
SEMINAR  

Introduction to supervised machine learning
in clinical epidemiology

Sachiko Ono1, Tadahiro Goto2,3

1 Department of Eat-loss Medicine, Graduate School of Medicine, The University of Tokyo
2 Department of Clinical Epidemiology and Health Economics, The University of Tokyo

3 TXP Medical Co. Ltd.

ABSTRACT
Machine learning refers to a series of processes in which a computer finds rules from a vast amount of data. With recent
advances in computer technology and the availability of a wide variety of health data, machine learning has rapidly
developed and been applied in medical research. Currently, there are three types of machine learning: supervised,
unsupervised, and reinforcement learning. In medical research, supervised learning is commonly used for diagnoses
and prognoses, while unsupervised learning is used for phenotyping a disease, and reinforcement learning for maximiz‐
ing favorable results, such as optimization of total patients’ waiting time in the emergency department. The present
article focuses on the concept and application of supervised learning in medicine, the most commonly used machine
learning approach in medicine, and provides a brief explanation of four algorithms widely used for prediction (random
forests, gradient-boosted decision tree, support vector machine, and neural network). Among these algorithms, the
neural network has further developed into deep learning algorithms to solve more complex tasks. Along with simple
classification problems, deep learning is commonly used to process medical imaging, such as retinal fundus photographs
for diabetic retinopathy diagnosis. Although machine learning can bring new insights into medicine by processing
a vast amount of data that are often beyond human capacity, algorithms can also fail when domain knowledge is
neglected. The combination of algorithms and human cognitive ability is a key to the successful application of machine
learning in medicine.
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1 .  INTRODUCTION

The availability of various health care data, including
electronic health records, registries, claims data, and digi‐
tal imaging, has been proliferating in the past few deca‐
des. These data are linked, integrated, and utilized for
medical research [1]. Recent advances in computer tech‐
nology and statistics enabled the implementation of com‐
plex and computationally expensive algorithms with
large-scale data. With the combination of these data and
technological advancements, researchers have attempted
to develop algorithms—termed machine learning—that
imitate and even excel in human cognitive ability to do
complex tasks in the medical field.

Machine learning refers to an algorithm in which a
computer recognizes patterns and relationships of
variables based on given data. Each algorithm develops a
model to output an answer for a specific problem.
Researchers have tried to develop machine learning algo‐
rithms that substitute for medical experts, or that find
unexpected rules that are beyond human comprehension.
These attempts are prompted by the facts that advance‐
ment of medical science have invented multiple treat‐
ment options and more subdivided diagnosis for a dis‐
ease, resulting in ever more complex decision-making
process in practice and shortage of experts of such
subcategories. In this context, machine learning has been
increasingly utilized in medical research, leveraging
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abundant medical data. The number of articles in
PubMed that are tagged with “machine learning” [Mesh]
has increased dramatically since the MeSH term intro‐
duction, as shown in Fig. 1.

Compared with the conventional regression model and
prediction method, machine learning can handle more
variables and build a complex model that considers inter‐
actions of variables and nonlinear relationships between
variables and outcomes. Currently, there are three types
of machine learning: supervised, unsupervised, and rein‐
forcement learning. The present article focuses on super‐
vised learning, a type of machine learning commonly
used for the prediction and diagnoses problems, intro‐
ducing the concept, commonly used four algorithms, and
their applications in medical research.

2 .  CONCEPT  OF  MACHINE  LEARNING

Machine learning refers to a series of processes in which
a computer finds rules from a vast amount of data. In
machine learning, the computer develops a model that
represents what it has learned from the data (i.e., the rela‐
tionships among variables), and applies the model to
unknown data to make predictions and classifications.
The development of machine learning has been driven by
the development of databases in recent years. The digiti‐
zation of various documents and automatic recording by
electronic sensors have enabled the constant collection of
vast amounts of data. Such data include medical claims,
electronic health records, laboratory data, and medical
images from various medical fields [1].

