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Abstract: Lysine succinylation is a form of posttranslational modification of the proteins that play an
essential functional role in every aspect of cell metabolism in both prokaryotes and eukaryotes. Aside
from experimental identification of succinylation sites, there has been an intense effort geared towards
the development of sequence-based prediction through machine learning, due to its promising and
essential properties of being highly accurate, robust and cost-effective. In spite of these advantages,
there are several problems that are in need of attention in the design and development of succinylation
site predictors. Notwithstanding of many studies on the employment of machine learning approaches,
few articles have examined this bioinformatics field in a systematic manner. Thus, we review the
advancements regarding the current state-of-the-art prediction models, datasets, and online resources
and illustrate the challenges and limitations to present a useful guideline for developing powerful
succinylation site prediction tools.

Keywords: lysine succinylation; sequence analysis; machine learning; tool development;
feature descriptor

1. Introduction

Lysine succinylation is an evolutionarily conserved posttranslational modification (PTM) known
to be involved in the regulation of diverse cellular process [1–7]. The succinylation process modifies a
target protein with a succinyl group (–CO–CH2–CH2–CO2H), which is transmitted from succinyl-CoA
to the specific α-amino group of a lysine residue [8–12]. The succinylation firstly was discovered in
histone protein [13], and its regulatory role has been examined through the gene expression regarding
chromatin reorganization [14–16]. Nevertheless, the published studies have provided little information
regarding the enzyme which catalyzes histone lysine succinylation [17–19]. In fact, it is unclear
whether this reaction is enzymatic or not [8,9,20]. In addition to histones, the succinylated proteins
were found in the cytoplasm, nucleus, and mitochondria [7,21–24], indicating that lysine succinylation
controls a variety of biological functions [14,18,25,26]. Lysine succinylation in HeLa cells induced
different diseases via histone proteins, including UV-induced stress and cancer [12,27–34]. Therefore,
identification of succinylation sites is a key to understanding the functional proteins.

A few years ago lysine succinylation was identified as a protein modification [2,3,25]. This
modification can make notable alterations in protein function and structure regulation [3,13,35–37].
It can also participate in regulating many biological processes such as calorie restriction and
metabolisms [38–44]. The identification of protein succinylation sites is a crucial topic in cellular
pathology and physiology, which may provide valuable information for biomedical research and drug
development. In recent years, high-throughput methods with mass spectrometry and succinylation
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enrichment analysis have been extensively implemented to identify lysine succinylation in several
organisms [1,2,7,22,25,37,45–49]. A large-scale protein lysine-succinylated sites have been verified by
experimentally in both prokaryotes [7,24,50,51] and eukaryotes [2,24,25,47]. Despite great advances
through experimental investigation, the conventional experimental approaches are still difficult and
time-consuming tasks [5,7,44,52,53]. Computational methods for succinylation site prediction are
highly needed before experimental validation.

Our objective is to provide the useful and practical guidelines for the prediction of protein
succinylation and to illustrate which predictor performs the best, whether the existing prediction
model can be improved, and which features significantly contribute to prediction accuracy. We have
assessed the performance of two different statistical methods: support vector machine (SVM) and
random forest (RF) with five major types of descriptors. We also assess the performances of the
individual and combined features with statistical significance tests, illustrating their contribution to
the prediction accuracy. A synopsis of the existing computational approaches for lysine succinylation
prediction is presented in Figure 1.
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2. Existing Prediction Models

