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Abstract: Over the past 20 years, ultrasonic cerebral perfusion imaging (UPI) has been introduced
and validated applying different data acquisition and processing approaches. Clinical data were
collected mainly in acute stroke patients. Some efforts were undertaken in order to compare different
technical settings and validate results to gold standard perfusion imaging. This review illustrates the
evolution of the method, explicating different technical aspects and milestones achieved over time.
Up to date, advancements of ultrasound technology as well as data processing approaches enable
semi-quantitative, gold standard proven identification of critically hypo-perfused tissue in acute
stroke patients. The rapid distribution of CT perfusion over the past 10 years has limited the clinical
need for UPI. However, the unexcelled advantage of mobile application raises reasonable expectations
for future applications. Since the identification of intracerebral hematoma and large vessel occlusion
can also be revealed by ultrasound exams, UPI is a supplementary multi-modal imaging technique
with the potential of pre-hospital application. Some further applications are outlined to highlight the
future potential of this underrated bedside method of microcirculatory perfusion assessment.

Keywords: ultrasound; acute ischemic stroke; perfusion imaging; contrast agent; intracerebral
hematoma; subarachnoid hemorrhage

1. Introduction: Cerebral Ultrasound Perfusion Imaging (UPI), First Clinical Applications

Ultrasound imaging is a key diagnostic tool in clinical medicine. Even if an expert examiner is
needed to obtain and interpret the images, it is advantageous to other diagnostic entities for various
reasons, two of them being the mobile bedside character of the examination and the absence of
radiation exposure. Besides gray-scale B-mode imaging for tissue characterization, vessel imaging by
Doppler-based duplex-sonography is the basis in most diagnostic work-up settings. After application
of specific contrast enhancing substances, improved vessel imaging and contrast-enhanced tissue
imaging (CEUS) can provide sophisticated information like vascular occlusion or tissue perfusion
imaging in various indications. In neurosonology, ischemic stroke and its diagnostic work up is the
leading indication for ultrasound imaging questioning the vessel status of extra- and intracranial
arteries. With the invention of contrast-enhanced perfusion imaging, the question of transferability to
cerebral imaging quickly emerged. In 1998, the first report on the ability of tracing contrast enhancer in
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the cerebral microcirculation of healthy volunteers by transient harmonic imaging was published [1],
followed by a case report on two acute stroke patients displaying impaired contrast increase in later
infarcted areas in 1999 [2]. The technical approach was adapted from echocardiography, where size
of myocardial infarct had been visualized before [3]. Various case series could reproduce the initial
results by demonstrating missing signal increase in affected ischemic brain areas [4–6]. In the cerebral
application, the temporal bone hampers ultrasound transmission resulting in relatively poor imaging
quality. Therefore, different variations of harmonic imaging techniques and data acquisition and
processing approaches have been introduced since to improve imaging quality [7–10]. Hereby, a novel
approach displaying both hemispheres in one examination for isochronal comparison of normal
and ischemic brain areas (bilateral or mirror approach) was introduced in 2003 [11] (compare “Data
Acquisition and Processing” below for comparison of unilateral and bilateral approach). Using a
bolus kinetic approach, time-based parameters such as TPI (time-to-peak intensity) could distinguish
between areas of normal, impaired, and nullified parenchymal perfusion [12,13]. Figure 1 illustrates the
conventional transversal insonation plane using the transtemporal bone window. Figure 2 illustrates
an early unilateral examination of an acute stroke patient displaying missing contrast enhancement
in later infarction, and Figure 3 an up-to-date bilateral examination of a normal person and an acute
stroke patient displaying different areas of impaired perfusion. A systematical review of the literature
on the method has recently summarized an overview until early 2017 [14].