In a conventional model such as logistic regression
model, a human determines variables (also referred to as

predictors in a prediction model), and develops a model
based on domain knowledge to predict outcomes. (To be
precise, logistic regression analysis can also be catego‐
rized as machine learning due to its iterative process for
maximum likelihood estimation, but the term “machine
learning” is rarely used for logistic regression analysis in
medical articles.) Developing a conventional model is far
more difficult when there are enormous number of varia‐
bles; nonetheless, leveraging such data can bring new
insights on a given topic. Machine learning replaces most
of the model-creating work with computer algorithms to
process vast amounts of data beyond human capacity.
Algorithms developed by machine learning methods are
particularly powerful when the problem is complex, that
is, when the number of variables is huge, when the varia‐
bles have complex interactions or effect modifiers, and
when the association of outcome with variables are non‐
linear. Indeed, several studies have shown that machine
learning outperforms existing predictive models for com‐
plex classification problems such as predicting prognosis
and diagnosis. For example, Tokodi et al. [2] developed a
machine learning-based risk stratification model to esti‐
mate 1 to 5-year mortality risk for patients undergoing
cardiac resynchronization therapy, and the model had a
much higher predictive ability than all the pre-existing
scoring systems (Seattle Heart Failure Model, VALID-
CRT, EAARN, ScREEN, and CRT-score).

2.1 Supervised Learning, Unsupervised Learning, and
Reinforcement Learning
Conventionally, there are three types of machine learn‐
ing: supervised, unsupervised, and reinforcement learn‐
ing. Supervised learning is a type of machine learning in
which machines learn from “labeled” training data and
then predict the outcome, specifically diagnosis and
prognosis in medical field. “Labeled” means that the
training data are tagged with the correct answer (i.e., out‐
come). Unsupervised learning, on the other hand, classi‐
fies data with similar characteristics or patterns into
groups based on unlabeled data. For example, Bleecker et
al. [3] divided patients with asthma into six clinical phe‐
notypes using an unsupervised learning method, mainly
for future investigation of pathology and treatment
response. In the reinforcement learning, algorithms learn
from trial and error (i.e., rewarding desirable results and
punishing unwanted ones) to maximize favorable results
in cases where there is no given right answer. Lee et al.
[4], for example, successfully minimized patients’ waiting
time in emergency department using reinforcement
learning. Among these three machine learning methods,

Fig. 1 Search results of “Machine Learning” [Mesh] by year in
PubMed
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supervised learning is the most frequently utilized
method in medical research.

2.2 Supervised Learning Algorithms
Although there is a myriad of algorithms in supervised
learning, the ones frequently used in medical papers are:
(i) random forests, (ii) gradient-boosted decision tree
(GBDT) (iii) support vector machines (SVM), and (iv)
neural networks [5]. These algorithms can be implemented
using statistical software, such as the caret package of the
R statistical software [6, 7] and the scikit-learn library of
Python [8], which effectively help develop machine
learning models.
Decision tree and random forest
To explain random forests, we will first explain decision
trees. A decision tree is a algorithms of determining the
final classification by creating branches from each step
(node) based on given rules. Fig. 2 shows an example of a
decision tree for deciding whether the rent of a property
is 1,000 USD or more. Each rectangle represents a node,
of which the first node is called the “root node” and the
last node is called the “terminal node”. When splitting a
node, the cluttering (impurity) of the node’s data content
is expressed as a numerical value called entropy. The
node is split to organize its content; that is, the ratio or
difference (information gain) of the entropy of the nodes
before and after is maximized [9, 10] (Fig. 3). Along
with entropy, Gini coefficient is also commonly used to
measure the impurity value of a split condition [11].

As the tree grows downward, the data can be sub‐
divided according to its characteristics. While complex
data can be finely classified, the inherent noise of the data
is also captured and classified as a feature. This may cause
overfitting; a model that has learned the noise of one

Fig. 2 An example of a decision tree

particular dataset will not apply well to another new
dataset [12]. This is where “random forests” comes in.
“Random forests” is a type of ensemble learning (general
term for algorithms combining multiple models) that
seeks better predictive performance for new data [13].
Random forests create several decision trees and predict
by majority vote to prevent overfitting due to data-
specific noise (Fig. 4).

In random forests, multiple decision trees are created
in parallel using randomly selected data for each. Simi‐
larly, the variables used to split the decision tree are also
chosen at random (Fig. 5). (The variables used in the
splitting process are sometimes referred to as “features”.)
The name “random forests” is derived from the fact that
multiple decision trees, that is, “forests”, are created using
“random” data and variables. Random forests can handle
complex problems that cannot be represented by linear
models at a relatively high speed.
Gradient-boosted decision tree (GBDT)
GBDT is another type of ensemble learning created

Fig. 3 Entropy and information gain

Fig. 4 Decision tree and random forests
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by multiple decision trees. While random forests use
multiple decision trees created in parallel, GBDT uses
multiple decision trees created in sequence [14]. In this
algorithm, the first decision tree produces an initial pre‐
diction. The second tree predicts the residuals or errors of
the first tree by creating another decision tree. Then, the
next model predicts the residuals of the precedent model
by creating another decision tree, and this process is
repeated until the residuals converge to 0 or the number
of iterations reaches a prespecified number (i.e., number
of decision trees). After the iterations are done, all trees
are combined to make a final prediction (Fig. 6). GBDT
often outperforms other algorithms in terms of accuracy;

