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Abstract

Skipjack tuna (SJT) pelagic hotspots in the western North Pacific (WNP) were modelled

using fishery and satellite remotely sensed data with Ecological Niche Factor Analysis

(ENFA) models. Our objectives were to model and predict habitat hotspots for SJT and

assess the monthly changes in sub-surface temperatures and mixed layer depths at fishing

locations. SJT presence-only monthly resolved data, sea surface temperature, chlorophyll-

a, diffuse attenuation coefficient, sea surface heights and surface wind speed were used to

construct ENFA models and generate habitat suitability indices using a short-term dataset

from March-November 2004. The suitability indices were then predicted for July-October

(2007 and 2008). Monthly aggregated polygons of areas fished by skipjack tuna pole and

line vessels were also overlaid on the predicted habitat suitability maps. Distributions of sub-

surface temperatures and mixed layer depths (MLD) at fishing locations were also exam-

ined. Our results showed good fit for ENFA models, as indicated by the absolute validation

index, the contrast validation index and the continuous Boyce index. The predicted hotspots

showed varying concurrences when compared with 25-degree polygons derived from fished

areas. Northward shifts in SJT hotspots corresponded with declining MLDs from March to

September. The MLDs were shallower in summer and deeper in autumn and winter months.

The habitat hotspots modeled using ENFA were consistent with the known ecology and sea-

sonal migration pattern of SJT. The findings of this work, derived from a short-term dataset,

enable identification of SJT hotspots in the WNP, thus contributing valuable information for

future research on SJT habitat prediction models.
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Introduction

Pelagic biological hotspots in the ocean are areas of elevated productivity, created by physical

processes or features such as upwelling, fronts, eddies, bathymetry, or river discharge among

other factors [1–6]. They are characterized by high concentrations of organisms, that attract

large numbers of top predators, thus becoming fishery targets [7, 8]. Pelagic hotspots are now

an important dimension in fishery forecasting, marine resource management and conserva-

tion, primarily in the design of dynamic marine conservation zones [9, 10]. Hotspots have

been the subject of intense scientific research, often driven by the state-of-the-art tools such as

remote sensing, remotely operated vehicles, tags, ocean circulation models, and habitat models

[11]. Due to the heterogeneity and spatial extent of the world oceans, new tools and techniques

will continue to be tested in efforts to understand pelagic biological hotspots. One of the press-

ing issues entails developing robust tools to identify biological hotspots and predict their spa-

tial and temporal dynamics.

Skipjack tuna (Katsuwonus pelamis) is one of the widely fished tunas inhabiting the upper

mixed layer [12, 13], an opportunistic predator feeding mainly on pelagic fishes, squids, a vari-

ety of crustaceans and young skipjacks [14, 15]. These tunas cover large distances in search of

areas with high concentrations of forage [12]. In the western North Pacific, they migrate north

from spring to summer, and south at the onset of winter, in a seasonal migration pattern asso-

ciated with feeding [16, 17]. During migration, the fish track highly productive areas associated

with physical oceanographic features involving sea surface temperature and ocean color gradi-

ents, eddies and warm streamers (filaments of warm water entrained into cooler waters) [8,

18–20]. These habitat associations are useful for modeling skipjack tuna aggregations, and for

hypothesizing how ocean warming will affect the distribution of tuna around such oceano-

graphic features.

The Ecological Niche Factor Analysis (ENFA) is a multivariate approach that computes

suitability functions by comparing the species distribution in its environmental space, with the

environmental conditions potentially available to the species [21]. Suitability functions express

the relationship between the species occurrence and the environmental space that it occupies.

ENFA is based on the computation of the factors explaining the major part of species environ-

mental distribution. The ENFA approach is a presence-only data model, which does not use

absence data, often associated with false absences and insufficient sampling effort [22]. For

tuna, which are highly mobile, and whose majority of available distribution datasets are

obtained from fisheries, eliminating biases associated with fishing strategies and the assump-

tions that null catches represent species absences can be challenging [23]. The ENFA is in a

family of species distribution models [24] that can be used to explain habitat utilization of a

species, by estimating its niche using occurrence records and environmental predictor layers

[21]. We chose ENFA for four reasons: (i) it does not require absence data, and is able to

immediately establish and interpret correlations among variables [21]; (ii) environmental

grids are matched to species occurrence grids of the same resolution, hence facilitating a pixel

to pixel match of species occurrence and environmental layers; (iii) results are easy to compare

with other methods, which also output normalized suitability maps; and (iv) is able to predict

future habitats based on models fitted from “current conditions” and similar environmental

predictors from future scenarios [21]. The ENFA approach has been applied widely in terres-

trial ecology [25, 26] and applications in marine studies using remotely sensed data are

increasing [27–30].

