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Abstract

Many variants with low frequencies or with low to modest effects likely remain

unidentified in genome‐wide association studies (GWAS) because of stringent

genome‐wide thresholds for detection. To improve the power of detection, variant

prioritization based on their functional annotations and epigenetic landmarks has

been used successfully. Here, we propose a novel method of prioritization of a

GWAS by exploiting gene‐level knowledge (e.g., annotations to pathways and

ontologies) and show that it further improves power. Often, disease associated

variants are found near genes that are coinvolved in specific biological pathways

relevant to disease process. Utilization of this knowledge to conduct a prioritized

scan increases the power to detect loci that map to genes clustered in a few

specific pathways. We have developed a computationally scalable framework

based on penalized logistic regression (termed GKnowMTest—Genomic Knowl-

edge‐guidedMultiplte Testing) to enable a prioritized pathway‐guided GWAS scan

with a very large number of gene‐level annotations. We demonstrate that the

proposed strategy improves overall power and maintains the Type 1 error globally.

Our method works on genome‐wide summary level data and a user‐specified list

of pathways (e.g., those extracted from large pathway databases without reference

to biology of a specific disease). It automatically reweights the input p values by

incorporating the pathway enrichments as “adaptively learned” from the data

using a cross‐validation technique to avoid overfitting. We used whole‐genome

simulations and some publicly available GWAS data sets to illustrate the appli-

cation of our method. The GKnowMTest framework has been implemented as a

user‐friendly open‐source R package.
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1 | INTRODUCTION

Genome‐wide association studies (GWAS) have discovered
thousands of single nucleotide polymorphisms (SNPs) ro-
bustly associated with various common complex diseases
and traits (Visscher et al., 2017). However, many common
variants that are truly associated with common diseases
possibly still remain to be detected above the stringent
genome‐wide significance threshold (e.g., 5 × 10−8). To dis-
cover all such variants by standard GWAS (or meta‐anlaysis)
alone would require huge sample sizes (Zhang, Qi, Park, &
Chatterjee, 2018). Individually many of these SNPs would
have modest effects but collectively they can explain a
significant percentage of missing heritability of the diseases/
traits (Speed, Cai, Johnson, Nejentsev, & Balding, 2017) and
also help in enhancing the biological understanding about
genes and pathways involved in pathogenesis. Hence, it is
crucial to develop complementary approaches to accelerate
the discovery of common disease‐associated variants from
GWAS data. With this realization, there has been substantial
and consistent interest in developing statistical methods for
prioritizing SNPs in a GWAS based on prior knowledge, such
as their location, functional annotations, epigenetic features
or expression quantitative trait loci (eQTLs) evidence
(Iversen, Lipton, Clyde, & Monteiro, 2014; Nicolae et al.,
2010; Pickrell, 2014; Schork et al., 2013; Sveinbjornsson
et al., 2016; Yang, Fritsche, Zhou, & Abecasis, 2017).

In the context of prioritizing SNPs in GWA studies, the
primary focus has been on SNP‐level annotations such as
those based on physical context of a SNP (genic/intergenic or
exonic/intronic) and tissue specific functional annotations
overlapping a SNP (e.g., promoter/enhancer marks, open
chromatin, etc.), or SNPs assoicated with multiple correlated
traits (Bhattacharjee et al., 2012; Ellinghaus et al., 2016).
Lesser attention has been given to gene‐level annotations
(such as pathways), in terms of using pathway knowledge a
priori to guide discovery in GWAS. Pathways constitute a
rich source of prior knowledge in the sense that, the genes
mapping to loci identified from GWAS of particular disease
tend to cluster into a few specific biological pathways/net-
works. This prior information is ignored when one conducts
an unbiased traditional GWAS. To give a hypothetical ex-
ample, suppose that 90% of all infectious disease suscept-
ibility SNPs map to genes within a small number of
pathways (say k pathways) related to immunity. Due to
accumulation of several small effects of multiple variants,
such pathways can be identified as “relatively important”
empirically based on a “peek” at the GWAS data. A SNP “A”
on a gene that maps to k′ ( k< ) of these out of these k

important pathways is a priori much more likely to be a true
susceptibility SNP, compared to another SNP “B” that is in a
gene desert or a SNP “C” that maps to genes in other
pathways, and hence it is natural to upweight SNP “A”

relative to SNPs “B” and “C” as a genome‐wide multiple‐
testing strategy to improve overall power of discovery. In this
strategy, multiple SNPs clustering in some common path-
ways boost each other to receive higher weight, whereas
SNPs in isolated or insufficiently annotated genes auto-
matically get down‐weighted.