Fig. 5 Creating random forests

Fig. 6 Creating gradient-boosted decision tree

however, it may overfit when the number of trees is too
large [14].
Support vector machine (SVM)
SVM classifies data according to a boundary created by
an algorithm based on the values of given variables [15–
18]. The model developed by the SVM provide a predic‐
tion as to which side of the boundary new data will be
on. A clinical application is, for example, to develop a
model that predicts death or survival within 30 days
based on multiple laboratory test results in a certain dis‐
ease. Fig. 7 illustrates the use of SVM to draw a boundary
line that classifies ● and × based on the values of varia‐
bles X1 and X2 (e.g., laboratory test results). When creat‐
ing the boundary, the sum of the distances from the
boundary to the data should be maximized.

When data points cannot be separated by a linear
boundary, as shown in Fig. 8, a method called kernel

Fig. 7 Creating a boundary line using a support vector machine

● and × represent data points of two different groups depicted based
on values of variables X1 and X2, respectively (e.g., laboratory test
results). The line represents the boundary that maximizes the sum of
the distances from the line.

Fig. 8 Cases where support vector machine cannot create a
linear boundary

● and × represent data points of two different groups depicted based
on values of variables X1 and X2, respectively. The linear line cannot
separate these data points.
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trick can be used to map the data to a higher dimension
called feature space [15, 17, 19] (Fig. 9). We can then
separate these data points linearly. When the term SVM
is used in medical literature, it usually refers to SVM with
kernel trick (kernel SVM). Kernel SVM can deal with
numerous variables, and it is easy to obtain good results,
even with small data. On the other hand, it can be com‐
putationally expensive to process a large amount of data
as the kernel trick generally increases the dimensionality
[15, 17].
Perceptron and neural network
The perceptron is an algorithm that attempts to repro‐
duce human-like cognitive abilities by imitating human
neurons [20–22]. As shown in Fig. 10, perceptron adds a
weight wi to the input data, passes it to the next stage
(node or neuron), and then passes the obtained value to a
function called an activation function, which outputs a
predictive value when the sum of given values exceed a

Fig. 9 Boundary creation by kernel support vector machine

● and × represent data points of two different groups depicted based
on values of variables X1 and X2, respectively. The data are mapped
in feature space for linear separation.

Fig. 10 Perceptron

Xn represents variables (predictors) and Wi represents weights.

certain threshold. The weights are updated through the
learning process: the output value is compared to the
actual outcome (i.e., the right answer) and updated until
the error becomes minimal.

A neural network is a multi-layered combination of
perceptrons, namely, the input layer, multiple hidden
layers, and the output layer [21, 22] (Fig. 11). The
number of hidden layers is a hyperparameter, a value that
should be prespecified by a researcher before running the
algorithm. By combining multiple layers, we can model
more complex relationships than a simple perceptron. In
the neural network, the most commonly used weight
updating method is backpropagation, where the total
error obtained from the current output is passed back‐
wards and distributed to the preceding nodes in the
hidden layers and then the ones in the input layer. The
weights are adjusted by repeating this process to mini‐
mize the total error.

Deep learning typically refers to an advanced type of
neural network that has multiple layers organized in
deeply nested network architecture [23–25]. With using
advanced operation, such as convolution for a digital
image, and multiple activation functions in one node;
deep learning achieves much better performance than a
simple neural network. Deep learning is widely used in
almost all the fields that embrace machine learning tech‐
nology (e.g., medical imaging, natural language process‐
ing, speech and audio processing, and drug discovery).
One of the deep learning methods that are particularly
successful in medicine is a convolutional neural network
for processing medical imaging [24]. Convolutional neu‐
ral network makes a prediction based on the input of
arrays of pixel intensities in the three-color channels.

Fig. 11 Neural network
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Diabetic retinopathy, for example, was identified with
90.3% of sensitivity and 98.1% of specificity by using a
convolutional neural network model developed from
retinal fundus photographs [26]. The other medical
fields, where image classification demonstrated promis‐
ing performance, were dermatology [27, 28], radiology
[29, 30], pathology [31, 32] and cardiology [33–35].