Recent approaches in modeling marine top predators’ habitat are addressing the horizontal

and vertical habitat utilization, by integrating oceanographic data from remotely-sensed

sources and electronic tags [31–33]. These approaches provide a holistic understanding of an
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organism’s habitat from a 3-dimensional perspective. In the western North Pacific, several

studies [3, 8, 9, 33, 34] have explained the ecological significance of sea surface temperature,

chlorophyll-a, currents and ocean dynamic topography on tuna pelagic habitats using species

distribution models and remotely sensed data. Our work presents preliminary runs to explore

the relationship between tuna aggregation (hotspots) and oceanographic features (thermal or

ocean color fronts, eddies, warm currents and their streamers) [17, 18] using multiple parame-

ters as indicators of hotspot formation in a species distribution model. The objectives of our

work were to: (i) model and predict habitat hotspots for skipjack tuna using ENFA and satellite

remotely sensed data, and (ii) determine the sub-surface temperatures and mixed layer depths

at fishing locations, and thus complement the explanatory information at the fishing locations

quantified using satellites.

Materials and methods

Study area

The physical oceanography of the western North Pacific (18-50o N and 125-180o E) is shaped

by three main currents: the Oyashio Current, the Kuroshio Current, and the Tsugaru Warm

Current (Fig 1, Table 1). The Oyashio waters flow southward [35], transporting low tempera-

ture, low salinity and nutrient rich waters to the sub-tropical gyre [36], and forming two

southward tongue-shaped intrusions off Honshu, known as the First and Second Oyashio

Intrusions [37, 38]. A warm core ring (WCR) originating from the northward movement of

the ring produced by the Kuroshio separates the meanders [39]. The southern limit of sub-

polar waters is referred to as the Oyashio Front [40]. The Kuroshio Current assumes three

major paths south of Japan, which affect formation of pelagic fisheries [37]. The behavior of

the Kuroshio Extension, warm streamers and WCRs in the Transition Zone affect fishing

ground formation [18, 41]. The vertical structure in the western North Pacific is characterized

Fig 1. The study area, showing the western North Pacific (18-50o N and 125-180o E), the major currents and migration

routes of skipjack tuna as described in [17].

https://doi.org/10.1371/journal.pone.0237742.g001
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by shallow mixed layer depths in spring and summer and deeper mixed layer depths in late

autumn and early winter [42, 43].

The distribution and density of phytoplankton and zooplankton populations in the western

North Pacific is influenced by the ocean circulation and behavior of currents [37]. High densi-

ties of phytoplankton subsequently support large populations of zooplankton, which are fed

upon by smaller nekton [35, 40, 44]. Skipjack tuna and other pelagic predators are attracted to

such areas of high productivity to forage on the small organisms (squids, crustaceans, and

fishes) [9, 12, 17, 41]. Fishers of tuna in the western North Pacific locate areas with dense

aggregations of tuna, by tracking oceanic fronts, upwelling zones, and edges of large eddies

[34, 45].

Fishery data

Two different fishery datasets were used as occurrence records for modelling and polygons for

qualitative validation. First, daily skipjack tuna catches from March to November 2004 were

obtained from the Ibaraki Prefecture Fisheries Research Station. For the ENFA model, daily

fishing data were digitized, compiled into monthly composites and converted into 0.25o reso-

lution grids [21]. Re-gridding was necessary to ensure that the fishery data matched the resolu-

tion of the environment grids, and resulted in a total of 15663 valid grid cells. Second, a 5x5

degree monthly aggregated skipjack tuna pole and line fishery catch data were downloaded

from the Western and Central Pacific Fisheries Commission website (http://www.wcpfc.int/

public-domain; last accessed in December 2018). The data (55 points in 2007 and 66 in 2008)

were gridded into 5x5 degree grids, for all locations where the catch per unit effort was above

zero, and the grid maps were converted into polygons of areas fished between July-October, in

2007 and 2008.