It is important to note that prespecifying a set of
“important pathways” based on subjective knowledge can
lead to huge power loss when the candidate pathways turn
out to be incorrect (Roeder, Devlin, & Wasserman, 2007).
Ideally the relative importance of pathways should be auto-
matically determined from the GWAS data. Given GWAS
results, it is possible to map SNPs onto genes and then
conduct pathway enrichment analysis (Wang, Li, & Hako-
narson, 2010) or network analysis (Jia & Zhao, 2014) to
biologically interpret findings. However, such post hoc
enrichment analysis does not lead to discovery of additional
(novel) SNPs beyond those with p values below genome‐wide
significance threshold (p < 5 × 10−08). For this, we need a
pathway‐guided GWAS strategy that can help discover more
SNPs by improving the statistical power of detection. Some
existing methods allow incorporation of pathways in GWAS
analysis using Bayesian models to achieve prioritization and
return posteriors or Bayes factors as output (e.g., Bush, Du-
dek, & Ritchie, 2009; Carbonetto & Stephens, 2013; Chen &
Thomas, 2010; Lee, Blom, Wang, Shim, & Marcotte, 2011).
Here, we develop a generic framework for pathway‐based
prioritization that allows the user to adhere to the usual p
value threshold for genome‐wide significance. Pathway‐
guided GWAS can be particularly useful for secondary re-
weighted analysis of GWAS data for making additional dis-
coveries. The method is specifically designed to be able to
incorporate knowledge from a large number of pathways in a
scalable computationally efficient manner. Further, it is easy
to implement in any statistical software package making it
accessible for routine use by the community.

The proposed method starts by accepting summary‐level
data (e.g., p values of each SNP from a GWAS) and a user‐
supplied list of pathways as input. It maps the SNPs onto
genes (based on physical location) and then onto the path-
ways. The “prior” chance of each SNP to be “truly” asso-
ciated, is estimated in a data‐driven manner based on the
“degree of enrichment” of the pathway(s) that the SNP maps
to. Once the priors are determined, the multiple testing
penalty is allocated differentially so that SNPs with higher
prior are penalized less and have greater chance of being
discovered. Here, we used the p value weighting method
(Roeder & Wasserman, 2009; Roeder et al., 2007) that al-
lowed us to maintain the overall false‐positive rate at the
same stringency as a traditional GWAS (e.g., p < 5 × 10−8)
and at the same time weights can be allocated “optimally” in
the sense of maximizing overall power of discovery. The
method returns weighted p values of each SNP which can be
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treated as p values from a standard GWAS in the sense of
global error and a standard Manhattan plot can be used to
visualize results.

To achieve computational scalability, we use a novel
technique termed PMLR (Posterior Marginal Logistic Re-
gression) to fit our model and estimate the prior probability
of each SNP based on annotations. This approach only re-
quires fitting penalized logistic regression for model fitting,
making it fast and stable in terms of convergence even in
presence of large number of annotations. Through genome‐
wide simulations we demonstrate that our approach main-
tains correct global false‐positive rates and improves power.
We demonstrate application of the method on multiple real
GWAS datasets (e.g., psoriasis, type 2 diabetes). The frame-
work has been implemented in an R package “GKnowMT-
est” (Genomic Knowledge‐guided Multiple Testing) that is
freely available from github. It will be submitted to the R/
Bioconductor repository that conveniently hosts a rich col-
lection of annotation packages and mirrors some publicly
available pathway databases and ontologies.

2 | METHODS

2.1 | Statistical method and algorithms

Our algorithm consists of two distinct modules for (a)
“Enrichment‐Estimation” of annotation categories,
where the degree of enrichment of each functional an-
notation is estimated from the genome‐wide data (e.g.,
summary‐level Z‐scores) and (b) “Prioritized‐Testing”
step where Type 1 error is allocated differentially to the
annotation categories based on the enrichments. For each
module we propose efficient and computationally
scalable methods as described below.

2.1.1 | Model and notation

Suppose we have summary‐level data in the form of
Z‐scores Z Z Z, , …, M1 2 for each of the M SNPs tested in a
GWAS. Further, we have K user‐specified categories of SNPs
(henceforth called “annotations”) defined based on knowl-
edge external to the GWAS. Specifically, here we consider
gene‐level priors in the form of user‐specified “gene sets”
(pathways). SNPs are mapped to pathways based on their
physical proximity to genes of each pathway (see section
“Mapping SNPs to gene‐level annotations”). Thus each SNP
is mapped either to a few pathways or remains unmapped.
This provides an annotation matrix for the SNPs, V = 1jk if
the jth SNP maps to the kth annotation and V = 0jk

otherwise.

We assume that the Z‐scores of each SNP are mar-
ginally drawn from a two‐group mixture model of a null
(N (0, 1)) and an alternate distribution f1, with the “prior
probability of being a true SNP” πj possibly varying across
SNPs. We assume that this prior probability is de-
termined by the annotations of the SNP through a logistic
linear model. Thus, the Z‐score of the jth SNP is
distributed as follows:
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where γ denotes the log‐odds of a SNP to be associated if
it does not belong to any of the annotations and η denotes
the vector of log‐odds ratios contributed by each anno-
tation. Logistic modeling is commonly used to accom-
modate large number of prior annotations (Iversen
et al., 2014; Pickrell, 2014). However a crucial difference
in our scenario is that, the δ = 1j in our model refers to an
associated SNP (for univariate GWAS), whereas in other
contexts it indicates causality of a SNP in a multivariate
model, which is meaningful in the context of identifying
causal variants.