J. Clin. Med. 2020, 9, x FOR PEER REVIEW 2 of 13 

 

enhancer in the cerebral microcirculation of healthy volunteers by transient harmonic imaging was 

published [1], followed by a case report on two acute stroke patients displaying impaired contrast 

increase in later infarcted areas in 1999 [2]. The technical approach was adapted from 

echocardiography, where size of myocardial infarct had been visualized before [3]. Various case 

series could reproduce the initial results by demonstrating missing signal increase in affected 

ischemic brain areas [4–6]. In the cerebral application, the temporal bone hampers ultrasound 

transmission resulting in relatively poor imaging quality. Therefore, different variations of harmonic 

imaging techniques and data acquisition and processing approaches have been introduced since to 

improve imaging quality [7–10]. Hereby, a novel approach displaying both hemispheres in one 

examination for isochronal comparison of normal and ischemic brain areas (bilateral or mirror 

approach) was introduced in 2003 [11] (compare “Data Acquisition and Processing” below for 

comparison of unilateral and bilateral approach). Using a bolus kinetic approach, time-based 

parameters such as TPI (time-to-peak intensity) could distinguish between areas of normal, impaired, 

and nullified parenchymal perfusion [12,13]. Figure 1 illustrates the conventional transversal 

insonation plane using the transtemporal bone window. Figure 2 illustrates an early unilateral 

examination of an acute stroke patient displaying missing contrast enhancement in later infarction, 

and Figure 3 an up-to-date bilateral examination of a normal person and an acute stroke patient 

displaying different areas of impaired perfusion. A systematical review of the literature on the 

method has recently summarized an overview until early 2017 [14]. 

 

Figure 1. Schematic representation of insonation plane in transtemporal ultrasound imaging (a), 

adapted from [13] (with permission of copyright owner) with a corresponding “bilateral” B-mode 

image (b) with explanatory anatomical landmarks: white arrows = frontal horns of side ventricles; * = 

midline, third ventricle; red arrows = contralateral skull. Infarcted areas cannot be displayed in B-

mode ultrasound. For orientation, comparison to conventional cerebral computed tomography scan, 

CCT, (c) with plane shifted by 90° accordingly, with an infarction in the hemisphere “contralateral” 

to the probe. 

Figure 1. Schematic representation of insonation plane in transtemporal ultrasound imaging (a),
adapted from [13] (with permission of copyright owner) with a corresponding “bilateral” B-mode
image (b) with explanatory anatomical landmarks: white arrows = frontal horns of side ventricles;
* = midline, third ventricle; red arrows = contralateral skull. Infarcted areas cannot be displayed in
B-mode ultrasound. For orientation, comparison to conventional cerebral computed tomography scan,
CCT, (c) with plane shifted by 90◦ accordingly, with an infarction in the hemisphere “contralateral” to
the probe.
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Figure 2. Ultrasound perfusion imaging in the course of time. Early “unilateral” gray-scale imaging in
a healthy volunteer (a) and an acute stroke patient (b) corresponding to Figure 1: at baseline (0 s) and
after contrast enhancer application at the time of maximal contrast enhancement (16 s). The thalamic
region (red arrows) is marked with increase of brightness in both examples (*), whereas the regions of
the lentiform nucleus and temporoparietal lobe are spared (yellow arrows), where later infarction was
demonstrated in CCT follow-up. (T) indicates the third ventricle, adapted from [15] with permission
from Elsevier.
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Figure 3. Up to date “bilateral” perfusion imaging corresponding to Figure 1: parametric image of
time-to-peak intensity (TPI) in a healthy volunteer (a) with homogeneously distributed greenish parts
of parenchymal structures (TPI 16 to 20 s) and the depiction of frontal and posterior horns of side
ventricles as well as third ventricle (white arrows), and pineal gland (black arrow), adapted from [12].
Note the near field artifact. TPI parameter image of an acute stroke patient 2.5 h after symptom onset
(b) of a severe stroke caused by occlusion of the M1 segment of the middle cerebral artery. Note the
core of infarction (pink area, surrounded by black line) and hypo-perfused nature, and potentially
salvageable area (orange area, surrounded by white line) due to collateral flow; adapted from [12] with
the publisher’s permission.
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2. Technical Aspects

2.1. Microbubbles and Harmonic Imaging

The use of ultrasound contrast enhancers (US-CE) is a prerequisite in the application of ultrasound
perfusion imaging (UPI). US-CEs consist of gaseous microbubbles (diameter ranging between 1 and
10 µm), which are stabilized by various types of shells, aiming to provide high microbubble stability
with improved signal-to-noise ratio and a sufficient examination time [16]. These microbubbles show
strong backscattering of beamed ultrasound pulses, not only with linear scattering, but mainly with
non-linear scattering, which usually is not relevantly present in most tissues. The different composition
of the US-CEs that have been used so far in UPI are displayed in Table 1.