Environmental data

A monthly environment database consisting of sea surface temperature (SST), sea surface

chlorophyll-a (SSC), diffuse attenuation coefficient (Kd490), sea surface height (SSH), and

wind speed (WS) was compiled from a variety of sources (Table 2). These five parameters were

selected because of their relevance as descriptors of skipjack tuna habitat, and their capacity to

reflect changes in climatic patterns [47, 48]. SST data are an important indicator of distribution

patterns of tuna, which prefer foraging close to thermal fronts, and also migrating within

physiologically tolerable temperatures, above 15 oC [9, 12]. Sea surface chlorophyll concentra-

tion measured by satellites provides information on ocean productivity [19], which can reveal

surface frontal and eddy-like features that are not always evident in SST maps [49, 50]. Due to

the elevated productivity around these features, they attract large schools of tuna, which aggre-

gate around them to feed on lower trophic level organisms [3, 41]. The diffuse attenuation

coefficient is a good indicator of turbidity, the depth of the euphotic zone, and ultimately the

Table 1. Properties of major currents and water masses in the study area.

Water mass/zone Properties Citation

Kuroshio Current (KC) Low density, nutrient poor, warm and high salinity [38, 40]

Kuroshio Extension (KE) Large-amplitude meanders, energetic eddies, high eddy kinetic energies [46]

Oyashio Current (OC) Temperatures lower than 5˚C at 100m depth, high nutrients, fishing

ground for several sub-arctic species and sub-tropical migrants

[18, 36]

Kuroshio-Oyashio Transition

Zone (KOTZ)

Confluence waters of KC and OC [35, 44]

Tsugaru Warm Current (TC) Warm and saline water, from Tsushima Current [40]

https://doi.org/10.1371/journal.pone.0237742.t001
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maximum depth of primary production of the ocean [49, 51]. Tuna forage by sight and

extremely turbid waters are unsuitable for foraging [52, 53] while extremely oligotrophic

waters will contain little forage. The SSH data are an indicator of ocean dynamic topography,

which provides information on movement of water masses, and by extension the flow of heat

and nutrients, which subsequently influence productivity [43]. The ocean surface is also influ-

enced by surface winds, which drive physical processes such as mixing of the upper layer and

upwelling [54].

Daily resolved optimally interpolated sea surface temperature global data were downloaded

from the National Oceanic Atmospheric Administration’s National Climatic Data Center

(Table 2), for the period 2004 to 2008. These data provided better coverage of the fishing loca-

tions because the effect of missing data due to clouds is eliminated. Monthly Aqua-MODIS

~4km standard mapped images (2004 to 2008) of SSC and Kd490 data were downloaded from

the ocean color data portal (Table 2).

The weekly SSH data were downloaded from the Archiving, Validation and Interpretation

of Satellite Oceanographic data portal (Table 2) and processed using the public reading rou-

tines, from which monthly averages were made. In addition, monthly averaged geostrophic

velocity vectors were used to indicate the magnitude and direction of flow along the Kuroshio

Extension. Monthly averaged wind speed global images were downloaded from Remote Sens-

ing Systems website (Table 2). We downloaded version 6 data products derived from the Spe-

cial Sensor Microwave/Imager instrument [55]. Data processing (monthly averaging and sub-

setting) and mapping for all the years (2004–2008) was done in the Sea-WiFS Data Analysis

System (SeaDAS) [56] version 5.3, ESRI’s ArcGIS 10 (https://www.esri.com) and the Generic

Mapping Tools (GMT) version 6.0.0 [57].

The 4-dimensional variational data (4D-VAR) assimilation approach consists of a fully

3-dimensional space varying parameters and a 1- dimensional time evolving dataset, which

determines a model path that best fits observations and factors in time dependent information.