2.1.2 | Enrichment estimation by PMLR

The product of marginal likelihoods of each SNP can be
maximized to obtain reasonably good estimates (see
“Supporting Information Methods”) of the parameters. It
is given as product of the mixture density for each SNP
that is
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Maximization of the likelihood model can be computa-
tionally difficult when there are a large number of an-
notations, even more so in presence of penalization (e.g.,
LASSO penalty). We propose a novel method to estimate
the model coefficients termed PMLR involving two
sequential steps.
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Obtaining posterior marginals
As the first step, the prior information is ignored and
marginal “Posterior Probability of Association” (mPPA) of
each SNP is derived. This can be done in various ways
such as by assuming f1 to be normal (Carbonetto &
Stephens, 2013; Kichaev et al., 2014; Pickrell, 2014; Roeder
& Wasserman, 2009; Roeder et al., 2007). Here we use a
more nonparametric approach following the local FDR
method of Efron (2005). Efron's local FDR works by
obtaining the nonparametric density estimate of the mar-
ginal distribution f̂ of the Z‐scores. The local‐fdr for the jth
SNP is then given by

∣lfdr j Pr δ z
N z π

f z
( ) = ( = 0 ) =

(0, 1; ) ˆ

ˆ ( )
,j

j

j

0 (2)

where π̂0 and f̂ denote, respectively, the estimated
“proportion of null SNPs” and “marginal density.” The
mPPA of each SNP is then given by ψ lfdr j= 1 − ( )j .

Penalized logistic regression to derive priors
To derive SNP prior probabilities, we use penalized logistic
regression of the mPPA values on the annotations and a
sparseness penalty as follows. When there are a large num-
ber of SNPs having identical set of annotations the SNPs can
be merged into an equivalence class and represented as a
single row. The average within‐class mPPA value is used as
the response. This strategy can provide substantial compu-
tational savings (see “Supporting Information Methods”).
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where Vi denotes the ith row of the annotation matrix V ,
corresponding to the ith equivalence class. To fit the
parameters we minimize the function below for specific
values of α and λ, that is,
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where κ βloglik( , ) denotes the log‐likelihood function
based on the logistic model. For model fitting, see sections
“Computation and Scalability” and “Choice of Tuning
Parameter” below. Finally, the shrunk estimates of the SNP
prior probabilities are given by the fitted values.
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The above procedure can be interpreted as a single step
of an EM‐algorithm starting from a valid initial

estimate (as shown in the “Supporting Information
Methods”).

2.1.3 | Prioritized multiple testing

After prior probabilites are estimated, existing methods
control FDR or posterior probabilities of SNPs or regions to
be true (Carbonetto & Stephens, 2013; Kichaev et al., 2014;
Pickrell, 2014). Recently (Sveinbjornsson et al., 2016) pro-
posed different genome‐wide thresholds for SNPs based on
annotations under global FWER control that is analogous to
weighting of p values (Roeder & Wasserman, 2009). Tra-
ditionally, in the context of GWAS, family‐wise error rate
(FWER) has been the accepted standard for Type 1 error
control. Hence we restrict to the FWER‐controlling
weighted p value approach in this study, so that the con-
ventional criterion for GWAS significance (p< 5e−08) can
be used after the reweighting of p values.

Given prior probabilities of truths π( ˆ )i in each anno-
tation group, we use a decision theoretic criterion similar
to Roeder and Wasserman (2009). We consider the
maximizing the expected number of true positives among
all the tests constraining the expected number of false‐
positives (under the global null) to the desired FWER
level α( = .05).

Assuming w ′i are the SNP‐level p value weights, the
expected number of true positives is
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where F1 and Φ denote the null and alternative upper tail
CDFs of the Z‐scores. This needs to be minimized under
the gobal Type 1 error constraint w′ = 1 (see “Supporting
Information Methods” for details). The weighted p values
discussed above are not uniformly distributed under the
null hypothesis. However, they can be treated as usual
p values in the sense that the global (average) Type 1
error is maintained at the target level α.

Cubic p value weights (CPW)
Here, we assume the SNP‐level weights in a class (at the
log‐scale) to be a cubic function of the prior log‐odds of
truth for SNPs in that class, that is

( )w γ γ β γ β γ β′ = exp + + + ,i i i i0 1 2
2

3
3

where β = log[ ]i
π

π

ˆ

1 − ˆ
i

i
. We performed limited experiments

with higher order polynomials, but did not find any sig-
nificant improvement after cubic exponent. Invoking the
constraint that w′ = 1, we get,
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Finally, power (i.e., E[TP]) as in Equation (6) can be
maximized over weights parametrized by γ γ γ( , , )1 2 3 , an
unconstrained optimization problem. As an alternative
distribution we used N μ τ( , 1 + )2 here, but a nonpara-
metric CDF estimate F̂1 can be used instead.