Table 1. Ultrasound contrast enhancers having been used in brain perfusion studies (adapted from
[16]).

Name First Approved Gas Shell Material Producer/Distributor

Levovist® 1993, withdrawn Air Galactose
microparticles

Schering AG,
Berlin, DE

Optison® 1998 Octafluoropropane, C3F8
Cross-linked serum

albumin
GE healthcare,

Buckinghamshire, UK

SonoVue® 2001 Sulphurhexafluoride, SF6 Phospholipid Bracco diagnostics,
Milano, Italy

With increasing acoustic power, the microbubbles can be set into resonance vibrations, a process that
results in the additional emission of harmonic frequencies—multiples of the fundamental frequency.
This attribute enables various contrast harmonic imaging modes to detect the US-CE with high
sensitivity and to differentiate it from the surrounding tissue. This goal is usually achieved by a band
pass filter, which suppresses the fundamental frequencies.

Depending on the applied acoustic power, various interactions between the ultrasound beam and
the US-CEs occur. By further increasing the ultrasound energy, the microbubbles can burst. This effect
is referred to as “stimulated acoustic emission”, since bursting microbubbles emit their own ultrasound,
which in turn can be used for ultrasound imaging. The mechanical index (MI), originally defined to
predict the onset of cavitation in fluids, gives an on-screen indication of the likelihood of microbubble
destruction during examination. MI is defined as maximum value of the peak negative pressure
divided by the square root of the acoustic center frequency. The threshold between a low MI and high
MI is not clearly defined in cerebral imaging; however, an MI > 1.0 is needed for the destruction of the
microbubbles to compensate for the ultrasound absorption of the skull [10]. Therefore, actual acoustic
intensity in brain parenchyma is far less than in other organs as expected by mere MI values because of
the strong absorption of the skull. Overall, data acquisition modes can be divided in “non-destructive”
and “destructive” imaging modes:

2.1.1. “Non-Destructive Imaging Modes”:

Conventional Harmonic Imaging
Conventional harmonic imaging is a single pulse modality based on the described stronger

non-linear oscillation of US-CEs compared to the surrounding tissue. The non-linear oscillation results
in harmonic frequencies (multiples of the fundamental frequency), enabling the differentiation between
the signals of tissue and microbubbles by the use of band pass filters (Figure 4).
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Figure 4. The basic principle of harmonic imaging. (a) When an ultrasound wave passes through tissue,
the predominantly linear scattering of the erythrocytes results in a frequency, which is reflected back
to the probe, which is equal to the transmitted frequency (here: fundamental frequency of 1.8 MHz).
(b) “Harmonic imaging” due to non-linear scattering of the microbubbles: the resonance frequency of
the microbubbles is typically a multiple of the transmitted (or fundamental) frequency. The harmonic
frequencies are sent back to the probe, where they are used to create the image. Specifically, the second
harmonic frequency (2f0) is used. The fundamental component is filtered out, so that that the received
frequency of 3.6 MHz is two-fold higher than the transmitted frequency of 1.8 MHz.

Phase Inversion Harmonic Imaging
In phase (or pulse-) inversion harmonic imaging (PIHI), two echoes are acquired per line,

resulting from a pair of mirror-inverted transmit pulses. An acoustic wave in a medium (i.e., the first
transmit pulse) shows sinus-wave characteristics, so that a zone of overpressure is followed by a
symmetric zone of negative pressure. In case of a linear scatterer, the summation of the two scattered
and acquired echoes results in a reciprocative elimination, so that the fundamental is cancelled out.
With the use of US-CEs, the non-linear oscillation changes according to the absolute pressure, so that
the summation of the two echoes results in a mismatch, as the overpressure in the first echo will not
be equal to the negative pressure in the second echo. This mismatch is the same for both half cycles,
so that the result of the summation, in principle, is the second harmonic. Only this mismatch is
visualized, so that PIHI performs the separation of the second harmonic from the fundamental [8].

Power Modulation Harmonic Imaging
Like in PIHI, power modulation harmonic imaging (PMHI) represents a further multi-pulse

technique. Using multiple pulses with differences in amplitude, PMHI aims to detect the harmonic
response by sending several pulses and subtracting the responses, as the linear response reduces with
multi-pulsing and the harmonic response remains.