Nowadays, several machine learning-based predictors have been employed to identify
succinylation sites [54–70]. The SucPred [54] is the first succinylation site predictor, which was
established by Zhao et al. in 2015 through different encoding descriptors, including position amino
acids weight composition, van der Waals volume normalized, grouped weight-based encoding, and
auto-correlation functions, via SVM. By using SVM, Xu et al. developed iSuc-PseAAC [55] that
implemented a composition of pseudo-amino acids (PseAAC) scheme. The SuccFind [56] predictor
was established by Xu et al. which considered several amino acid-based composition encodings,
including amino acid composition (AAC), k-space amino acid pairs (CKSAAP), and amino acid
index (AAindex) through a feature selection algorithm. Two prediction tools of iSuc-PseOpt [70] and
pSuc-Lys [61] were constructed by Jea et al., based on the PseAAC descriptor via a RF classifier. The
SucStruct [58] and Success [67] predictors were developed by Lopez et al. based on the secondary
structure-based features (SF) with decision trees (DT) algorithm. Dehzang et al. constructed two
prediction tools of PSSM-Suc [57] and SSEvol-Suc [66] with a DT classifier by using evolutionary-
and sequence-based features [67,68]. Hasan et al. developed the SuccinSite [59], SuccinSite2.0 [62],
and GPSuc [65] predictors with the RF classifiers by integrating multiple sequence features. The
SuccinSite2.0 [62] and GPSuc [65] predictors implemented different species-specific classifiers and
integrated them. Until now, the GPSuc is one of the most updated predictors. On the other hand,
abovementioned existing methods differ in various aspects, such as training and test datasets used,
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sliding window sizes and algorithms preferred, a ratio of positive versus negative samples, categories
of sequence features encoded, and generality of whether the predictive classifiers are universal or
species-specific. In addition, there have been distinct differences in terms of practical aspects of
the web server implementation, adjustability of prediction inflexibility thresholds, support of batch
predictions and computational efficiency. With various succinylation site predictors becoming available,
comprehensive comparison of the strengths and weaknesses of them are essential. This comparison
may reveal difficulties and guide improvement toward efficient succinylation site predictors.

A lot of focus has been placed on research of protein succinylation with an increase in
databases [59,71,72]. The SuccinSite database records 4411 experimentally identified succinylation
proteins with 12,456 lysine succinylation sites for different species [59]. It should, however, be
noted that the succinylation proteins overlap with other modifications due to some exhibiting dual
properties. Recently many studies have suggested that lysine succinylation extensively overlaps with
acetylation [25,27,42,63,68,73–76].

To date, 12 methods were analyzed, i.e., SucPred [54], iSuc-PseAAC [55], SuccFind [5,6],
iSuc-PseOpt [70], pSuc-Lys [61], SucStruct [58], PSSM-Suc [57], SuccinSite [59], SSEvol-Suc [66],
SuccinSite2.0 [62], Success [67], and GPSuc [65] (Table 1., The SucPred used highly unbalanced (i.e.,
1436 positive and 18,958 negative samples) training datasets, derived from the CPLM (http://cplm.
biocuckoo.org) database [71]. For testing models, they used 250 positive samples but did not consider
any negative samples. The pSuc-Lys, iSuc-PseAAC, and iSuc-PseOpt used 1167 positive and 3553
negative samples as the training dataset from the CPLM database but did not consider any independent
datasets. The SucFind used 2713 positive and 23,598 negative samples as the training dataset from the
CPLM database but did not consider any independent sets. The PSSM-Suc used 1782 positive and
1872 negative samples as the training dataset but did not consider any independent samples. The
Success [67], SucStruct [58] and SSEvol-Suc [66] used a balanced training dataset (1782 positive and
1872 negative samples) from the CPLM database but did not consider any independent samples. In
addition, few existing predictors have updated the latest datasets [59,65].

3. Datasets Collection and Preparation

Positive and Negative Samples

Generating the positive and negative samples from the protein sequences is an important step
for lysine succinylation sites prediction. Usually, the positive samples were collected based on the
experimentally verified lysine (K) residues. The sequence window strategy was applied to construct
the positive samples. The fragment windows were the sequences of the peptide with a lysine residue
to be succinylated in the center. To accurately predict succinylation sites, analysis of flanking residues
in the window fragment is important, because a very small number of residues would miss valuable
evidence and a large number of them may introduce unavoidable redundancy. For example, to select
the window fragments of 31 (±15), the length of the full sequence of proteins was inputted; for the
fragment window model, a window size of 31 was fixed so that the lysine residue is centered (Figure 2).
Most of the researchers have tested different window fragments to enhance predictive performance in
succinylation site prediction (Table 1).

http://cplm.biocuckoo.org
http://cplm.biocuckoo.org
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Table 1. Summary of the reviewed predictors for lysine succinylation sites.