Data generated using the 4-dimensional variational ocean data assimilation system [58, 59]

can provide vertical temperature and salinity estimates, and mitigate the challenge of having to

sample sub-surface waters at the fishing locations. To assess the vertical oceanographic envi-

ronment at skipjack tuna fishing locations, we used mixed layer depths (MLD) defined on the

basis of the density difference (~0.1 σθ) relative to the surface [60] as well as the 4D-VAR

derived sub-surface temperature (SSTu) layers. This approach can provide information on the

vertical environment where catches were positive, even though not as highly resolved as data

from freely moving tagged fish. We further used histograms to look at the temporal variability

in MLD at the gridded fishing locations. Temperatures at depths above 500m, derived from

the 4D-VAR data were sampled using the monthly resolved gridded fishing locations. Mod-

elled mean monthly depth-temperature profiles were plotted to assess the vertical temperature

profile at the 2004 fishing locations.

Table 2. Data layers used, their resolutions and sources.

Data Resolution Source Agency

SST-v2, AVHRR-AMSRE 0.25 ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/IEEE NOAA

SSC 0.05 https://oceancolor.gsfc.nasa.gov/l3/ NASA

SSH-dt, updated and merged, global 0.25 ftp.aviso.oceanobs.com/pub/oceano/AVISO/SSH/duacs/Data_Test/README.txt AVISO

KD490 0.05 https://oceancolor.gsfc.nasa.gov/l3/ NASA

Wind speed-v6, SSM/I, DMSP F13 0.25 http://images.remss.com/ssmi/ssmi_data_monthly.html?&keep=0 REMSS

MLD 0.25 4D-VAR JAMSTEC

SSTu 0.25 4D-VAR JAMSTEC

https://doi.org/10.1371/journal.pone.0237742.t002

PLOS ONE Modeling skipjack tuna pelagic hotspots

PLOS ONE | https://doi.org/10.1371/journal.pone.0237742 August 20, 2020 5 / 25

https://www.esri.com/
ftp://eclipse.ncdc.noaa.gov/pub/OI-daily-v2/IEEE
https://oceancolor.gsfc.nasa.gov/l3/
http://ftp.aviso.oceanobs.com/pub/oceano/AVISO/SSH/duacs/Data_Test/README.txt
https://oceancolor.gsfc.nasa.gov/l3/
http://images.remss.com/ssmi/ssmi_data_monthly.html?&amp;keep=0
https://doi.org/10.1371/journal.pone.0237742.t002
https://doi.org/10.1371/journal.pone.0237742


ENFA modeling

ENFA modeling of skipjack tuna habitats was conducted in two stages, where base models

using gridded fishery data were constructed in the first stage and subsequently used to predict

habitats in the second stage. Evaluation of model performance in ENFA was also conducted in

the first stage. Our analysis workflows are illustrated in Fig 2. The ecological niche factor analy-

sis (ENFA) is a multivariate technique which uses occurrence records to compute habitat suit-

ability by comparing the species distribution in the environmental space, with that of the

whole set of cells potentially available to the species [21]. ENFA modeling requires: (i) the

occurrence map (binary) for the focal species in a set of sampled locations and (ii) the indepen-

dent variables, referred to as eco-geographical variables (EGV), which quantitatively describe

the characteristics of each cell [21]. ENFA, uses the marginality and specialization factors, cal-

culated as shown in Eqs 1 and 2. Marginality refers to the ecological distance between the spe-

cies optimum and the mean habitat within the reference area while specialization refers to the

ratio of the ecological variance in mean habitat to that observed for the focal species [21]. Mar-

ginality is the first factor extracted in factor analysis for each variable used in the model, while

specialization is reflected in subsequent factors.

Marginality ¼ jmG� mSj=1:96sG; ð1Þ

Specialization ¼ sG=sS ð2Þ

where mG = global (entire range of cells available to the species in the study area) mean; mS =

species mean; and σG = standard deviation of global distribution; σS = standard deviation of

focal species.