Simple p value weights (SPW)
This scheme is essentially CPWwith γ γ γ( = 1, = 0, = 0)1 2 3 .
This is similar to simple weights “proportional to odds‐ratio”
considered previously (Sveinbjornsson et al., 2016). However,
it should be noted that, in our context, odds of a category is
based on coefficients of multiple regression rather than an
univariate analysis.

2.1.4 | Mapping SNPs to gene‐level
annotations

To incorporate pathway knowledge into GWAS it is first
required to map SNPs onto pathways. For this, we obtained
the physical positions of the SNPs from dbSNP and that of
the genes listed in the input pathway using a reference map
of transcripts based on the same genome build (e.g., hg19).
Any SNP mapping to any of the genes in a particular
pathway was considered to map to that pathway/annota-
tion (See “Supporting Inforamation Methods”). We used
biological knowledge from three different databases. These
were (a) the gene lists for 229 KEGG pathways (Kanehisa &
Goto, 2000), (b) 142 gene sets comprising transcription
factors and their validated targets derived from Transfac
(Matys et al., 2006) and (c) 2,326 Gene‐Ontology (Biological
Processes; Ashburner et al., 2000) by merging or breaking
the nodes with too few or too many genes. Finally, the gene
sets separately obtained from KEGG, Transfac and GO‐BP
were merged to provide 2,697 “Merged” annotations.
For details of the above annotation sets see “Supporting
Information Methods.”

2.1.5 | Choice of tuning parameter

The tuning parameter λ (degree of penalization for
LASSO) is chosen by performing 10‐fold Cross Valida-
tion. We divide the entire SNP set into training and test
sets 10 times for cross‐validation (CV). For each CV re-
plicate, we randomly assign half of the SNPs to the
training set and the remaining to the test set. Assignment
of SNPs is done in short segments (i.e., preserving stret-
ches of contiguous SNPs) to account for LD structure. We

fit our penalized logistic regression model using glmnet
on the training data and calculate overall power (i.e.,
expected number of true positives) for the “Simple
Weighting” method in the test data for different values of
λ. We select the λ for which the maximum power is
obtained on an average over 10 sets.

2.1.6 | Computation and scalability

We have implemented our algorithm described above into a
scalable pipeline within an R package “GKnowMTest.”

The overall flowchart of our package is shown in
Figure 1. First, the input SNP list and list of gene‐level
annotations is processed bioinformatically to map SNPs
onto pathways. Further, SNPs with identical sets of anno-
tations are grouped into equivalence classes. This optional
step can provide significant savings in computation time
and memory usage. The mappings along with the equiva-
lence information is stored into an “AnnotatedSNPSet”
object. The posterior marginals are obtained using the
R package locfdr (Efron, Turnbull, & Narasimhan, 2015).

The sparse generalized linear model (GLM) in
Equation (4) can be efficiently fitted using the R package
glmnet (Friedman, Hastie, & Tibshirani, 2010) that uses
the fast “cyclic co‐ordinate descent” algorithm for fitting.
It allows the user to control the type of sparseness penalty
and degree of shrinkage through the α and λ parameters.
α controls the type of penalty (α = 0 for LASSO, α = 1 for
Ridge and intermediate values α0 < < 1 for Elastic
NET). For the real data sets which we analyzed, LASSO,
Ridge, and Elastic‐Net penalties returned very similar
results (results not shown). Hence we used LASSO (i.e.,
α = 1) throughout for our analyses and simulations.

Finally, for Type 1 error allocation with CPWmethod,
unconstrained optimization by Nelder Mead was im-
plemented using the optim function in R. To assess the
computation times of our Enrichment Estimation
(PMLR) to a MLE based approach, we compared the
running times with FGWAS software (Pickrell, 2014),
although this method is not directly applicable in our
context. For the time comparison we used KEGG and a
merged combination of KEGG and Transfac annotations.

2.2 | Whole‐genome simulations

2.2.1 | Simulation algorithm

We developed an in‐house algorithm for directly simu-
lating a large number of (independent) causal loci ret-
rospectively for a given number of cases and controls.
The algorithm (implemented in R) works by simulating a
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latent variables for causal loci from multivariate nor-
mality with different means in cases and controls, and
then thresholding the latent variables to get the geno-
types (see “Supporting Information Methods”). In this
way, 500 replicates of the Z‐scores at the causal SNPs are
simulated and then a truly associated region is simulated
within a 1MB neighborhood of the causal SNP, and fi-
nally remaining Z‐scores are simulated from the null (see
“Supporting Information Methods”).

