism through refractive index
(RI) matching oil (n = 1.512) and a custom made flow cell, in such a way that the sensing area of
the gold sensor chip is in contact with the flow cell. The flow cell is connected to a microfluidics
system consisting of a syringe pump (Darwin microfluidics, Paris, France) with an adjustable pumping
speed that provides a constant liquid flow and a manually operated injection valve (CHEMINERT®,
VICI, Houston, TX, USA). The sensor surface is excited using a collimated halogen light source set
(THORLABS, Newton, NJ, USA) in TM polarization. The polarized light reaches the substrate at a
fixed angle of incidence (6 = 70°) through the prism coupling, generating an evanescent field at the
sensor surface which is very sensitive to refractive index changes. The reflected light is collected
and fiber-coupled to a CCD spectrometer (Flame, Ocean Optics, Largo, FL, USA), which provides
real-time evaluation of the RI changes (Figure Ala,b). Biomolecular interactions occurring at the gold
sensor surface result in an increment in the mass, which translates to an increase in the RI (shifting the
resonance curve to higher wavelengths), whereas desorptions decrease the RI on the sensor surface,
shifting the curve to lower wavelengths. The tracking of the resonance peak (AA) can be followed
in real time via polynomial fit using a home-made readout software, making it possible to detect
interactions or desorptions in real time (Figure Alc).
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Figure Al. Custom-designed SPR biosensor. (a) Photograph of the experimental SPR set-up. (b) Scheme
of the sensing principle of a SPR biosensor. (¢) Graph showing the displacement of the resonance peak
(AA) to RI changes (photon vs. A (nm)). Real-time monitoring of wavelength displacements (AA vs.
time (s)).

Appendix C

SPR Sensor Chips Fabrication and Cleaning

Fabrication of the gold sensor chips was done using electron-beam deposition. Glass surfaces
were coated with titanium (Ti) and gold (Au), 1 nm and 49 nm, respectively. Before use, plasmonic
sensor chips were cleaned by consecutive heating at 80 °C and sonicating for 1 min with solvents of
increasing polarity (i.e., acetone, ethanol and MilliQ water). Then, the sensor chips were dried with a
N flow and placed in an oxygen plasma chamber (Diener Electronics, Ebhausen, Germany) for 2 min.
The sensor chips were finally rinsed with ethanol and dried with N, flow.

Appendix D

Bioassay Optimization
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Figure A2. Optimization of the methodology for selective detection of the mtLSU rRNA gene.
(a) Detection signals obtained by employing different surface SAMs in the immobilization of PPRH
probes. (b) Effect of changes in the ionic strength of the hybridization buffer on the mtLSU
rRNA recognition using PPRH probes. (c) Formamide effect in the cross-hybridization response
of PPRH probes.
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Appendix E

Data Analysis

The sensor data were analyzed and processed using Origin 8.0 software (OriginLab Northampton,
MA, USA, 2007). Bioanalytical chemistry analysis was performed using Graphpad Prism (Graphpad
Software 7, Inc., San Diego, CA, USA, 2016). Calibration curves were obtained by evaluating different
concentrations of the analyte in triplicate. The mean and standard deviation (SD) of AA was plotted
versus analyte concentration. The data was fitted to the following one-site specific binding equation:
y = B}?;f}'(x, where y is the sensor response, X is the concentration of the target analyte, Bmax is
the extrapolated maximum number of bioreceptors in the surface and K4 is the equilibrium binding
constant, which corresponds to the analyte concentration needed to achieve half-maximum bioreceptors

occupied at equilibrium.

Appendix F

Circular Dichroism (CD) Spectrometry

Antiparallel triplex formation was assessed using circular dichroism in 10 mM sodium cacodylate,
50 mM MgCl, pH 7.0 buffer.
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Figure A3. CD spectra of duplex (Compl + ss-DNA mtLSU target) and antiparallel triplex (PPRH +
ss-DNA mtLSU target).

Appendix G
Reproducibility and Accuracy

Table Al. Variability of the SPR sensor signal intra- and inter-assays for mtLSU rRNA detection.
The mean + SD are from three replicates performed in the same or different biofunctionalized sensor
chips, respectively.

Intra-Chip
Conc(el;v[tr)ation PPRH Probe Control PPRH Probe Complementary Probe
n
Mean + SD o Mean + SD o Mean + SD o
=3) % CV =3 % CV =3 % CV
100 0.126 + 0.021 16 0.084 + 0.010 12 0.095 + 0.001 1
50 0.077 £ 0.014 18 0.050 + 0.006 12 0.062 + 0.010 11
25 0.038 + 0.007 18 0.039 + 0.002 5 0.048 + 0.001 2
10 0.026 + 0.002 8 0.025 + 0.003 12 0.031 £ 0.01 36

LOD 2.852 + 0.460 16 4.217 + 0.583 14 3.139 + 0.239 8
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Intra-Chip
Conc(erll\tllr)ation PPRH Probe Control PPRH Probe Complementary Probe
n
Mean + SD o Mean + SD o Mean + SD o
n=3) % CV =3 % CV =3 % CV
Inter-chip

100 0.120 £ 0.007 6 0.095 + 0.023 24 0.097 + 0.004 4
50 0.081 + 0.005 6 0.070 + 0.0003 0.5 0.061 + 0.002 3
25 0.045 £ 0.013 28 0.024 + 0.001 4 0.036 + 0.016 44
10 0.027 + 0.006 22 0.015 + 0.005 33 0.025 + 0.007 28
LOD 1.945 + 0.270 14 3.581 +1.320 37 3.360 £ 0.313 9

Table A2. Variability of the SPR sensor signal intra- and inter-assays for mtLSU rRNA detection

using PPRH probe. The mean + SD are from three replicates performed in the same or different

biofunctionalized sensor chips, respectively.

A Intra-Chip Inter-Chip
Concentration
(M) Mean & SD % CV Mean + SD % CV Mean + SD % CV
(n=23) - (n=3)
1000 0.101 + 0.0028 3 0.120 + 0.0021 2 0.111 + 0.0134 12
500 0.081 + 0.0049 6 0.085 + 0.0049 6 0.083 + 0.0028 3
200 0.076 + 0.0035 5 0.070 + 0.0092 13 0.073 + 0.0042 6
100 0.054 + 0.0014 3 0.046 + 0.0042 9 0.050 + 0.006 11
LOD 10.17 + 0.6901 7 13.90 + 0.6951 5 12.036 + 2.642 22

Table A3. Sensor response for synthetic pPGEM-T Easy plasmids (P) and other fragments (F) that

contained the mtLSU rRNA sequence. Estimated concentrations evaluated with the SPR biosensor and

comparison with PCR concentrations.

Sensor Response Estimated
Sample AA (nnf) Concentration (ng/uL) PCR (ng/uL)
F1 0.084 2.773 5ng/ulL
F2 0.127 4.193 10 ng/uL
F3 0.125 4.127 10 ng/uL
F4 0.067 2.212 5ng/uL
F5 0.058 1.915 5ng/uL
P1 0.019 0.627 3.69 ng/uL
P2 0.015 0.485 3.69 ng/uL
P3 0.021 0.693 3.69 ng/uL
P4 0.018 0.594 3.69 ng/uL
P5 0.019 0.627
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