Tools SucPred iSuc-PseAAC SuccFind iSuc-PseOpt pSuc-Lys SucStruct PSSM-Suc SuccinSite SuccinSite2.0 SSEvol-Suc Success GPSuc

Species Generic Generic Generic Generic Generic Generic Generic Generic Generic and
Species-specific Generic Generic Generic and

Species-specific

Web-server link
http://59.73.
198.144:8088/

SucPred/

http:
//app.aporc.

org/iSuc-
PseAAC/

http://bioinfo.
ncu.edu.cn/

SuccFind.aspx

http:
//www.jci-
bioinfo.cn/

iSuc-PseOpt

http://www.
jci-bioinfo.

cn/pSuc-Lys

https://
github.com/
YosvanyLopez/

https://
github.com/
YosvanyLopez/

PSSM-Suc

http:
//systbio.

cau.edu.cn/
SuccinSite/

https:
//biocomputer.

bio.cuhk.edu.hk/
SuccinSite2.0/

https://
github.com/
YosvanyLopez/
SSEvol-Suc

https://
github.com/
YosvanyLopez/

Success

http://
kurata14.bio.
kyutech.ac.
jp/GPSuc/

Working server No Yes No No No No No Yes Yes No No Yes

Machine learning SVM SVM SVM RF RF DT DT RF RF AdaBoost SVM RF and LR

Dataset size
(Protein/succinylated) 897/2511 896/2521 1044/2938 896/2521 896/2521 670/1782 670 / 1782 2322/5004 2322/5004 670/1782 670/1782 2322/5004

Training (Pos/Neg) 1436/18,958 1167/3553 2713/23598 1167/3553 1167/3553 1782/1872 1782/1643 4750/9500 4750/9500 1782/1872 1782/1872 4750/9500

Independent
(Pos/Neg) 250/- - - - - - - 254/2977 254/2977 - - 254/2977

Homolog
redundancy 35% 40% 30% 40% 40% 40% 40% 30% 30% 40% 40% 30%

Window size from −9 to
+9

from −7 to
+7 from −10 to +10 from −15 to

+15
from −15 to

+15
from −15 to

+15
from −15 to

+15
from −13 to

+13 from −20 to +20 from −15 to
+15

from −15 to
+15

from −20 to
+20

Adjusted batch
prediction NO No No No No No No Yes Yes No No Yes

Processing time for
a protein - Within 20 s - - - - - Within 20 s Within 5 min - - Within 5 min

http://59.73.198.144:8088/SucPred/
http://59.73.198.144:8088/SucPred/
http://59.73.198.144:8088/SucPred/
http://app.aporc.org/iSuc-PseAAC/
http://app.aporc.org/iSuc-PseAAC/
http://app.aporc.org/iSuc-PseAAC/
http://app.aporc.org/iSuc-PseAAC/
http://bioinfo.ncu.edu.cn/SuccFind.aspx
http://bioinfo.ncu.edu.cn/SuccFind.aspx
http://bioinfo.ncu.edu.cn/SuccFind.aspx
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/iSuc-PseOpt
http://www.jci-bioinfo.cn/pSuc-Lys
http://www.jci-bioinfo.cn/pSuc-Lys
http://www.jci-bioinfo.cn/pSuc-Lys
https://github.com/YosvanyLopez/
https://github.com/YosvanyLopez/
https://github.com/YosvanyLopez/
https://github.com/YosvanyLopez/PSSM-Suc
https://github.com/YosvanyLopez/PSSM-Suc
https://github.com/YosvanyLopez/PSSM-Suc
https://github.com/YosvanyLopez/PSSM-Suc
http://systbio.cau.edu.cn/SuccinSite/
http://systbio.cau.edu.cn/SuccinSite/
http://systbio.cau.edu.cn/SuccinSite/
http://systbio.cau.edu.cn/SuccinSite/
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/
https://biocomputer.bio.cuhk.edu.hk/SuccinSite2.0/
https://github.com/YosvanyLopez/SSEvol-Suc
https://github.com/YosvanyLopez/SSEvol-Suc
https://github.com/YosvanyLopez/SSEvol-Suc
https://github.com/YosvanyLopez/SSEvol-Suc
https://github.com/YosvanyLopez/Success
https://github.com/YosvanyLopez/Success
https://github.com/YosvanyLopez/Success
https://github.com/YosvanyLopez/Success
http://kurata14.bio.kyutech.ac.jp/GPSuc/
http://kurata14.bio.kyutech.ac.jp/GPSuc/
http://kurata14.bio.kyutech.ac.jp/GPSuc/
http://kurata14.bio.kyutech.ac.jp/GPSuc/
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Figure 2. Window selection procedure for generating positive and negative samples.

To generate a set of fragment windows that are regarded as negative samples are very challenging.
There is no standard method to generate the negative samples. Researchers typically considered
the experimentally identified succinylated lysines as positive samples, while they regarded all the
remaining lysine residues as negative instances. Nonetheless, some negative samples may be positive
are generated by experimental errors, which decreases prediction accuracy.