2.2.2 | Type 1 error and power

Our simulations were modeled using psoriasis, in the sense
that the MAFs and ORs of the causal SNPs and genomic
locations were chosen to be close to that of 25 suggestive
GWAS loci (i.e., p<1e−05) of psoriasis from the GWAS
catalog. The simulations were repeated 500 times to check
the Type 1 errors for various levels by treating SNPs outside
±1MB of the causal SNPs as null SNPs. We used the
Z scores of the causal SNPs (but not neighboring SNPs) to
assess power at α = 10−3 or 10−5 or 10−7.

3 | RESULTS

3.1 | Simulation results

To study the Type 1 error and power properties of
our method, we simulated 1,500 case and 1,500 control
genomes. The results are outlined below.

3.1.1 | Type 1 error

First, for the two weighting schemes namely, Simple
weights (SPW) and Cubic weights (CPW) as discussed in
Secion 2, we checked if the Type 1 errors are maintained
at different levels starting from 0.1 to stringent levels
1e−07.

Figure 2 provides the bar plot showing Type 1 errors
of unweighted and weighted p values for different
weighting schemes. It was observed that the Type 1 error
for both the SPW and CPW schemes are correctly
maintained within target levels. It should be noted that
here we considered only global Type 1 error (not SNP
specific) averaged over all null SNPs across the genome
using 500 whole genome simulations (see also Section 2).
At extreme tail (1e−07), the Type 1 error estimates were
not very accurate for 500 simulations but the SPW
and CPW methods had similar Type 1 error as the
“Unweighted” method.

3.1.2 | Overall and SNP‐specific power

Overall power of weighted‐analysis (both SPW and CPW)
was consistently higher than unweighted analysis across
levels of significance (Figure S1). The power of the two
alternative weighting schemes is similar, although cubic
weights (CPW) performed slightly better than simple
weights (SPW) at lower levels. In terms of power for
specific SNPs (Figure S2), we found that while some
SNPs gain power, some are essentially unaffected while a

FIGURE 1 Workflow of R package “GKnowMTest”
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few of them lose power. It is evident from the figure that
the gain in power is much more both in terms of mag-
nitude and number of causal SNPs compared to the loss
of power. Isolated true SNPs (not connected to other true
SNPs through supplied annotations) are expected to lose
power. Thus supplying better annotations in pathway‐
guided search can help in discovering additional loci
missed by primary unbiased GWAS (see Section 4).

3.1.3 | Connectedness and power

It is expected that when a causal gene is “more related” to
other causal loci through pathways, it should have a
higher power of being detected. The prioritization
method works better when more causal SNPs cluster into
a smaller number of pathways. To illustrate this, we
generated three pathway lists with increasing degree
of connectivity among “truly associated” genes (see
“Supporting Information Methods” for details. Figure 3
shows power curves for these three lists with Tp denoting
“number of true pathways” (selected for enrichment) and
Tg denoting the “number of true genes” allocated to each
such pathway. We found that the overall power of the
study is considerably higher for the “moderately con-
nected” list and highest for the “highly connected”
pathway list. The increase of power with connectivity is
maintained across all significance levels. Further, we did

simulations with increasing connectivity among a ran-
domly selected set of “null genes” (instead of “true
genes” used for power simulations), and confirmed that
there is no inflation of global Type 1 error (Figure S3).
These results show that when the causal loci are more
connected to each other in pathways, they contribute to
the enrichment of the pathway and thus increase the
overall power of detecting causal SNPs from weighted
analysis.

We used real GWAS data sets to show the efficiency
of our method in identification of novel loci that were
otherwise lost due to the stringent genome‐wide thresh-
old. We used summary level data of four different dis-
eases namely psoriasis, SLE, coronary artery disease
(CAD) and type 2 diabetes. The type 2 diabetes data re-
sults are explained below. Results for the other diseases
are described in “Supporting Information Results”
section.

3.1.4 | Shrinkage and power

It is crucial to estimate the degree of penalization
from the data, because if penalty is over‐specified or

FIGURE 2 Barplot of Type 1 error for unweighted and
weighted p values across levels of significance levels. X axis
shows −log 10 values of Type 1 error achieved and Y axis shows
the significance level at which each SNP is rejected (target
level). The plot shows that the Type 1 error is maintained at
different levels of significance

FIGURE 3 Change of overall power curve with
connectivity of genes using synthetic pathway lists. Tp denotes
number of “true pathways” (selected to be enriched) and Tg
denotes number of true genes allocated to each “true pathway.”
X axis shows levels of significance and Y axis shows overall
power. Black, red, green, and blue lines show overall power
across significance levels, respectively, for unweighted analysis,
first synthetic pathway list (T = 40p , T = 5g , i.e., low
connectivity), second pathway list (T = 35p , T = 8g , i.e.,
moderate connectivity) and third pathway list (T = 30p ,T = 10g ,
i.e., high connectivity among true genes)
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under‐specified it can lead to loss of power. To verify this,
we estimated power of the causal SNPs for a sequence of
λ values (the default sequence of λ values from glmnet)
for the LASSO penalty.