2.1.2. “Destructive Imaging modes”:

Contrast Burst Imaging and Time Variance Imaging
Contrast burst imaging (CBI) and time variance imaging (TVI) are derived from Power Doppler

in which pulses are broadband with high acoustic power. Power Doppler uses the Doppler shift in
frequency induced by the movement of the scattering objects, displaying the amplitude of the Doppler
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signal, instead of displaying this frequency shift. This technique can also be combined with a harmonic
bandpass filter. In this context, CBI detects the changes in the acoustic properties of microbubbles
that are caused by ultrasound-induced destruction, while suppressing tissue and clutter signals by
multiple echo measurements. TVI also depicts the time variant acoustic properties of microbubbles by
analyzing multiple pulse echo measurements, but TVI uses a contrast-agent-specific analysis strategy
to improve the suppression of noise and artifacts [9,17].

2.2. Data Acquisition and Processing

In order to detect the distribution of contrast enhancer in the micro vascular space,
various approaches of data acquisition as well as data processing have been applied [14].
Data acquisition, in this context, means the kind of ultrasound application, i.e., the specific harmonic
imaging technique used (see above). This can be done either with a constant setting during the
examination as well as with varying, e.g., the mechanical index (MI) in the course of the examination
in order to achieve specific effects on the course of received (“reflected”) noise. Data processing, on the
other hand, means the kind of analysis of the expected course of received noise alterations followed by
specific US-CE application (either as a bolus application or as a constant infusion) according to the
applied harmonic imaging regimen.

First reports were based on second harmonic imaging following a single application of US-CE
(bolus kinetics) [1,2,4–7]. Depth of insonation was initially restricted to 10 cm due to technical
constraints, i.e., only one hemisphere of the brain could be analyzed by the time (later called the
“unilateral” approach). Received time intensity curves (TIC) were analyzed by dedicated algorithms,
which derive specific parameters of wash-in and wash-out (such as time-to-peak intensity, TPI) by
fitting the actual information (TIC) to the expected course defined by pre-described mathematical
model functions [15] (compare Figure 5). Subsequent studies initially analyzed different harmonic
imaging modes like phase inversion harmonic imaging (PIHI) [8] and also adapted “destructive”
modes (applying higher MI) with the aim to increase signal-to-noise ratio (CBI and TVI) [10,17].
Due to the unilateral character of the examination, only qualitative information was extracted, i.e.,
perfusion could be classified as either normal or constricted. Another technical constraint of the
unilateral approach is the fact that tissue close to the probe cannot be analyzed due to nearfield artifacts.
Therefore, cortical areas of the brain cannot be evaluated.
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Figure 5. Theoretical course-of-time intensity curves in three different kinetic models as measured in
models. Dotted lines represent measured concentration and straight lines represent course of fitted
model function. (a) Bolus kinetic [8], (b) refill kinetic [18], and (c) depletion kinetic [15] with permission
of the original publishers.

Further technical approaches intended to extract qualitative information (i.e., the degree of
perfusion restriction) by applying different acquisition and processing approaches. The refill kinetics
approach applied a combination of low MI and high MI imaging during a constant infusion of contrast
enhancer [18]. The hypothesis was to destroy the US-CE by an ultra-quick series of high MI pulses
and then to display the “refilling” of tissue perfusion by low MI imaging, which should be dependent
on the state of perfusion. A given algorithm extracts specific parameters, which have been proven to
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represent semi-quantitative parameters in myocardial perfusion imaging. A different approach was
to apply a longer series of relatively slow frequent and high MI pulses during a constant infusion of
US-CE and thereby to evaluate the “depletion” of tissue perfusion, which should also be dependent on
the state of perfusion (CODIM) [9]. Figure 5 displays considerations on the mathematical function
describing three theoretical courses of time intensity curves of different kinetic models.

Another attempt to extract (semi-) quantitative data was introduced as the so-called bilateral
approach [8]. Here, imaging depth was set to 15 cm, visualizing not only one but both hemispheres in one
examination (compare Figures 2 and 3). This became possible due to improved ultrasound machines and
the introduction of second generation US-CEs (Optison®, SonoVue®), improving signal-to-noise ratio.
Two potential advantages were claimed. First, utilizing the so-called mirror approach, intra-individual
comparison of perfusion parameters in both affected and unaffected hemispheres could facilitate
semi-quantitative analyses. A prerequisite would be the depth-independence of at least one relevant
parameter, which could especially be proven for the time dependent parameter, time-to-peak intensity
(TPI) [11]. Second, once the affected hemisphere was on the far side of the probe, cortical areas of
the affected hemisphere could also be evaluated for perfusion impairments. Since cortical areas are
frequently involved in territorial infarction, this was seen as a relevant improvement.

