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A B S T R A C T

Background and purpose: High-risk prostate cancer patients are frequently treated with external-beam radio-
therapy (EBRT). Of all patients receiving EBRT, 15–35% will experience biochemical recurrence (BCR) within
five years. Magnetic resonance imaging (MRI) is commonly acquired as part of the diagnostic procedure and
imaging-derived features have shown promise in tumour characterisation and biochemical recurrence predic-
tion. We investigated the value of imaging features extracted from pre-treatment T2w anatomical MRI to predict
five year biochemical recurrence in high-risk patients treated with EBRT.
Materials and methods: In a cohort of 120 high-risk patients, imaging features were extracted from the whole-
prostate and a margin surrounding it. Intensity, shape and textural features were extracted from the original and
filtered T2w-MRI scans. The minimum-redundancy maximum-relevance algorithm was used for feature selec-
tion. Random forest and logistic regression classifiers were used in our experiments. The performance of a
logistic regression model using the patient’s clinical features was also investigated. To assess the prediction
accuracy we used stratified 10-fold cross validation and receiver operating characteristic analysis, quantified by
the area under the curve (AUC).
Results: A logistic regression model built using whole-prostate imaging features obtained an AUC of 0.63 in the
prediction of BCR, outperforming a model solely based on clinical variables (AUC=0.51). Combining imaging
and clinical features did not outperform the accuracy of imaging alone.
Conclusions: These results illustrate the potential of imaging features alone to distinguish patients with an in-
creased risk of recurrence, even in a clinically homogeneous cohort.

1. Introduction

High-risk primary prostate cancer (PCa) patients are commonly
treated with radiotherapy (RT). According to the Phoenix definition,
biochemical recurrence (BCR) after RT occurs within five years in
15–35% of all cases [1–3]. Aiming at better patient stratification,
clinical nomograms, such as the Kattan nomogram [3], have been de-
veloped to predict biochemical recurrence after RT. These incorporate
factors such as the PSA level and biopsy Gleason score, known to be
good predictors of biochemical recurrence, but are often limited by the
accuracy of the measured variables. The prognosis of high-risk PCa

patients is heterogeneous, however the available clinical nomograms
are not tailored to distinguish patients within a single risk group.

Magnetic resonance imaging (MRI) is well established for PCa di-
agnosis and staging. T2-weighted (T2w) anatomical scans are used to
assess the extent of the tumour. Visually scored semantic attributes of
PCa visible on T2w-MRI, such as seminal vesicle invasion or extra-
capsular extension, are predictors for five year biochemical recurrence
free survival. By improving staging, these predictors augment the per-
formance of predictive models which combine them together with
clinical nomograms [4].

Radiomics has emerged as a field in which a high number of
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quantitative imaging features are extracted from a region of interest
(ROI) to quantitatively describe its phenotype. Texture analysis based
on the grey level co-occurrence matrix (GLCM) [5], using second order
statistics to characterise the spatial dependence of grey-levels in an
image, has been applied extensively to evaluate both the location and
aggressiveness of PCa [6,7] based on T2w-MRI. By assessing tissue
micro-architecture and tumour aggressiveness, being the latest by de-
finition related with BCR, this modality could provide insight on re-
currence risk prediction.

Local recurrence after RT is reported to occur predominantly at the
site of the index lesion [8], and imaging features from the primary
tumour were found to strongly associate with the probability of BCR
following RT [9,10]. However, these studies have relatively small and
inhomogeneous patient cohorts, with the study by Gnep et al. [9]
having a median follow-up time of only four years. An early identifi-
cation of increased recurrence risk can potentially impact clinical
management and subsequent follow-up, particularly for high-risk dis-
ease as it is related with higher recurrence rates [11].

For many years, the standard for RT purposes was not multi-para-
metric MRI (mp-MRI) but anatomical imaging with the goal of prostate
gland delineation. Thus, cohorts with longer follow-up are often re-
stricted to T2w-MRI and the uncertainty in tumour localisation is high.
Tumour delineations on mp-MRI are prone to inter-observer variations
up to 2.3mm with smaller satellite lesions being often missed [12]. No
guidelines are yet available for this task. Prostate delineations are also
prone to inter-observer variability but radiological guidance on how to
delineate in T2w-MRI is available [13]. Evaluation of whole-prostate
imaging features avoids delineation uncertainty, is not restricted to the
visible tumour area and might therefore be sensitive to both micro- and
macroscopical features predictive of recurrence.