Figure 4 shows that the overall power of detection is
close to that of “unweighted analysis” for large λ values
(i.e., low degrees of freedom) and increases gradually
with decreasing λ (i.e., higher degrees of freedom). This is
because when λ is too large, the weights shrink towards
zero, and the PMLR method becomes essentially similar
to “unweighted analysis” which has lower power. How-
ever, for very small λ values overfitting can result in loss
of power. The figure shows that weighted analysis with
cross‐validation avoids over‐fitting and has the highest
power overall across levels.

3.2 | Analysis of real GWAS data sets

3.2.1 | Time comparison with MLE

It is of interest to look at the computational speed‐up
achieved using PMLR instead of full‐likelihood max-
imization generally used in other tools. We used FGWAS
(Pickrell, 2014) and our method to run the real data of

psoriasis. The running time for FGWAS for 229 KEGG
pathways was 3 h 40min while our method took 10min
37 s to run on the same data. Next we merged KEGG and
TRANSFAC annotations (376 annotations in total) and
compared the running times. FGWAS took 4 h 43min
while our method 10min 41 s for the same set of SNPs
and annotations. For the above comparisons we used a
linux computer with i7‐5500U CPU and quad processor
of 2.40 GHz and 16 GB DDR3 RAM running Ubuntu
16.04 LTS. Thus our PMLR approach works much faster
than full‐likelihood maximization implemented in a
popular existing SNP‐prioritization method (FGWAS).

3.2.2 | p value weights and shrinkage

Using the summary results obtained from the analysis of
psoriasis data (Tryka et al., 2013) downloaded from dbGAP
(described in “Supporting Information Methods”), we stu-
died the behavior of p value weights generated by our
method with change of penalty (λ). For this, we considered
KEGG pathways (Kanehisa & Goto, 2000; see Section 2) as
annotations. The input p values were transformed to
Z‐scores as Z P= Φ 1[1 − ]j j

− . The PMLR method was ap-
plied using the R packages locfdr to obtain mPPA (Marginal
Posterior Probability of Association) values and glmnet for
penalized logistic regression using LASSO penalty (i.e.,
α = 1). A decreasing sequence of λ values was used to
derive priors and hence p value weights (using the Cubic
Weighting, i.e., CPW method).

Figure 5 shows change in the spread of p value
weights (in the log10 scale) with various λ values for
LASSO penalty. As expected, the weights have increasing
variability around 1 as the degree of shrinkage (λ) de-
creases. For the largest λ value, the coefficients are all
shrunk to zero and hence the weights are all 1 (i.e.,
reduces to unweighted analysis).

3.2.3 | Comparison among different
annotation sets

We conducted reweighted analysis of the summary results
from psoriasis GWAS with KEGG, Transfac, GO (BP) and
MERGED annotations separately and inspected 18 known
psoriasis associated SNPs (i.e., p< 5e−08) from the GWAS
catalog (MacArthur et al., 2017) that were genotyped in
our data. The unweighted p values and weighted p values
based on all four annotations are shown in Table 1, sorted
by unweighted p value. As seen from this table reweighted
p values are smaller than unweighted p values in many
cases (shown by bold) except toward the bottom of the
table, containing SNPs for which there is no association

FIGURE 4 Change of overall power curve with Lasso
penalty. X axis shows levels of significance and Y axis shows
overall power. Black and green solid lines show power for
unweighted and weighted analysis (df= 5; Lasso with 10‐fold
CV). The red line shows power when weights were derived with
λ corresponding to fewer degrees of freedom (df= 2) than the
optimum λ and the blue line shows power when weighted with
λ corresponding to higher degrees of freedom (df= 10) than the
optimum λ thus leading to over‐fitting
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FIGURE 5 Box plots of weights with change in LASSO penalties. X axis gives the LASSO penalty λ and Y axis gives the p value
weights (based on cubic optimization). The plot shows increase in the spread (variability) of p value weights with decrease in penalty.
For the highest penalty all weights are shrunk to 1 (unweighted analysis)

TABLE 1 Results of reweighted analysis of psoriasis GWAS data for 18 known psoriasis associated SNPs using four different
annotation sets