Irrespective of data acquisition and processing modality, the evaluation of specific parameters
can be performed two-fold, either by the analysis of pre-defined regions of interest (ROI) or by the
presentation of parametric images, where data analysis is carried out by pixel-wise presentation
according to one specific parameter (e.g., time-to-peak intensity) [8]. Both processing modalities are
offered by industrial providers by now and have been tested against dedicated solutions recently [13].
Figure 6 displays both ROI-wise analysis and a parametric image in an acute stroke patient.
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Figure 6. Perfusion MRI time-to-peak (TTP) map of an acute stroke patient with expanded penumbral
perfusion delay in the territory of the middle cerebral artery (MCA) omitting basal ganglia (a).
Ultrasonic cerebral perfusion imaging UPI parametric image with a corresponding depiction of
time-to-peak intensity (TPI) delay in the MCA territory omitting basal ganglia (b). Exemplary depiction
of ROI-wise course-of-time intensity curve in normal perfused brain tissue (yellow curve corresponding
yellow box in (c) in basal ganglia of the unaffected hemisphere) and penumbral tissue (green curve and
box) in an acute stroke patient with MCA occlusion and apparent collateral compensation.

3. Validation to Standard Imaging

Validating different UPI approaches to standard imaging has been crucial from the beginning.
In the early studies, patients presenting with ischemic strokes were evaluated in a sub-acute time
window up to 24–48 h after symptom onset [1,2,4–7]. Therefore, the actual target was the identification
of already infarcted tissue, which was tested mainly against follow-up, non-contrast CCT. Since the focus
of interest shifted toward the differentiation between ischemic and penumbral tissue, validation tools
needed to become more sophisticated. However, CT (or MRI) perfusion imaging has not always been
as well accessible as it is today. Hence, one approach was to define parenchymal tissue as normal,
delayed-, or not-perfused in the acute UPI examination and correlate this classification to infarcted
and non-infarcted tissue in follow-up CCT according to early clinical course [12]. The hypothesis was
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that both delayed- and not-perfused tissue of initial UPI should be infarcted in follow-up CCT once
there had not been clinical improvement in the meantime. Once there had been distinctive clinical
improvement, only not-perfused tissue of the initial UPI exam should be infarcted in the follow-up CCT.

As a matter of fact, especially CT perfusion imaging gained a lot of interest at that time and started
its impressive road of success not just in clinical stroke medicine. Nowadays, CT perfusion imaging is
widely accessible, probably being the most important factor why the significance of UPI has not further
evolved. However, later UPI studies employed timely, correlated CT or MRI perfusion imaging and
recently proved that the bilateral approach of high MI bolus imaging, in particular, could distinguish
between unimpaired, delayed, and nullified perfusion [19]. Pre specified ROIs in both hemispheres
were determined; TPI values of the unaffected hemisphere served as an intra-individual normal value.
Values of the affected hemisphere yielded the perfusion status, either for specified ROIs or displayed
as parameter image for the whole imaging plane. Once TPI was within ±4 s as compared with the
intra-individual normal value, perfusion was unimpaired; a delay of more than 4 s indicated critically
hypo-perfused tissue, and nullified rise of TIC indicated infarction. Hereby, the ability of the method
to detect penumbral tissue in acute stroke was claimed.