Fig 2. A graphic representation of the workflows and analysis processes.

https://doi.org/10.1371/journal.pone.0237742.g002
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Interpretation of marginality and specialization is based on factor coefficients which give

the importance of each variable to the different factors and the range of the environmental val-

ues preferred by the species. For marginality, positive coefficients indicate preference for areas

above the mean for the variable under consideration while negative coefficients show a prefer-

ence for areas below the mean [26]. For specialization, the higher the absolute value, the more

restricted is the range of the focal species on the corresponding variable. The inverse of special-

ization is referred to as tolerance. When tolerance values are close to zero, the species tends to

live in a narrow range of conditions, while values close to one indicate a species whose habitat

preferences within the reference area are broad [21]. The sign on the first factor coefficients is

important but only absolute values are considered in the specialization factor coefficients. Fac-

tor coefficients are also used to compute global marginality and specialization. The global mar-

ginality factor varies between zero and one, with values close to one meaning the species

prefers areas with conditions that differ from the average conditions in the reference area.

Global specialization can be used for inter-species comparisons, as long as the same area is

used as a reference set [21].

For each set of monthly EGVs and the fishery data layer representing presence-only grids

for skipjack tuna, we imported the layers into Biomapper 4.0 [61] where maps were verified to

ensure that all cells containing valid data were distinguished from those that contained “no-

data”. This step was important because we used ocean color data layers which often have miss-

ing data due to clouds. Subsequently, factors were computed, a process where ENFA reduces

the original set of variables to a subset of uncorrelated factors [21]. The broken-stick rule [62]

was used to determine how many of the factors were retained in the habitat suitability calcula-

tion. According to the rule, the distribution of the eigenvalue of each factor is compared with

the distribution of MacArthur’s broken-stick. The eigenvalues that are larger than expected

may be considered ‘significant’ [29, 63]. The retained factors explain most of the information

related to the distributions of the original variables and constitute dimensions of the environ-

mental space for calculation of habitat suitability [29]. Whenever ENFA encounters cross-cor-

related variables, one of them has to be dropped from the model. The geometric mean

algorithm was used to compute habitat suitability maps. It generates a smooth set of habitat

suitability envelopes by relating each observation cell in such a way that the denser these are in

environmental-space, the higher the habitat suitability [61]. A habitat suitability index (HSI)

shown as zero indicates the least suitable combination of values for all variables, hence poor

habitat. On the contrary, a HSI shown as 100 indicates the most suitable combination of envi-

ronmental variables, hence the best habitat.

Model performance evaluation was done through cross validation and our Biomapper

parameters were set to 10 partitions, a moving window size of 20 bins, with equal bin width,

and mean and standard deviation. The performance metrics implemented in Biomapper and

used in our work were: the absolute validation index (AVI), the contrast validation index

(CVI), the continuous Boyce Index (CBI) and associated predicted-expected (P-E) ratio curves

[64]. The AVI is the proportion of presence evaluation points falling above some fixed habitat

suitability threshold (e.g. 0.5) and it varies from 0 to 1, while the CVI is the difference between

the AVI and the AVI of a model predicting presence everywhere (chance model), and varies

from 0 to 0.5 [64]. The higher the AVI and CVI values, the better the model. The CBI is a mod-

ified Boyce Index [65] which is computed on the basis of a ‘moving window’ compared to

fixed classes [64, 66]. Computation of a CBI starts with a first class covering a defined suitabil-

ity range whose P-E ratio is plotted against the average suitability value of the class, a process

that is repeated by shifting the moving window and plotting the P-E values until the moving

window reaches the last possible range [64]. This provides a smooth P-E curve, which is used

to generate the CBI. The P-E curves provide three levels of information on model accuracy.
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First, they show the variance among the cross-validation curves giving information about

model robustness all along the HS range. The narrowness of the confidence interval along the

curve reflects the model sensitivity to particular calibration points. Second, the shape of the

P-E curve is also important, with monotonically ascending slopes indicating a good model (i.e.

the P-E value increases proportionally with the habitat suitability). A flat or negative slope

indicates an inaccurate model, which predicts poor quality areas where species presences are

more frequent. Third, the maximum value reached by the P-E curve reflects how much the

model differs from chance expectation, or deviation from randomness, thus indicating the

model’s ability to differentiate the species niche characteristics from those of the studied area

[64]. The CBI values vary from -1 to 1, with positive values indicating high correlation between

increasing P-E and predicted habitat suitability, thus good model calibration. When CBI values

are close to zero, model calibration is no better than random. In addition, negative CBI values

indicate poor model calibration with inconsistencies between model predictions and locations

of validation points [64]. All monthly models generated in ENFA using the 2004 dataset (the

base models) were subsequently applied to make predictions using similar monthly averages

for corresponding months in 2007 and 2008. Qualitative evaluation of the model predictions

in subsequent years was done by overlaying the 5x5 degree fishery polygon data on predicted

HSIs.