SNPs Genes Unweighted KEGG TRANSFAC GO.BP MERGED

rs12191877 HLA‐C 6.47E−22 4.91E−23 6.65E−22 1.89E−23 2.06E−23

rs2082412 IL12B 1.97E−08 5.18E−09 5.16E−09 2.20E−09 2.04E−09

rs20541 IL13 5.98E−07 5.00E−08 8.66E−08 4.63E−08 3.88E−08

rs17728338 TNIP1 9.25E−05 1.10E−04 9.12E−05 1.07E−04 1.16E−04

rs240993 TRAF3IP2 2.64E−04 2.83E−04 1.99E−04 1.88E−04 1.82E−04

rs2201841 IL23R 3.72E−04 3.70E−04 2.78E−04 7.63E−05 8.08E−05

rs2066807 IL23A 4.71E−04 3.47E−04 3.01E−04 1.06E−04 1.49E−04

rs610604 TNFAIP3 5.06E−04 4.96E−04 5.09E−04 2.85E−04 2.81E−04

rs11795343 DDX58 2.89E−03 2.58E−03 3.21E−03 1.55E−03 1.75E−03

rs11053802 KLRK1 1.50E−02 1.83E−02 1.29E−02 1.47E−02 1.60E−02

rs492602 FUT2 3.15E−02 1.69E−02 1.45E−02 1.85E−02 6.26E−03

rs1990760 IFIH1 9.39E−02 9.96E−02 9.65E−02 3.59E−02 5.17E−02

rs4795067 NOS2 1.11E−01 8.89E−02 8.25E−02 1.36E−01 1.41E−01

rs4085613 LCE3D 1.85E−01 2.04E−01 1.90E−01 1.50E−01 1.64E−01

rs2944542 ZNF365 2.26E−01 2.50E−01 2.33E−01 2.64E−01 2.64E−01

rs9513593 UBAC2 2.86E−01 3.15E−01 2.93E−01 4.75E−01 4.70E−01

rs10789285 LRRC7 4.66E−01 5.15E−01 4.79E−01 5.43E−01 5.43E−01

rs27524 ERAP1 6.27E−01 6.92E−01 3.47E−01 4.62E−01 4.04E−01

Note: Bold font indicates lowest p value for each row.
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signal in this data. Further the SNP rs20541 mapping to
IL13 gene become genome‐wide significant using the
MERGED annotation. The results for “MERGED” seem to
be dominated by “GO.BP” which has relatively much
larger number of annotations but there were exceptions
such as rs492602 SNP in the FUT2 gene. Overall, the
MERGED annotation set was the most powerful giving
close to smallest p values in most cases. Thus, in situations
where there are multiple annotations with different kinds
of information, creating a pooled annotation set (such as
“MERGED”) may be effective. We used the MERGED
annotation set for all the reweighted GWAS analyses in
this article. It should be noted that “MERGED” is just an
example of a generic annotation set, such annotations sets
can be defined in many different ways. However, a sui-
table set of annotations to be used for a specific reweighted
GWAS analysis should be predetermined by the in-
vestigator rather than using a trial‐and‐error approach (see
Section 4).

3.2.4 | DIAGRAM consortium
T2DM data

We downloaded summary data on type 2 diabetes from
the DIAGRAM (Diabetes) consortium website. These

data were based on the stage 1 meta‐analysis of 8,130
T2DM cases and 38,987 T2DM controls of from European
population (Voight et al., 2010). Unweighted analysis
showed 12 GWS loci. Pathway guided GWAS with the
MERGED annotation set selected 166 annotations (i.e.,
pathways) upon cross‐validation and gave six “crossover”
loci (i.e., loci that were not GWS in the unweighted
GWAS analysis, but became significant after weighting).

The Manhattan plots before and after weighting are
showed in Figure 6. There was one crossover locus near
UBE2D3 gene on 4q24 (lead SNP rs223340). This SNP has
been reported as eQTL for a lncRNA gene LRRC37A15P
(Bhalala, Nath, Inouye, & Sibley, 2018). It is also close to
a missense variant in CISD2 gene which causes Wolfram
Syndrome 2 (Rouzier et al., 2017). Three distinct loci
were identified on chromosome 11. The locus on 11p15
was near KCNQ1 gene (lead SNP rs231362). This SNP has
been reported in the same article by Voight et al. (2010)
from the Stage‐2 GWAS comprising 34,412 cases and
59,925 controls and recently by Zhao et al. (2017). An-
other locus on 11q13 was near the ARAP1 gene (lead SNP
rs11603334). The SNP has been reported previously as
GWS for “proinsulin levels” (Strawbridge et al., 2011) and
“lycated hemoglobin” (Wheeler et al., 2017). A locus on
12q14 (lead SNP rs2612069) was near the HMGA2 gene.
SNPs in this region (e.g., rs343092 within 300 kB) have

FIGURE 6 Manhattan plots of type 2
diabetes before and after weighted
analysis. Upper and lower panels denote
Manhattans of unweighted p values and
p values weighted by MERGED annotation
set (with cubic weighting). Two crossover
loci (i.e., region newly detected by
weighted analysis) are shown with names
of genes mapping to those regions
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been reported previously for T2DM (Ng et al., 2014).
Another chromosome 12 SNP is rs11020107 on 12q24.
This has been previously found (Morris et al., 2012). The
last SNP detected was on chromosome 19 rs4420638 on
19q13, near APOC1 gene. This SNP has previously been
associated with type 2 diabetes by Zhao et al. (2017).