We here aimed to investigate the potential of whole-prostate ima-
ging features for five year BCR prediction after RT of local PCa, in a
clinically homogeneous cohort of high-risk biopsy-proven PCa patients.
We further analysed the predictive value of features in the margin
surrounding the prostate, as the presence of extracapsular extension
and seminal vesicle invasion is related to the risk of relapse. The per-
formance of models using imaging features was compared to one using
solely clinical features.

2. Materials and methods

2.1. Dataset

In a single centre, patients with high-risk PCa were selected retro-
spectively from a consecutive cohort treated with external-beam
radiotherapy (EBRT) between 2007 and 2011. Risk classification was
performed according to the D’Amico definition [14]. Further inclusion
criteria involved having received hormonal therapy (HT), a dose of
78 Gy in 39 fractions and no other pelvic comorbidities before the
treatment. Biochemical recurrence was diagnosed according to the
Phoenix criteria [15] and all patients had five years of follow-up. A total
of 120 patients satisfied the inclusion criteria.

Pre-treatment clinical predictors of biochemical recurrence after
EBRT were chosen according to the input parameters of the Kattan
nomogram [16].

2.2. MRI protocol

T2w anatomical MRI scans were acquired as part of the RT treat-
ment planning procedure. Axial T2w turbo-spin echo (TSE) and T2w 3D
VISTA (for nine patients) sequences were acquired on a 3T Philips
Achieva MRI scanner (Philips Healthcare, Best, the Netherlands). For
the TSE sequence the repetition times (TR) were longer than 3800ms,
the echo times (TE) between 120 and 150ms and the scans had an in-
plane pixel pitch of 0.27–0.49mm and slice thickness of 2.3–3.3mm.
For the VISTA sequence the TR=2034ms and TE=120ms, with

isotropic voxels of 0.8mm width. Functional sequences were not part of
the RT clinical workup.

2.3. ROI segmentation

Prostate delineations were performed for all patients with an atlas-
based approach using a research software version of ADMIRE 1.13.5
(Elekta AB, Stockholm, Sweden), with visual verification by the re-
searcher (four years of experience in prostate delineation) and manual
correction whenever necessary.

Based on the prostate delineation intra-observer variability reported
by Nyholm et al. [17], prostate ROIs were created by expanding the
delineation by 2mm to compensate for possible delineation un-
certainties and to ensure whole-prostate coverage. The margin ROIs
were defined as the region between an expansion and shrinkage of the
prostate delineation by 2mm.

2.4. Image feature extraction

The pyradiomics 1.2.0 toolbox [18] was used for region-wise 3D
feature extraction. For a consistent calculation of 3D features, all
images were resampled to an isotropic grid of 2x2x2 mm voxels using
BSplines to avoid extreme image oversampling in the slice direction.
Images were then normalised as described in Appendix A. The nor-
malised images, as well as images obtained by further filtering with a
Laplacian of Gaussians (LoG) with sigma=1, 3, and 5mm, were used
as input for feature extraction. The extracted features were categorized
in shape, intensity and texture. From the LoG filtered images only in-
tensity and texture features were extracted.

Image discretization was performed by using a fixed bin width=5.
Rotational invariant textural features derived from the grey-level co-
occurrence (GLCM) and run length (GLRLM) matrices were computed
by averaging the values obtained over 13 angles (0, 45, 90 and 135°
symmetrical angles in-plane and out-of-plane) using a displacement
vector of one voxel. These features quantify regional heterogeneity.

A total of 254 region-level features were obtained per patient
(Table 1 and Appendix B), all scaled as described in Appendix A.

2.5. Models and validation

Independent models were created using either clinical or imaging
features. Separate imaging models were generated for each ROI. The
clinical model was developed using PSA, Gleason and clinical stage
variables.

All models were independently validated using stratified 10-fold
cross-validation (CV), ensuring the folds preserve the percentage of
samples for each class. Receiver operating curve (ROC) analysis with
the use of the area under the curve (AUC) values per fold was applied to
assess the prediction accuracy for the different ROIs.