Results

ENFA models

Global marginality factors obtained from ENFA models were above 0.5 (except for July), while

specialization factors were all above 1 (Table 3), pointing to utilization of habitat that was dif-

ferent from the average conditions in the western North Pacific. The global marginality factor

is the lowest in July and the highest in September and November while the global specialization

is lowest in October and highest in August. The tolerance factors range between 0.122

(August) and 0.452 (October). The marginality factor coefficients (F1) show a strong relation-

ship of skipjack tuna locations with SSH from March to June, when coefficients are positive,

and July to November, when coefficients are negative (Table 4). A strong effect of SSH and

wind speed in April, 2004 was noted. The contribution of Kd490 is highest in July, October

and November. The Kd490 has a low contribution to marginality factor in April, June, August

and September. The Kd490 layer was removed from model constructions for March and May

due to high cross correlations with SSC, and hence results for this variable in those models are

Table 3. Global Marginality (M), Specialization (S) and Tolerance (S) factors derived from skipjack tuna ENFA models.

Month M S T AVI AVI-SD CVI CVI-SD CBI
MAR 0.691 7.507 0.133 0.504 0.250 0.367 0.246 0.219

APR 0.564 5.992 0.167 0.482 0.098 0.462 0.098 0.697

MAY 0.602 4.897 0.204 0.570 0.245 0.341 0.236 0.552

JUN 0.502 6.624 0.151 0.527 0.285 0.448 0.263 0.872

JUL 0.455 6.194 0.161 0.506 0.351 0.405 0.344 0.478

AUG 0.527 8.166 0.122 0.456 0.244 0.382 0.239 0.479

SEP 0.729 5.828 0.172 0.532 0.277 0.489 0.274 0.370

OCT 0.662 2.211 0.452 0.532 0.242 0.464 0.235 0.692

NOV 0.778 5.195 0.195 0.550 0.445 0.462 0.435 0.016

The absolute validation index (AVI), contrast validation index (CVI) values and their respective standard deviations, and the continuous Boyce index (CBI) value for

each monthly model.

https://doi.org/10.1371/journal.pone.0237742.t003
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Table 4. Contribution of the variables to the factors (F) generated by ENFA and used to build the monthly habitat suitability maps.

Month Variable F1 (81%) F2 (13%) F3 (5%) F4 (2%) F5 (%)

MAR SSH 0.77 0.31 0.62 -0.58 -

SST 0.63 -0.62 -0.71 0.73 -

WIND 0.03 0.03 -0.31 -0.37 -

CHLA -0.20 -0.72 0.15 -0.07 -

K490 - - - - -

F1 (61%) F2 (31%) F3 (6%) F4 (1%) F5 (0%)

APR SSH 0.67 0.02 -0.12 -0.10 0.59

WIND 0.61 -0.04 -0.03 -0.32 -0.17

SST 0.30 0.52 0.16 0.27 -0.73

K490 0.29 -0.57 0.28 0.70 -0.27

CHLA 0.03 0.64 -0.94 -0.57 0.14

F1 (43%) F2 (46%) F3 (9%) F4 (4%) F5 (%)

MAY SSH 0.91 -0.12 0.34 0.20 -

SST 0.33 -0.39 -0.93 -0.26 -

WIND 0.01 0.01 -0.13 0.86 -

CHLA -0.26 -0.91 0.00 0.38 -

K490 - - - - -

F1 (36%) F2 (49%) F3 (14%) F4 (1%) F5 (0%)

JUN SSH 0.83 -0.07 0.15 0.28 0.46

K490 0.39 -0.08 0.37 -0.17 -0.48

SST 0.27 -0.51 -0.91 -0.74 -0.62

WIND 0.11 -0.02 -0.03 0.58 -0.40

CHLA -0.28 -0.85 0.06 0.08 -0.08

F1 (73%) F2 (20%) F3 (6%) F4 (0%) F5 (0%)