2.3 Developing a Prediction Model Using Machine Learning
Although the algorithms of machine learning are much
more complex than conventional methods, the sequence
of steps for creating a prediction model is similar. The
steps are to: (i) determine the research question, (ii)
obtain data, (iii) preprocess the data and split them into
training data and test data, (iv) apply the algorithm to the
training data to develop a model, and (v) evaluate the
performance of the model on the test data. The steps
from step three onward are described in another article
in this journal [36]. Data preprocessing in the step three
includes imputation of missing values, creation of
dummy variables, and normalization/standardization of
data. Application in the step four is the main part of
machine learning, and appropriate algorithms should be
selected from various machine learning methods for each
problem setting. To ensure accuracy of the prediction,
one strategy is to try multiple machine learning methods
and select the one with the best performance or to com‐
bine multiple methods to utilize the advantages of differ‐
ent methods.

Before applying the algorithm to data for machine
learning, researchers have to specify hyperparameters.
Hyperparameters are values that are external to the
model and cannot learn from the data. Examples of
hyperparameters are the number of decision trees to con‐
struct or features to select in a random forest. These
hyperparameters affect the accuracy, complexity, and
efficiency of the model. Because the model performance
varies greatly depending on the values of hyperparame‐
ters, parameter tuning is required to find good values.
The method called grid search is often used for hyper‐
parameter tuning by manually or automatically changing
the values of the hyperparameters little by little. When
evaluating hyperparameters, cross-validation method is
commonly used to improve the fit to unknown data by
using “validation” data divided from training data
(Fig. 12). The validation data here is for hyperparameter
tuning; it differs from the one used for internal validation
in the prediction model described in another article in
this journal [36]. In the machine learning context, the
dataset used for the internal validation is often called test

data; while, it is called validation data in an epidemiolog‐
ical context.

In step five, the model developed in step four is applied
to test data to evaluate its performance. As described in
the article about the clinical prediction model [36], along
with accuracy, sensitivity, specificity, and area under the
curve are commonly used performance measures for
classification problems. For regression problems that pre‐
dict numerical value, root-mean-square error (RMSE) is
used to evaluate the deviation of the predicted value from
the observed (correct) values of the given dataset. If the
prediction performance is unacceptably low, return to
step two and reconsider each step.

3 .  SUPERVISED MACHINE LEARNING APPLICATIONS

3.1 <Example 1> Triage Systems Developed by Multiple
Machine Learning Methods
Where medical resource is limited, differentiation and
prioritization of critically ill children are important. Goto
et al. [37] examined how well an objective triage system
developed by machine learning can predict clinical out‐
comes of children presented to the emergency depart‐
ment (ED) compared to a conventional triage method
based on a medical professional’s assessment. The authors
predicted in-hospital death and/or ICU admission using
the least absolute shrinkage and selection operator or
lasso in short, random forest, GBDT, and deep neural
network. Variables used for prediction were age, sex,
mode of arrival (walk-in vs ambulance), vital signs

Fig. 12 Cross-validation for hyperparameter tuning
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(temperature, pulse rate, systolic and diastolic blood
pressure, respiratory rate, and oxygen saturation), visit
reasons, patient’s residence (home vs other [e.g., long-
term care facility]), ED visits in the preceding 72 hours,
and comorbidities. All the machine learning-based triage
systems, although not statistically significant, performed
better than the conventional triage system with a fewer
number of undertriaged children. The authors concluded
that machine learning-based triage systems may support
clinicians in making triage decisions efficiently, thus
improving optimal resource allocation.

3.2 <Example 2> Prognostic Prediction for COVID-19 Using
a Combination of Machine Learning Methods
Health care systems worldwide are overwhelmed by the
soaring number of COVID-19 patients. For early inter‐
vention and optimal resource allocation, an accurate pre‐
diction model for COVID-19 is needed. In contrast to
Goto et al. [37] in example 1 where they evaluated multi‐
ple models separately, Gao et al. [38] integrated four dif‐
ferent machine learning models into one ensemble model
to predict the mortality risk of admitted patients for
COVID-19. To develop the ensemble model, the authors
first selected important 14 variables (consciousness, male,
age, sputum, blood urea nitrogen, respiratory rate, D-
dimer, number of comorbidities, platelet count, fever,
albumin, SpO2, lymphocyte, and chronic kidney disease)
out of original 53 variables by lasso, another machine
learning method often used for unimportant variable
elimination. With the 14 variables, the authors developed
6 machine learning prediction models (logistic regres‐
sion, SVM, GBDT, neural network, k-nearest neighbor,
and random forests), then integrated the top 4 predictive
models (logistic regression, SVM, GBDT, and neural net‐
work) into one. The ensemble model achieved an area
under the curve of 0.96 and 0.92 for predicting mortality
of COVID-19 in two external cohorts. The authors con‐
cluded that the model efficiently enables accurate risk
stratification of COVID-19 patients on admission.