Recently thousands of succinylated proteins and their sites have been identified experimentally
from diverse species including Homo sapiens (H. sapiens), Saccharomyces cerevisiae (S. cerevisiae),
Mus musculus (M. musculus), Toxoplasma gondii (T. gondii), Histoplasma capsulatum (H. capsulatum),
Mycobacterium tuberculosis (M. tuberculosis), Escherichia coli (E. coli), Solanum lycopersicum (S.
lycopersicum), and Triticum aestivum (T. aestivum) [7,22,37,47,59]. To examine the species-specific
datasets, we collected the datasets of nine species and removed redundant sequences with a
30% similarity cutoff using CD-HIT [77] and recorded them at http://kurata14.bio.kyutech.ac.jp/
GPSuc [65]. A statistic of the training and independent datasets is shown in Table 2.

Table 2. Statistics of the positive and negative samples of nine species-specific datasets used in
this study.

Species Datasets Positive Samples Negative Samples

H. sapiens Training 1351 2702
Independent 54 2004

M. musculus
Training 414 828

Independent 24 679

E. coli
Training 1942 3884

Independent 289 1381

M. tuberculosis
Training 699 1398

Independent 61 242

S. cerevisiae
Training 961 1922

Independent 90 1423

T. gondii Training 282 564
Independent 26 261

S. lycopersicum Training 242 484
Independent 33 274

A. capsulatus Training 332 664
Independent 50 591

T. aestivum
Training 113 226

Independent 32 309

http://kurata14.bio.kyutech.ac.jp/GPSuc
http://kurata14.bio.kyutech.ac.jp/GPSuc
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4. Algorithms of Predicting Lysine Succinylation Site

Many machine learning algorithms such as RF, SVM, adaptive boosting (AdaBoost), and DT have
been employed to predict succinylation sites, while the two machine learning algorithms of SVM
and RF are intensively used (Table 1). Employed machine learning algorithms are briefly explained
as follows.

4.1. Random Forest

In protein bioinformatics research, RF is a well-established and extensively used machine learning
algorithm [62,65,78,79]. RF works as a collective and supervised decision classifier, which ‘votes’ for
one of the two classes, either positive or negative samples. The RF algorithm is very straightforward
and does not produce any bias results. However, it is necessary to select the optimum number of
decision trees. In this review, to examine the selected, individual descriptors, we used 1000 decision
trees via 5-fold cross-validation (CV) test to validate the method performances by using a package of R
software (https://cran.r-project.org/web/packages/randomForest/).

4.2. Support Vector Machine

SVM is another machine learning algorithm and broadly used in protein bioinformatics
research [54–57,80]. Various kernel function including the linear/polynomial/sigmoid and Gaussian
radial basis function were used to develop SVM models. A critical point is the optimization
of parameters. Prior to model construction, it is recommended to optimize SVM parameters,
which affect the prediction performance dramatically. In this review, we used the SVMlight

(http://svmlight.joachims.org) package to examine the individual features with default parameters.

4.3. Adaptive Boosting

AdaBoost works as a meta-classifier that is frequently used to classify binary samples [66]. This
algorithm iteratively adjusts weight values to decrease the misclassified samples until the weight
values do not change.

4.4. Decision Trees

DT is a non-parametric machine learning approach and generates logical diagrams by learning
specific rules [57,58]. On the other hand, DT sometimes causes biased prediction for high
dimensional datasets.

5. Motif Conservation of Species-Specific and Generic Succinylation Sites

The sequence motif conservation surrounding the succinylation sites could partly be illustrated
for the different species datasets. To reveal succinylation site sequences of 9 different species, a
pLogo (https://plogo.uconn.edu/) software was used as shown in Figure 3 [81], which classifies and
displays significant differences of succinylated vs non-succinylated sites by position-specific amino
acid compositions on the sequence fragments (±15). At each position of pLogo graphs, over- or
under- X-axis amino acids were plotted, where X denotes each amino acid residue [59,65,78]. The
height of the corresponding residue letter of positive (if over-represented) or negative samples (if
under-represented) were harbored. The cumulative percentages of these over-/under-represented
residues were reported in the label of Y-axis. Consequently, the amino acids above the X-axis indicated
frequently detected residues around succinylation sites. In Figure 3, the upper portion displays a set of
positive samples and the middle portion displays consistent residues, while the lower portion shows
depleted amino acids.

https://cran.r-project.org/web/packages/randomForest/
http://svmlight.joachims.org
https://plogo.uconn.edu/
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Figure 3. pLogo graphs of the sequences with the centered succinylation sites. Nine species-specific
datasets of H. sapiens, H. capsulatum, M. musculus, E. coli, M. tuberculosis, S. cerevisiae, T. gondii,
S. lycopersicum and T. aestivum (https://plogo.uconn.edu/) and their combined (generic) datasets
are used. The significantly enriched/depleted amino acid residues (student t-test, p < 0.05) are shown.