We used the MERGED annotation set to perform re‐
weighted GWAS analysis on other disease data sets (de-
scribed in Figures S4, S5, and S6). We found one cross-
over locus of IL13 for psoriasis, two crossover loci BLK
and ITGAM/ITGAX genes for SLE and four crossover loci
near TFPI, CYP2A1, PECAM1, and CXCL12 for CAD
data set. Unweighted and weighted p values for these
SNPs along with the association results from some
independent studies are summarized in Table S1.

4 | DISCUSSION

In this article, we introduced a new efficient analytic
pipeline to enable pathway‐guided search in a GWAS.
Using this pipeline we illustrated that substantial power
improvement can be achieved in GWAS by using
knowledge of biologically meaningful categorization of
genes, for example, pathways, ontology terms and so
forth. The power gain is highlighted by the “novel loci”
(i.e., crossover loci) detected in the pathway‐guided re-
analyses of real GWAS data sets. Using, whole‐genome
simulations, the “pathway‐guided GWAS” is shown to
have correct global false‐positive rate, and improved
power for well connected SNPs. As expected, there is loss
of power for isolated SNPs, but we found such power loss
to be less common and also much less in magnitude.
Moreover, with better prior annotation strategies and as
annotation databases become more comprehensive and
accurate, most “isolated” true SNPs are likely to be con-
nected with other causal genes, further reducing this
concern. Isolated SNPs involving novel biological me-
chanisms (without known connections in annotation
databases) would have higher power to be detected by
primary (unbiased) GWAS analysis.

Our pipeline consists of a new method called PMLR
for adaptively estimating “enrichments” (i.e., prior
probabilities) followed by optimal p value weighting to
control FWER. The primary advantage of PMLR over
existing methods for enrichment estimation in GWAS is
that it involves two simple steps, local FDR calculation
followed by a (penalized) logistic regression. Thus it can
be implemented using standard GLM and penalized GLM
software in any statistical package. Also, compared to
some existing prioritization algorithms requiring high‐
dimensional MLE or posteriors, it is faster, scalable to
large number of annotations and less likely to encounter

numerical problems such as nonconvergence, making it
suitable for routine use.

A limitation of our method, which is not specific to
the method proposed here, is that the local FDR ap-
proach ignores the association (i.e., LD) structure of the
SNPs in deriving the marginal PPAs. To our knowledge,
all other existing prior‐incorporation methods assume
independence across SNPs or SNP blocks. In the future,
we plan to overcome this limitation by allowing for cor-
relations among SNPs in the mPPA estimation step in a
computationally efficient manner. A key benefit of our
modular approach is that our pipeline can be easily
adapted to be used in conjunction with other alternative
methods for mPPA estimation and/or Type 1 error
allocation methods in future.

We have incorporated gene‐level prior knowledge only.
Our method is not comparable to the existing prioritization
methods. To our knowledge, no existing method in-
corporates gene‐level priors (e.g., pathways) using a con-
ventional p value threshold approach. Second, we have
developed a statistically powerful method simply from
pathway knowledge (gene‐level knowledge), without the
use of more detailed information such as SNP‐level anno-
tations. Existing SNP prioritization methods make as-
sumptions such as “one true SNP per region” to identify
causal variants, so they are not applicable (without mod-
ifications) in our context, that is, discovery of “associated
SNPs” using gene‐level priors. In the future, a careful study
of SNP‐level annotations and pathways would be required
to understand the best way of combining these two sources
of information in a scalable manner.

The list of pathways supplied to our method should
generally not be restricted to “candidate pathways”
thought to be important for the disease under study. An
unbiased list of pathways or “gene sets” (possibly a large
number) representing meaningful biological categories
may be supplied. Depending on a disease context, im-
portant categories of genes (e.g., cancer related genes in a
cancer GWAS) may be added to the pool of annotations
to potentially improve power. However, restricting genes
(e.g., removing noncancer genes from annotations) can
reduce power. Also, it should be recognized that re-
weighted analysis of a GWAS data set is as likely as the
original GWAS to yield a false‐positive finding. The
chance of making a false‐positive discovery is further
enhanced if an investigator explores multiple annotation
databases until a discovery is made. To guard against
such false‐positives, we recommend that an investigator
should predetermine the annotations to be used and also
follow stringent criteria for replication and validation to
confirm a novel finding.

In conclusion, we have provided a framework and
have developed a method that can enable routine use of
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pathway and other gene‐level annotations for prioritiza-
tion in GWAS. Pathway‐guided GWAS can be effectively
used in practice for secondary reweighted GWA scan to
make additional discoveries beyond those revealed by the
primary unbiased GWAS analysis. Our method allows
flexibility to investigators to either use standard pathway
or ontology databases or define their own gene sets. Being
modular in nature, it allows for future extensions to more
genomic data types and bioinformatic knowledge from
multiple sources.
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