Clinical and imaging models were created based on different fea-
tures, potentially offering complementary information about the pat-
tern to be classified. Combining the results of the two to generate a
consensus decision may improve efficiency and accuracy, as the sets of
patterns misclassified by the different models would not necessarily
overlap [19]. To evaluate this hypothesis, the posterior probabilities
obtained for each patient for imaging and clinical models were aver-
aged in one joint probability, and the performance of the combined
models was assessed.

2.6. Feature ranking and selection

Due to the high dimensionality of the feature set, feature selection
was implemented to address the curse of dimensionality [20]. Within
the stratified 10-fold CV scheme we aimed at identifying a model hy-
perparameter – the number of features to select (nFeats). Firstly, feature
ranking was performed in the training fold using the minimum-
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redundancy maximum-relevance (mRMR) algorithm [21]. This method
maximizes the dissimilarity and minimizes the redundancy between
features. To identify the hyperparameter nFeats, an inner stratified 10-
fold CV scheme was implemented within the training set. Data was thus
further split into training and test folds, and different sizes of features
sets were tested: nFeats= {3,5,10,20,30,40,50,60,70,80,90,100,150,
200,250,254}. The AUC performance of each feature set when used
with a logistic regression (LR) classifier was recorded for each fold. The
LR classifier was chosen for its simplicity. The AUC was averaged for all
folds of each feature set, and the nFeats{i} with the highest value was
chosen as being optimal. This optimal number of features was then
selected from the outer training fold data, and given to train and test
the model classifiers.

Pearson correlation between the top five features for the whole
dataset was also calculated.

2.7. Classifiers

Parmar et al. [20] reported the Random Forest (RF) classifier to
have obtained the highest prognostic performance with high stability
against data perturbations. However, LR is by far one of the most
widely used classification algorithms. Both algorithms are simple and
computationally efficient, so the performance of RF and LR classifiers
was evaluated here.

The LR model was built using a l2-penalty, tolerance=0.0001 and
C=1. The RF model was built using 45 trees and a minimum of two
samples per split. As ours is an imbalanced dataset (i.e. more non-re-
current than recurrent samples) for both classifiers the class weight was
set to ‘balanced’ so that the weights are adjusted to be inversely pro-
portional to the class frequencies in the input data. To investigate the
stability of the RF model, the classification process was repeated 20
times, and the standard deviation (SD) of the obtained AUC values was
calculated.

The stratified 10-fold CV was used to avoid overfitting by ensuring
the test set was independent and not included in the feature selection
process. A separate model was created for each of the ROIs and for both
RF and LR classifiers, resulting in a total of 4 imaging models. The
clinical model was developed using a LR classifier. A total of two
combined models - using the predictions from RF and LR imaging
classifiers combined with clinical predictions – were investigated per
ROI.

Fig. S1 illustrates the different steps in optimizing feature selection,
in classification and cross-validation.

Supplementary Fig. S1 and Table S1 associated with this article can
be found, in the online version, at https://doi.org/10.1016/j.phro.
2018.06.005.

2.8. Statistics

To test for significant differences between clinical features of re-
current and non-recurrent patients, a T-test (for continuous variables)
and a chi-square test (for categorical variables) was used. The patient’s
clinical stage is decided in consensus between the urologist and radi-
ologist, and is therefore potentially biased by the MRI findings. A bi-
variate Pearson correlation was calculated between the TNM stage and
all MRI extracted features. The degree of correlation can help reason as
to whether the clinical TNM stage provides similar information as the
imaging features; if so, the two models cannot be considered to provide
independent predictions. The same correlation measure was performed
between Gleason score and the MRI extracted features.

3. Results

Patient characteristics are reported in Table 2. The follow-up time
was five years or until biochemical recurrence. Median time to BCR was
four years (range 1–5 years). Three recurrences were local [10%], six
were locoregional [19%] (local with involved lymph nodes), two were
regional [7%] (only lymph nodes), three were regional-distant [10%]
and 11 were distant (typically bone metastasis) [35%]. For six [19%]
recurrent patients the location was unreported. Table S1 reports the
distribution of recurrence location according to T stage, Gleason score
and PSA level. Recurrence location was determined by either Choline or
68Ga-PSMA PET, SPECT/CT and at times MRI and/or biopsy.