3.3 <Example 3> Classification of HIV Rapid Test Using
Deep Learning
A rapid diagnostic test is a convenient and affordable
option to screen for HIV in low- and middle-income
countries. However, tests with weak or faint lines make
visual interpretation diverse among field workers with
different training levels. The accuracy of interpretation
varied between 80% and 97%. Turbé et al. [39] developed
a machine learning model to determine whether the
results indicated positive or negative from photos of

rapid diagnostic tests. A total of 11,374 images taken with
tablets were labeled by three rapid diagnostic test experts
and then used as a training dataset. The authors devel‐
oped 4 models using the dataset; one is an SVM and
three are different convolutional neural network models.
One of the convolutional neural network models was
used because of its best performance in terms of sensitiv‐
ity and specificity. As a pilot test, the performance of the
model was compared with those of 5 end-users with
varying levels of training (2 nurses and 3 newly trained
community health workers). In the visual interpretation
of rapid diagnostic testing, the end-users’ agreement
levels were from 61 to 100%. The machine learning
model demonstrated better performance than end-users
for the following 4 indicators: sensitivity (95.6% vs.
97.8%), specificity (89% vs. 100%), positive predictive
value (88.7% vs. 100%), and negative predictive value
(95.7% vs. 98%). The authors concluded that rapid diag‐
nostic testing images captured by a mobile device could
standardize the interpretation of test results, reduce inter‐
pretation errors, and provide a platform for workforce
training.

4 .  CHALLENGES  IN  MACHINE  LEARNING

Machine learning is not a one-size-fits-all solution.
Although the term “machine learning” gives the impres‐
sion that everything is done automatically, it has some
challenges. As with conventional methods, machine
learning requires a good research question, sufficient
sample size and variables, appropriate data sampling, and
algorithm selection for each problem setting. When these
processes are done heuristically by experts with domain
knowledge, the model can achieve good performance.
Automated machine learning without a human in the
loop, especially in the medical field, has a risk to model
artifacts because medical data often contain uncertainty,
noise, and missing data [40].

An example is the failure of Google’s influenza
forecasting algorithm called Google Flu Trends. In
2008, Google developed an algorithm to quickly detect
influenza trends from the combination of Google search
terms data and actual survey data [41]. For the first few
years, it surprisingly well predicted the number of
cases, or trends of influenza, two weeks earlier and more
accurately than the Centers for Disease Control and
Prevention [42, 43]. Earlier prediction means being able
to take action sooner, and it may even prevent future
influenza pandemics. The introduction of this new tech‐
nology has raised expectations for improving public
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health. However, several years later, the number of
influenza cases predicted by Google’s forecasting algo‐
rithm deviated significantly from the actual number of
cases [44, 45].

Although Google did not provide a clear explanation
for the suboptimal estimation, researchers speculated
that the algorithm might have over-learned irrelevant
search terms. Later, several studies analyzed how Google
Flu Trends could have avoided erroneous forecasting by
manually adding another data source or by updating the
algorithm constantly [44, 45]. As in this example,
machine learning sometimes produces unintended and
erroneous results. When the public health policy was
affected by such erroneous algorithms, what would be at
stake were the lives of people. Regular human checks on
these algorithms are therefore essential.

The application of machine learning to medicine raises
another concern: the algorithmic predictions could con‐
trol the “right” answer in the real world. For example,
some physicians might blindly follow the prediction to
admit patients who are classified as “inpatients” by the
algorithm. While this behavior would further improve
the apparent accuracy of the algorithm, it would obscure
the true performance of the predictive algorithm. Fur‐
thermore, the physician, who is supposed to be the
“teacher” in “supervised learning”, would lose their credi‐
bility and authority if they are completely dependent on
the “machine”. The above concerns were expressed by

several experts [40, 46], and there is still ongoing discus‐
sion on how to incorporate machine learning into clini‐
cal practice.

5 .  CONCLUSION

Machine learning has developed rapidly in the last
decade with the improvement of computer performance
and the advancement of statistics. This approach has
massive potential for new insights into medicine given
large numbers of variables, complex interactions, and
nonlinear relationships between variables and outcomes.
However, machine learning application in the medical
field has only just begun. Owing to the complexity of
medical domains, machine learning cannot fully substi‐
tute for human ability, at least for now. The combination
of algorithms and human cognitive ability may be a
key to the successful application of machine learning
in medicine.
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