JUL K490 0.82 0.24 0.22 0.55 -0.42

SST 0.07 -0.04 -0.78 0.05 0.27

CHLA -0.16 0.97 -0.44 0.23 0.11

WIND -0.17 -0.02 0.03 0.47 0.36

SSH -0.51 0.08 0.39 0.65 -0.78

F1 (33%) F2 (54%) F3 (9%) F4 (2%) F5 (1%)

AUG K490 0.14 -0.54 -0.51 0.83 -0.79

WIND 0.06 -0.02 -0.11 0.35 0.16

CHLA -0.01 0.83 0.26 -0.38 0.53

SST -0.22 0.12 -0.80 0.17 -0.25

SSH -0.96 -0.12 0.10 0.11 -0.05

F1 (17%) F2 (58%) F3 (17%) F4 (7%) F5 (1%)

SEP K490 0.33 -0.63 -0.32 0.14 0.85

CHLA 0.17 0.70 0.45 -0.44 -0.40

WIND -0.02 0.02 -0.35 -0.46 0.06

SST -0.44 -0.34 0.66 -0.68 0.32

SSH -0.82 0.07 -0.38 0.34 0.09

F1 (14%) F2 (44%) F3 (30%) F4 (8%) F5 (4%)

OCT K490 0.49 -0.57 -0.53 0.79 -0.72

CHLA 0.23 0.76 0.55 -0.46 0.06

WIND -0.09 -0.04 -0.05 -0.17 -0.45

SST -0.35 -0.30 0.51 0.11 -0.51

SSH -0.76 0.01 -0.40 0.34 -0.16

(Continued)
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not shown. The contribution of variables to specialization factors (F2-5) varies considerably.

However, the importance of chlorophyll-a and/or SST can be seen in many of the factors, espe-

cially the first and second specialization factors (F2 and F3). The model performance metrics

(AVI, CVI and CBI) indicate relatively good models, except for the March and November

models, when the CBI is considered. All the AVI and CVI values are positive (Table 3). All the

P-E curves portray positive and monotonic ascending slopes, except for the November curve

which is almost flat for all the suitability scores, and also shows wide confidence intervals

(Fig 3).

Habitat suitability and fishing activities

The base model of habitat suitability revealed high scores from 25oN in March to approxi-

mately 41oN in September/October (Fig 4). Habitat hotspots are spread expansively in March,

May and June. From July to November, formation of habitat hotspots for skipjack tuna is char-

acterized by rather thin “strips” of high suitability scores. The effect of meandering and eddies

pinched off the Kuroshio Extension, on habitat formation can be observed in Fig 5A. High

suitability scores occurred along an eddy north of the Kuroshio Extension, and along currents

spinning off the Kuroshio Extension. The effect of the underlying Shatsky Rise Complex on

the oceanographic circulation is illustrated with monthly averaged geostrophic velocity vectors

(Fig 5B). The 5x5 degree pole and line fished area polygons show congruence with predicted

habitats (Fig 6) in some areas and not others (e.g. September 2007 and 2008).

Sub-surface environment variability

Mixed layer depths in the western North Pacific in 2004 were deepest in winter and early

spring (March-April) and shallowest in summer (June-August) (Fig 7). Some of the fishing

locations in areas with deepest MLDs have values above 200m (March-May) while the shallow-

est values lie between 10m and 100m (e.g. June-August) (Fig 8). From June to October, fishing

occurred in areas where MLDs were below 100m. Depth-temperature profiles derived from

temperatures averaged at fishing locations corresponding to the various 4D-VAR model data

layers show changes from a homogenous temperature layer (March-May) to one that stratifies

from June to October 2004 (Fig 9). November shows a re-establishment of the homogenous

water column. Between March and July, mean temperatures are above 15˚C within the 200m

surface layer. However, from August to November, some depths show mean temperatures

below 15˚C, within the 200m surface layer. Fig 10 emphasizes the seasonal variability in mean

monthly MLD relative to mean monthly temperatures at 5 meters (at fishing locations), where

temperatures in summer are associated with shallow MLDs.