Fig. 1 illustrates the segmented ROIs from which imaging features
were extracted. The original, as well as the resampled and filtered
images provided for feature extraction are presented in Fig. 2 for a
representative patient.

No significant differences were found between the clinical variables
of recurrent and non-recurrent patients (p-values were 0.40 for PSA,
0.14 for Gleason and 0.62 for TNM stage) highlighting the clinical
homogeneity of the high-risk cohort. TNM stage and Gleason score were
weakly correlated (maximum absolute value of 0.30 and 0.35 respec-
tively) with the MRI extracted features of any of the ROIs. Thus, the
clinical model was considered to provide an independent prediction
from the imaging models.

Table 3 shows the AUC values for the different classifiers; for RF, the

Table 1
Description of the features extracted for each region of interest (ROI). The index 1 and 2 in homogeneity and informal measure of correlation refer to the two used
formulations used to calculate these measures. Further information about these features can be found in the Appendix B.

Feature class Description Features extracted

Shape 3D shape features Sphericity, maximum 3D diameter, volume, spherical disproportion, surface area, surface volume ratio

Intensity 1st order statistics (2D and 3D) Root mean squared, maximum, median, standard deviation, variance, 90% percentile, minimum, mean absolute
deviation, kurtosis, mean, energy, interquartile range, range, 10% percentile, skewness, total energy, robust mean
absolute deviation, entropy, uniformity

Texture Grey-level co-occurrence matrix, GLCM
(2D and 3D)

Entropy, cluster tendency, inverse difference moment, inverse difference moment normalized, maximum probability,
correlation, sum variance, homogeneity1, homogeneity2, energy, dissimilarity, informal measure of correlation1,
informal measure of correlation2, inverse difference, inverse difference normalized, contrast, average intensity,
difference average, sum squares, cluster shade, sum entropy, difference entropy, inverse variance, cluster prominence,
auto correlation, sum average, difference variance

Grey level run length matrix, GLRLM Short run emphasis (SRE), long run emphasis (LRE), grey-level non-uniformity (GLN), grey-level non-uniformity
normalized (GLNN), run length non-uniformity (RLN), run length non-uniformity normalized (RLNN), run percentage
(RP), run entropy (RE), low grey-level run emphasis (LGLRE), high grey-level run emphasis (HGLRE), short run low
grey-level emphasis (SRLGLE), short run high grey-level emphasis (SRHGLE), long run low grey-level emphasis
(LRLGLE), long run high grey-level emphasis (LRHGLE), grey-level variance (GLV), run length variance (RLV)

Filtered Laplacian of Gaussian filter Order= 1, Sigma=1,3,5
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value is averaged over the folds and for 20 runs with the corresponding
SD between different runs. For a single run, using whole-prostate
imaging features, the average AUC (SD between folds) for 10 folds was

for the RF classifier 0.56 (0.21) and 0.63 (0.18) for the LR. Margin
imaging features obtained for a single run of 10 folds an average AUC
(SD between folds) of 0.57 (0.20) for the RF classifier and 0.59 (0.21)
for the LR.

The clinical model had a poor performance with an AUC (SD be-
tween folds)= 0.51 (0.18). The best performance with imaging fea-
tures was obtained for the whole-prostate region with a LR classifier.
The highest AUC for the combination of imaging and clinical features
was of 0.58, using margin imaging features.

The most prevalent optimal number of features was three for the
margin, and either three, ten or 20 for the prostate (all were chosen by
three folds each). There was inter-fold variability regarding the optimal
number of features. For the prostate, the optimal number of features
varied between three [30%], 10 [30%], 20 [30%] and 90 [10%]. For
the margin the values were of three [60%], five [20%], 30 [10%] and
60 [10%].

Names and description of the highest ranking features for the two
ROIs, when ranked in the whole dataset, can be found in Table 4. The
majority of the top five prostate features originated from the filtered
images and for the margin from the no filter image. The LoG filter
enhanced boundaries and overall changes in intensities. First order
statistics were mostly associated with extreme values (e.g. minimum,
maximum). Textural based features were related to homogeneity (e.g.

Fig. 1. The different regions of interest (ROIs) used for feature extraction. The
ROIs were created by expanding (and in the case of the margin also shrinking)
the original delineations (thin lines) to obtain the final ROIs used for feature
extraction (solid lines).