Since the sequence motifs for H. sapiens, S. cerevisiae, and M. musculus resembled each other
(Figure 3), an H. sapiens succinylation site tool could identify succinylation sites for M. musculus,
and S. cerevisiae and the reverse is also true. The sequence patterns of succinylated proteins around
H. sapiens, M. musculus, H. capsulatum, S. cerevisiae, and E. coli are widely distributed than the other four
species. It was observed that charged amino acids (K, R, and D) were significantly enriched at positions
(−10, −9, −8, −7, −6, −5 −2; +2, +4, +5, +6, +7, and +10) for H. sapiens, M. musculus, H. capsulatum,
S. cerevisiae, and E. coli models. In S. lycopersicum, M. tuberculosis, and T. aestivum species, the neutral
amino acids (C, F, G, and S) were significantly depleted. In S. cerevisiae and T. gondi, some of the charged
residues (D, K, and R) were over- and under-represented. In addition, neutral amino acids (S, Q, and C)

https://plogo.uconn.edu/
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were frequently distributed around the succinylation sites and most of the specific amino acid positions
were not significantly enriched/depleted except for S. lycopersicum, T. gondii, and T. aestivum. While
the generic model seems to have some sequence motifs, it is clearly shown that the sequence motifs are
species-specific. Therefore, the generic model may result in incomplete or erroneous information to a
query sequence. Hasan et al. suggested that the surrounding succinylation sites vary, depending on
species [65] and the species-specific classifiers are necessary to identify the succinylation sites, as well
as developers of other PTM site predictors for ubiquitination [82], acetylation [83,84], methylation [85],
phosphorylation [86,87], and malonylation [88].

6. Important Descriptors for Predicting Succinylation Sites

Feature extraction is one of the most important and challenging steps, enabling the accurate
prediction of lysine succinylation sites. Ideally, the features can clearly distinguish succinylated
sites from random lysine sites. In previous studies, different types of features were adopted to
distinguish the succinylated sites from non-succinylated sites. The frequently used features are
AAindex, ACF, EBGW, VDWV, WAAC, AAC, CKSAAP, PseAAC, Binary, SF, PSSM, pCKSAAP and
some structural features (SFs) (Table 3). These major feature types include (1) protein sequence features,
(2) evolutionary features, (3) protein physicochemical properties, (4) structural features, and (5) binary
profile annotations.

Table 3. Statistics of feature encoding schemes used in the aforementioned succinylation site
prediction tools.

Encoding Types Genetic Explanation References

AAindex Based on the AAindex indices database, the encoding scheme of AAindex reveals the biochemical properties
of the sequences. [56,59,62]

ACF The auto correlation function features for surrounding succinylation sequences. [54]

EBGW Coding based on grouped weight of physicochemical properties of sequences surrounding succinylation sites. [54]

VDWV Van der Waals volume properties of surrounding succinylation sequences. [54]

WAAC Position weight amino acid composition of surrounding succinylation sequences. [54]

AAC The amino acid composition characterizes the specific state of the surrounding succinylation sequences. [65]

CKSAAP The CKSAAP encoding represents the short sequence motif information in surrounding succinylation sites. [56,59]

PseAAC The pseudo amino acid composition reflects a vectorized sequence-coupling model of surrounding
succinylation sites. [56,61,70]

SF The predicted structural feature reflects the structural properties of protein in surrounding succinylation sites. [66]

Binary The position-specific information measured by binary profile for the curated sequences. [59,62,65]

PSSM The PSSM exposes the evolutionary information from the sequences. [57]

pCKSAAP The pCKSAAP reflects the sequence patterns and evolutionary information from the query sequences. [62,65]

Data of Table 1 is used.