4. Clinical Applications up to Date and Future Indications

Most of the UPI studies have been so far performed in acute stroke patients as described above.
Besides contrast-enhanced imaging of cerebral vessels, UPI has already been mentioned in the EFSUMB
guidelines and recommendations on the clinical practice of contrast-enhanced ultrasound (CEUS) in
2012 [20]. Studies have mainly been performed in territorial infarction due to main vessel occlusion.
One study proved that infarctions as small as 2 cm in diameter can be reliably detected [21]. Case series
have demonstrated detectable perfusion impairments in non-occlusive diseases as well [22,23]. In these
applications, the bilateral approach utilizing a high MI setting following a bolus application of contrast
enhancer seems to deliver the most robust information on the clinical questioning, focusing on vessel
occlusion and penumbral imaging. Future challenges of UPI in acute stroke should focus on multicenter
validation of up-to-date study results as well as the potential of mobile application. First attempts of
mobile cerebral ultrasound imaging in acute stroke have focused on vessel imaging [24], but also basic
perfusion imaging is challenged in one industrial project [25]. In addition to being a bedside method,
UPI may also be used for serial studies in order to follow-up on brain perfusion. One indication may
be early detection of successful recanalization. Serial assessment of UPI may also be used for the
guidance of hemodynamic therapy to optimize cerebral perfusion with UPI as a surrogate marker. In a
small study in stroke patients, improvement of cerebral perfusion detected by UPI was achieved due
to systemic hemodynamic optimization [26].

However, different indications may require different technical settings. Whilst ischemic stroke
remains the domain of UPI, it also has been used for identifying different acute or subacute cerebral
lesions other than ischemic. There are a few studies on patients with intracranial hemorrhage (ICH)
where UPI was used either to improve sonographic detectability of ICH or to describe perihemorrhagic
penumbral perfusion (compare Figure 7). ICH can be detected as a hyperechogenic mass lesion within
the brain parenchyma with a high sensitivity and specificity [27]. Detection and especially clear
distinction of ICH from the adjacent tissue may be difficult in severe cerebral microangiopathy, in lobar
hemorrhage, or in only small lesions. Comparable to CT-perfusion studies with a recess or severe
hypo-perfusion of contrast media within the hemorrhagic lesion [28], UPI shows a recess of ultrasound
contrast media especially within the ICH core and massive reduction of contrast media within the
hemorrhagic lesion. Consecutively, ICH appears hypo-echogenic compared to the adjacent tissue,
which is perfused normally as shown by the contrast agent with a clear delineation of the border
of ICH from the surrounding tissue. Thus, detection of ICH volume may be improved significantly,
especially in serial measurements [29]. Despite perihemorrhagic edema, the area of hypo-perfusion or
non-perfusion in ICH is fairly restricted to the hemorrhagic lesion itself with no or a very narrow area
of hypo-perfused tissue, e.g., perifocal penumbral perfusion. Conversely, parenchymal hemorrhagic



J. Clin. Med. 2020, 9, 816 9 of 13

transformation of ischemic stroke due to early spontaneous recanalization is difficult to distinguish
from primary ICH on native scan but is characterized by a significantly larger perifocal penumbral
zone of hypo-perfused tissue exceeding the hemorrhagic lesion by far [30]. Thus, UPI not only helps
delineating the border of ICH for more valid volume measurement but also allows distinction of
primary ICH from PHI.
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Figure 7. Perfusion imaging in intracerebral hemorrhage and hemorrhagic transformation of cerebral
infarction. Cerebral CT of intracerebral hemorrhage (ICH) of the right basal ganglia, (a) native
transcranial gray-scale sonography with hyperechogenic depiction of ICH (a1) and UPI with relative
hypo-echogenicity of ICH compared to contrast perfusion of cerebral tissue (a2) due to non-perfusion
constricted to the hemorrhagic lesion (c,c1). Cerebral CT of ICH due to hemorrhagic transformation (b),
native transcranial gray-scale sonography with hyperechogenic depiction of hemorrhagic transformation
(b1) and UPI with persistent hyperechogenicity of the hemorrhagic lesion due to omitted perfusion of
the surrounding tissue due to acute stroke (b2) with slowed or missing tissue perfusion (b2,d,d1).

Even though bedside monitoring of cerebral perfusion in brain trauma and acute or chronic
subdural hematoma is extremely interesting and theoretically may help in guiding therapy—for
instance by defining a surgical need in chronic SDH by detection of cortical hypo-perfusion due to
venous compromise—studies on UPI are lacking and data on brain perfusion in these patients generally
are scarce. Another application of UPI currently under scientific evaluation is the setting of aneurysmal
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subarachnoid hemorrhage (NCT02907879). UPI is evaluated with respect to its potential to diagnose
cerebral hypo-perfusion in the course of cerebral vasospasm.