Table 2
Patient characteristics. The numbers in brackets are the percentages rounded down
to the nearest integer.

Recurrent Non-recurrent

Number of patients (%) 31 (26%) 89 (74%)
Median pre-treatment PSA (ng/ml) [IQR] 17 [25] 15 [29]
PSA≤ 10 9 (29%) 31 (35%)
10 < PSA≤ 20 7 (23%) 17 (19%)
PSA≥ 20 15 (48%) 41 (46%)

Clinical tumour stage
T1 2 (6%) 10 (11%)
T2 9 (29%) 20 (22%)
T3+T4 20 (65%) 59 (66%)

Primary Gleason grade
Gleason 5–6 6 (19%) 20 (22%)
Gleason 7 9 (29%) 31 (35%)
Gleason 8 9 (29%) 28 (31%)
Gleason 9–10 7 (23%) 10 (11%)

IQR – Interquartile range.

Fig. 2. A. Original T2w image; B. Normalised and resampled image in the grid of 2× 2×2mm3; C–E Normalized and resampled images filtered with a Laplacian of
Gaussian (LoG) with sigmas=1,3 and 5mm. The resampled image as well as the filtered images were used as input for feature extraction. The white contour
represents the prostate ROI.

Table 3
AUC values obtained with the different feature selection methods and classi-
fiers. Numbers in brackets show the standard deviation for average AUC for all
folds between different rounds when using random forest classifier.

Clinical
0.51

AUC values (SD)
Imaging Imaging+Clinical

ROI mRMR+RF mRMR+LR mRMR+RF mRMR+LR

Prostate 0.55 (0.03) 0.63 0.54 (0.02) 0.56
Margin 0.56 (0.02) 0.59 0.58 (0.02) 0.54

ROI – region of interest; SD – standard deviation; mRMR - minimum-re-
dundancy maximum-relevance; RF – random forest; LR – logistic regression.
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GLCM inverse difference moment normalized), heterogeneity (e.g.
GLCM difference variance and GLCM dissimilarity) as well as skewness,
asymmetry and uniformity of the GLCM (e.g. GLCM cluster prominence
and GLCM cluster shade). The highest Pearson correlation for the top
five features was 0.20 for the prostate and 0.51 for the margin.

4. Discussion

In this study we aimed at identifying high-risk PCa patients who are
at a higher-risk of BCR up to five years after EBRT. The heterogeneous
outcome reported in this homogeneously treated high-risk cohort raises
the question of potential treatment intensification for a subgroup of
very high-risk patients. A LR model with clinical features resulted in a
poor performance predicting BCR. This is not surprising as no sig-
nificant differences were found between clinical features of recurrent
and non-recurrent patients, confirming the clinical homogeneity of the
cohort and highlighting the difficulty in discriminating patients solely
based on clinical information. Similar findings have been reported by
Hegde et al. [22], stressing the importance of imaging in such a high-
risk cohort. Literature reported values for the use of the Kattan nomo-
gram are of AUC=0.61 [23] and 0.58 [10], higher than our clinical
model performance. The Kattan nomogram was originally developed
using a combined population of intermediate and high-risk patients and
the literature values reported above are obtained when applied in si-
milarly mixed cohorts. We did not use the original Kattan nomogram
but instead a model incorporating the same features and trained on our
own clinically homogeneous cohort. Despite the differences in metho-
dology and cohort characteristics, our findings are in line with the
published literature.

Whole-prostate pre-treatment MRI radiomic features obtained an
AUC of 0.63, outperforming standard clinical features in recurrence
prediction. Several studies describe the association between tumour
adjacent stroma and prostate microenvironment to relapse and disease
progression [24,25]. MRI is known to have limited accuracy in the
detection of small tumour foci of less than 0.5 cm3 [12]. Thus it is
impossible to rule out the presence of satellite lesions, not visible on
MRI and missed by biopsy sampling, in the remaining prostatic region.
Analysis of the prostate as a whole is less time consuming and takes into

account all available information. The overall findings support the idea
that relevant information can be found on a whole-prostate level as well
as the potential of this region for BCR prediction. Due to the cohort’s
clinical homogeneity, combining clinical with imaging features did not
improve performance and introduced noise.