To develop a statistical predictor, an effective mathematical expression is needed to formulate
the protein or peptide samples [89–92]. Composition analysis of proteome-wide amino acids can
describe the particular information of a specified organism, since the organism manages to reduce
the protein synthesis cost by adjusting their residue contents under specific growth conditions [19,93].
Therefore, sequence information was valuable to develop species-specific succinylation predictors.
To transform protein or fragment sequences into numeric vectors, orthogonal binary coding [59,62],
AAindex [65], PseAAC [55,61,70] were measured. To accesses the positional information of amino
acids around the positive and negative samples, the WAAC [54], ACF [54], and VDW [54] were
introduced. Moreover, to introduce the amino acids frequency information in fragment sequences, the
pCKSAAP [62,65] and CKSAAP [56,59] schemes were used. To fix the length of the sequence, AAindex
encoding is particularly suitable [59,62,65]. To identify the conserved residues at the specific sequence,
evolutionary information is an important characteristic [57,65], because the conserved residues are
always functionally relevant [62]. Since the SF is far more conserved than the sequence, SF encoding
could be a valuable indicator to identify the function of succinylation proteins [58]. To make an
effective prediction model, optimization of incorporative feature methods is typically crucial. The
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SuccinSite used a linear combination of different features with weight values [59]. Recently, the outputs
of distinct features have been combined using a logistic regression (LR) algorithm [65,94]. These two
models can be integrated for further enhancement of accuracy of succinylation site prediction.

7. Features Assessment of Species-specific Succinylation Sites

To classify the succinylation and non-succinylation samples, machine learning algorithms have
been effectively employed (Table 1). A majority of succinylation site predictors used conditional
RFs [57–59,61,62,70], while a few of them used SVM classifiers [54–56]. Therefore, we chose these
two machine learning algorithms due to their successful implementation. We also measured the area
under the ROC curve (AUC). Table 4 summarizes the optimal performances with respect to 31 window
sequences by the RF and SVM classification algorithms.

Table 4. Performance of five major types of features for the training and independent datasets.

Methods Training Independent

H. sapiens

RF SVM RF SVM

pCKSAAP 0.856 0.838 0.695 0.691

CKSAAP 0.816 0.831 0.677 0.663

AAindex 0.739 0.728 0.759 0.755

Binary 0.767 0.754 0.822 0.809

PseAAC 0.819 0.822 0.658 0.649

H. capsulatum

pCKSAAP 0.789 0.792 0.638 0.634

CKSAAP 0.788 0.783 0.619 0.607

AAindex 0.712 0.722 0.658 0.666

Binary 0.713 0.698 0.665 0.647

PseAAC 0.759 0.743 0.612 0.614

M. musculus

pCKSAAP 0.801 0.788 0.637 0.634

CKSAAP 0.777 0.767 0.646 0.651

AAindex 0.648 0.655 0.679 0.672

Binary 0.639 0.641 0.677 0.659

PseAAC 0.711 0.722 0.609 0.611

E. coli

pCKSAAP 0.769 0.761 0.679 0.684

CKSAAP 0.773 0.782 0.646 0.631

AAindex 0.719 0.721 0.633 0.619

Binary 0.689 0.674 0.619 0.607

PseAAC 0.733 0.734 0.608 0.603

M. tuberculosis

pCKSAAP 0.708 0.712 0.688 0.679

CKSAAP 0.689 0.675 0.664 0.671

AAindex 0.667 0.658 0.656 0.655

Binary 0.629 0.617 0.639 0.634

PseAAC 0.643 0.634 0.629 0.617



Cells 2019, 8, 95 10 of 18

Table 4. Cont.

Methods Training Independent

S. cerevisiae

pCKSAAP 0.882 0.869 0.776 0.772

CKSAAP 0.879 0.863 0.752 0.744

AAindex 0.742 0.733 0.759 0.749

Binary 0.741 0.745 0.798 0.787

PseAAC 0.790 0.768 0.699 0.675

T. gondii

pCKSAAP 0.834 0.836 0.657 0.666

CKSAAP 0.826 0.822 0.655 0.638

AAindex 0.726 718 0.663 0.647

Binary 0.744 0.745 0.679 0.671

PseAAC 0.801 0.788 0.678 0.664

S. lycopersicum

pCKSAAP 0.842 0.836 0.649 0.642

CKSAAP 0.833 0.824 0.648 0.637

AAindex 0.753 0.765 0.644 0.629

Binary 0.729 0.722 0.637 0.631

PseAAC 0.801 0.783 0.678 0.658

T. aestivum

pCKSAAP 0.822 0.826 0.649 0.654

CKSAAP 0.821 0.811 0.638 0.634

AAindex 0.736 0.734 0.604 0.611

Binary 0.726 0.719 0.612 0.596

PseAAC 0.778 0.769 0.632 0.628

AUC values are used to assess the prediction performance.