Various authors have evaluated cerebral tumors and their ultrasound perfusion patterns [31–35].
UPI is not only able to increase the differentiation of normal brain tissue from brain tumors but
it is also helpful to differentiate different tumor types according to their perfusion pattern [32].
Tumor tissue shows a dramatic rise of contrast enhancement and high peak intensities compared
to normal brain parenchyma [32]. When comparing benign and malignant tumors, there were no
significant differences in peak intensities of the time–intensity curves, yet malignant tumors showed
shorter times-to-peak intensities [32]. In the eyes of the authors, UPI is a rapid, practical and
cost-effective technique, especially in critically ill patients or if multiple consecutive examinations
are necessary. During intraoperative application, ultrasound allows the surgeon to localize a lesion
in real-time even before the opening of the dura. This facilitates the surgical access and is a useful
add-on to neuronavigation [36,37]. In addition, UPI enables the surgeon to assess tumor enhancement,
vascularity, and perfusion, and to control for completeness of resection [38–40]. UPI has been applied
in a variety of different brain tumors, e.g., gliomas and metastases [40,41]. In a recent study, Prada et
al. characterized intraoperative contrast-enhanced ultrasound images of various brain tumors [40].
They also found a high accuracy between US-based real-time neuronavigation and preoperative MRI
findings. The authors concluded that contrast application is useful for the localization, definition of
borders, and depiction of the vascularization and perfusion pattern of brain tumors [40]. In another
study, UPI was specifically evaluated in brain space-occupying lesions and could identify specific
patterns of brain perfusion [42]. It could be shown that meningeomas and glioblastomas, if no large
areas of necrosis were present, showed an increased perfusion, while in tumors with necrosis the
perfusion was reduced as compared to normal tissue, although in total only 15 brain tumors were
evaluated. In another study, it was shown that the differentiation between tumor and normal brain
tissue was superior after administration of US-CE [41]. US-CE also enabled the control of completeness
of resection, yet this was dependent on technical aspects like the position of the resection cavity.
UPI has the potential to become a helpful tool for the surgeon during intraoperative application,
yet larger studies are needed.

5. Restrictions of the Method and Safety Considerations

Despite the proven evidence of reproducibility and robustness, especially of time-based parameters
of the bolus kinetic, no widespread application of UPI modalities has yet been achieved. Partly, this may
be due to some well-known limitations of the method. First, a sonolucent transtemporal bone window
is needed. Up to 15%–20% of the elderly patients present with an insufficient bone window, so that
UPI is not applicable. Second, patients need to be compliant, so that the transducer can be held in
position for the 45–60 s of data acquisition. Especially, severely affected patients may be agitated
and therefore unsuitable for the method, bearing in mind that the procedure is hand-held. Third,
using the bolus kinetic approach only one two-dimensional imaging plane can be evaluated per bolus
application. Therefore, quantification is restricted to an investigation plane that has to be chosen
beforehand. However, future development of three-dimensional insonation systems may overcome
these limitations. Fourth, quantification is yet only semi-quantitative, i.e., no absolute values can
be determined. However, quantification (in acute stroke) as described above utilizes the mirror
approach, which is also common in CT and MRI perfusion imaging. In addition, quantification
has only been proven for one parameter (TPI). Other parameters have to be challenged in future
studies. Regarding safety of UPI, there have been apprehensions of side effects of both US-CE
and administration of ultrasound pulses on brain integrity. These have mainly been triggered
by results of studies applying long-lasting, whole brain, low-frequency insonation in the setting
of ultrasound-enhanced thrombolysis, resulting in massive hemorrhage and blood–brain barrier
disruption [43,44]. However, applying standard settings of transcranial insonation, UPI is regarded
safe with no evidence of blood–brain barrier affection [45,46].
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6. Conclusions

Cerebral ultrasound perfusion imaging has the potential to serve as a supplementary tool
to conventional diagnostics in various clinical questionings. As long as temporal bone window
is present, a multi-modal approach of vascular imaging for the detection of vessel occlusion,
microvascular perfusion impairment or intracerebral hemorrhage is covered by the method. In addition,
conventional contrast-enhanced imaging omitting the quantification of perfusion may serve as an
extension of diagnostic properties. The unique feature of mobility facilitates application at the bedside.
This could enable pre-hospital diagnostics, but also easy-to-apply follow-up diagnostics in the intensive
care unit or stroke unit as well as in the operating room. Future developments should focus on
multi-center studies to validate the findings described in this manuscript and the development of
automated algorithms for examiner independence.
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