Despite the AUC values being relatively low to extrapolate sig-
nificant clinical decisions, these results offer a proof of concept of the
potential of radiological images in the context of precision medicine.
Published literature on the use of radiomics for outcome prediction
reported similar AUC values [20,26]. For our cohort with five years
follow up, only T2w anatomical scans were available for all patients,
whereas to date mp-MRI is considered standard of care for diagnostics
and treatment. Functional parameters extracted from DCE-MRI and
DWI have been found to be predictive of response in other cancer sites
[27,28] and in pre-clinical studies [29]. In particular, the association
between DWI-derived ADC maps and Gleason score has been ex-
tensively reported [30,31]. The inclusion of functional imaging can
potentially enhance the performance of biochemical recurrence pre-
diction models.

The MRI protocol underwent slight changes during the period in
which this patient cohort was treated. The influence of different MRI
scanners, parameters and setup on the extracted radiomic features is
still under-investigated. Standardizing the extraction and use of
radiomic features as well as evaluating the repeatability of MR-based
radiomic features are important subjects. Various reviews [32,33]
highlight important topics to be addressed in designing future radio-
mics studies. To tackle the curse of dimensionality we use a feature
selection method, as commonly done in the radiomics field. Optimizing
an RF classifier would be an alternative to regularize the model and
address this issue.

Lastly, the results obtained in this study require external validation
in similar cohorts, with our findings suggesting the use of a small
number of features. Nonetheless these are encouraging findings as they
provide pilot evidence of the relevance of imaging in outcome strati-
fication of clinically homogeneous patients. The use of whole-prostate
imaging characteristics to obtain information about five year bio-
chemical recurrence risk can potentially be used to develop in-
dividualized treatment strategies.
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Appendix A

A.1. Image normalisation

Images were normalised according to:

=
−

f x
s x μ

σ
( )

( )x

x (A.1)

where x and f(x) are the original and normalised intensities, µx and σx are the ROI mean and standard deviation of the intensity values, and s is a
scaling value here set to 100. Intensity values outside three standard deviations from the mean were considered outliers and set to µ+ 3σ or µ− 3σ
according to their location in the distribution.

Table 4
Feature ranking for the different ROIs obtained using the mRMR method for the
whole dataset.

Prostate Margin

#1 LoG sigma 3 GLRLM LGLRE No filter image first order 10th
percentile

#2 No filter image first order minimum No filter image GLCM cluster
shade

#3 LoG sigma 5 GLCM inverse difference
normalized

No filter image shape surface area

#4 LoG sigma 5 GLCM cluster prominence LoG sigma 5 first order maximum
#5 LoG sigma 5 first order mean LoG sigma 3 GLCM difference

variance
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A.2. Feature scaling

All imaging features were scaled by subtracting the median and scaling the data according to the interquartile range. This method provides
increased robustness against outliers which can impact the estimation of the mean and variance used by typical scalers, and is implemented as a
‘robust scaler’ part of scikit-learn – a machine learning toolbox for Python.

Appendix B

The textural features homogeneity and informal measure of correlation were calculated using two different formulations:

∑ ∑=
+ −

= =
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p i j

i j
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=
−informal measure of correlation HXY HXY

HX HY
1 1

max{ , } (B.3)

= − − −informal measure of correlation e2 1 HXY HXY2( 2 ) (B.4)

where Ng is the number of discrete intensity levels in the image and therefore the size of the GLCM matrix; i and j are the elements from the matrix; p
is the second-order joint probability function of an image region constrained by the mask; px is the marginal row probabilities; py is the marginal
column probabilities; HX and HY are the entropy of px and py; HXY is the entropy of p(i,j) and

∑ ∑= − + ∈
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being ε an arbitrarily small non-negative number added to prevent log(0) which is undefined (-infinity).

Appendix C

C.1. Programs and settings

All programming and analysis were performed in Python 3.5 and MATLAB 2017a. The simple Insight Segmentation and Registration Toolkit was
used to resample the images prior to feature extraction. An online available MATLAB implementation of the mRMR method by Peng et al. [34] was
used. Feature scaling and the RF and LR classifiers were used as implemented in the scikit-learn 0.18.1 package for Python [35]. Statistics were
performed using IBM SPSS Statistics 22.
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