Twelve types of feature descriptors were employed in the previous succinylation predictors
(Table 3). We investigated whether they are effective in prediction of the nine species-specific models
and selected five major descriptors of CKSAAP, AAindex, Binary, PseAAC, and pCKSAAP (the other
seven descriptors were not effectively used). A five-fold CV test on the training dataset and a test on
the independent dataset were performed to assess the prediction performance by the five selected
feature descriptors (Table 4), where the employed datasets are shown in Table 2. The top two features
for H. sapiens, M. musculus, H. capsulatum, and E. coli were pCKSAAP and CKSAAP for training dataset.
On the other hand, in the independent dataset, the AAindex and binary performed better. For the
M. tuberculosis dataset, the top two features were pCKSAAP and CKSAAP in both of training and
independent datasets. In the S. cerevisiae dataset, the top descriptor was pCKSAAP. In the T. gondii
and T. aestivum datasets, CKSAAP, pKSAAP, and PseAAC encoding schemes were important. It is
intriguing that, in the S. lycopersicum dataset, positional encodings of Binary, AAindex, and PseAAC
were essential for the independent test. The pCKSAAP was an effective encoding feature that describes
long- and short-range interfaces of amino acids within a protein or a sequence window [95–98],
achieving best prediction results on M. tuberculosis, H. sapiens, M. musculus, H. capsulatum, S. cerevisiae,
E. coli, and T. aestivum species for training datasets. The performance comparison indicated that the RF
algorithm was the best for almost all the species datasets, followed by the SVM.

8. Comparative Analysis of Different Predictors

The performances of existing tools were compared by using different criteria as shown in Table 1.
Note that it is difficult to exhaustively compare the analytical results obtained from different algorithms,
because they use diverse assessment procedures for training and independent datasets and ratios of
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positive and negative samples. Although many predictors are not publicly accessible, including Success,
SSEvol-Suc, SucPred, SucPred, pSuc-Lys, iSuc-PseOpt, SuccFind, SucStruct [58], and PSSM-Suc [57],
only four of succinylation predictors of iSuc-PseAAC, SuccinSite, SuccinSite2.0, and GPSuc are publicly
available and user-friendly. An independent dataset was constructed to make a fair comparison
based on our previously published articles [65]. The dataset consisted of 254 positive and 2977
negative samples (http://kurata14.bio.kyutech.ac.jp/GPSuc) [65]. Figure 4 shows that the prediction
performance of the four predictors with respect to 124 proteins. The top-performing SuccinSite2.0 and
GPSuc with the AUC value of 0.754 and 0.779, respectively.
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Recently the GPSuc and SuccinSite2.0 predictors have made an effort to establish the
species-specific classifiers [62], while the others combined the data of each species into a generic
model. Many predictors other than SuccinSite [59], SuccinSite2.0 [62], and GPSuc [65] were not
validated by using independent data (Table 1).

9. The Online Employment Services

For biologists, web application or a standalone software package is required. There were 12
web services developed along with research publication; however, most of them are not available
for public. The exiting tools were compared under the following conditions: (i) whether the existing
web employment supports batch prediction; (ii) whether the scheme has the binary or probability
scores; In Table 1, comprehensive information was summarized for all the existing tools. Among all
the implementations, Success, PSSM-Suc and SucStruct did not provide web-services to implement
their prediction models. The pSuc-Lys, SSEvol-Suc, and Suc-PseOpt predictors did not fulfill some
criteria regarding sequence fragment position, prediction scores, and thresholds information. On the
other hand, users cannot submit more than 100 sequences to the pSuc-Lys and Suc-PseOpt servers.
The iSuc-PseAAC and Success servers did not attach the all prediction succinylation scores in the final
output page. Users can get more satisfactory results from the SuccinSite, SuccinSite2.0, and GPSuc in a
FASTA format. In the GPSuc user can select classifiers for nine species and their combined species.
The GPSuc includes nine examined species classifiers and illustrated better performances than the
SuccinStie2.0. The prediction output of the GPSuc, SuccinSite, and SuccinSite2.0 contains four items:
protein name, predicted lysine position, expectation score, and explanation of succinylation sites. In
the viewpoint of users, the prediction model should contain at least the position of the anticipated
succinylation sites, sequence fragments, and probability scores, or assessment of the predicted result.
In addition, it is obligatory that the predictor should provide flexibility modification to the output
page of the provided stand-alone software or online servers. Particularly user control of the prediction

http://kurata14.bio.kyutech.ac.jp/GPSuc
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stringency is essential for spreading predictors because users are interested in the prediction scores
with an assured threshold.

10. Perceptions for Prediction Models

Sequence redundancy is an essential problem to consider prior to model assembly since the
performance of the predictive models might be overestimated by overfitting of the training dataset
and lead to poor scalability and performances on independent datasets. In succinylation prediction,
most of the developers conducted the redundancy of sequence prior to model assembly. The CD-HIT
(http://weizhongli-lab.org/cd-hit) [77,99] and BLAST algorithm (blastclust) (http://nebc.nox.ac.
uk/bioinformatics/docs/blastclust) [100] are extensively used to eliminate data redundancy. The
CD-HIT software is very popular for deleting the homolog sequences; however, this framework is a
heuristic, i.e., it can have biases on the redundancy level model [101]. Recently, Martin and Johannes
introduced the Linclust software (https://github.com/soedinglab/mmseqs2) [102] to reduce the
compositional bias correction on the sequences, while advanced algorithms are still necessary. To
reflect the ratio of succinylation and non-succinylation samples in the training data set is another
problem. Usually, non- succinylation sites expressively outnumber the succinylation sites. Hence,
a succinylation training dataset should be generated by using reliable and nonbiased methods. To
choose the ratio of non-succinylation ratio samples to positive samples, a random selection procedure
is often piloted.

Some prediction tools use small datasets to train their simulations, resulting in poor estimate
performance when verified with the independent dataset [59,62]. For instance, an early study of the
iSuc-PseAAC did not achieve good performance on the independent test dataset due to the limited
training dataset (Figure 4). Through the developments in high-throughput sequencing with mass
spectrometry analysis, a large number of succinylation sites are being identified and their associated
databases are frequently updated. Many succinylation sites that were overlooked by previous studies
are now experimentally verified as positive samples, i.e., the old versions of the database include
a number of false negative samples. This indicates that the prediction models developed based on
the old version database can be improved by using up-to-date succinylation samples. To extrapolate
future unknown data, we should increase the number of non-redundant succinylation samples and
use them as an independent dataset to validate the prediction models.

The motifs of succinylation proteins may significantly differ in diverse species, as shown in
Figure 3. Nevertheless, all the existing predictors other than SuccinSite2.0 and GPSuc ignored the
differences among species and combined all species models into a generic one. From now on, a
computational method should consider species-specific classifiers. The current prediction tools are
established individually based on sequence or secondary structural information. In future analysis,
with an increase in tertiary structural information of succinylation samples, it is effective to employ
such a structural descriptor [103]. Finally, it is required to present software applications or web servers
so that users can easily access prediction models.

To reveal the significant information on the PTMs, graphical logos are widely used that
give position-specific information (i.e., conserved patterns or motifs information) of amino acids.
Several software packages are implemented to visualize the sequence motifs, such as pLogo [81],
WebLogo [104], and iceLogo [105]. The existing algorithms highlighted the characters of amino acids
that are enriched (i.e., occur more frequently than expected) and depleted (i.e., occur less than expected).
However, the resulting plots sometimes suffered visual disorder, which makes principal sequence
patterns ambiguous. Therefore, the next generation sequence logo needs to generate more suitable
models for the efficient visualization of sequence motifs.

11. Conclusions

To assess the currently available succinylation site prediction tools, we comprehensively compared
the predictor performances using an independent dataset. The predictive capabilities of combinations

http://weizhongli-lab.org/cd-hit
http://nebc.nox.ac.uk/bioinformatics/docs/blastclust
http://nebc.nox.ac.uk/bioinformatics/docs/blastclust
https://github.com/soedinglab/mmseqs2
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of different descriptors were evaluated to explore the optimal combination. In living cells, combining
experimental and computational approaches will accelerate the buildup of our understanding on
protein succinylation and hence support exploration of the consistent controlling networks. This
review has designated that a large volume of lysine-succinylation site analyses is being carried out and
explained the details in the employed datasets, motif conservation, encoding schemes, and machine
learning algorithms. Moreover, we described limitations of current methodologies for prediction of
lysine succinylation and provided perceptions into dataset assembly processes, model updates, and
performance improvements.
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