Table 4. (Continued)

F1 (35%) F2 (48%) F3 (13%) F4 (2%) F5 (1%)

NOV K490 0.56 -0.55 -0.20 -0.13 0.75

CHLA 0.33 0.82 -0.17 0.19 -0.37

WIND 0.05 0.06 -0.20 0.97 0.13

SSH -0.65 0.05 0.27 0.00 0.52

SST -0.39 -0.17 -0.90 0.10 -0.08

The marginality factor coefficients are shown on the first factor (F1), against the respective variable. Factors 2–5 represent specialization factors. Specialization values for

each factor are shown in parentheses. The coefficients are sorted by decreasing order of the first factor (marginality).

https://doi.org/10.1371/journal.pone.0237742.t004
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Discussion

ENFA models

To understand skipjack tuna’s habitat hotspots in the western North Pacific, we constructed

models using fishery presence-only data and five satellite remotely sensed variables, in Bio-

mapper 4.0, following the ENFA approach. ENFA’s model performance metrics (AVI, CVI,

CBI and P-E curves) indicated that the April to October models performed well, and thus had

relatively good predictive power. The low CBI values for March and November models indi-

cate low-quality models which could be attributed to inadequate occurrence samples in these

months given that these two periods represent the initial and last time spans of the fishing sea-

son for skipjack tuna in the study area respectively. It has been shown that small presence sam-

ples can affect model calibration and evaluation [64]. In addition, the March and November

models have high average marginality values, implying that skipjack tuna in these months

occur in zones that differ significantly from the rest of the study area. This observation can

also be explained by skipjack tuna’s migratory behavior in relation to sea surface temperature.

Fig 3. Predicted-expected (P-E) ratios for the base models (March to November 2004), and the respective Continuous

Boyce Index (CBI) values for each model.

https://doi.org/10.1371/journal.pone.0237742.g003
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From early spring, skipjack tuna are known to migrate north and track warm waters above

18˚C, while in late autumn (November), the northern migration is hampered by surface cool-

ing of the Oyashio area [67], and thus the species is quite selective in utilization of space, in

relation to spatial temperature distribution.

The observed seasonal northward displacement of skipjack tuna habitat hotspots in the

entire study area (Fig 4) is characteristic of the latitudinal migration of skipjack tuna [68, 69].

The migration is closely associated with seasonal warming and sea surface temperature and

chlorophyll-a concentration gradients, [8, 19, 70]. Thermal and ocean color gradients are

important indicators of skipjack tuna fishing grounds in the western North Pacific, and often

point to areas of elevated productivity which attract tuna, as they forage on lower trophic level

organisms [7]. The hotspot formation for April (2004) was located around the Kuroshio front,

an outcome that portrays the effect of aggregation of fishing locations around a major SST

front (Fig 4). This implies that the ENFA computed variable means were very similar to values

Fig 4. Habitat Suitability Indices (HSI) for the base models, from March to November (2004).

https://doi.org/10.1371/journal.pone.0237742.g004
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Fig 5. The Shatsky Rise area, (a) the surface flow of the Kuroshio Extension in July 2004, and the high habitat

suitability indices (HSIs) north of the Shatsky Rise, and (b) the impact of the bathymetry around the Shatsky Rise area,

on the surface currents in July 2004.

https://doi.org/10.1371/journal.pone.0237742.g005
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around the frontal zone (and quite different from the rest of the study area), thus limiting the

model’s capability to “pick” areas outside the domain for which fishing data were available.

The formation of habitat hotspots in June and July (base models), between 30-35oN and 150-

Fig 6. Habitat suitability indices predicted for July-October, 2007 and 2008, (a-h) overlaid with polygons (white shaded polygons) derived from 5x5 degree

grids indicating areas fished in the respective months.

https://doi.org/10.1371/journal.pone.0237742.g006
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160oE, the area on or around the Shatsky Rise is another region where ENFA indicates high

suitability scores for skipjack tuna occurrence. The main Shatsky Rise and the larger Shatsky

Rise complex (Fig 5) affect the circulation of the Kuroshio Extension [71] and the mechanisms

through which this feature enhances the magnitude and transfer of primary production to top

predators such as tuna is well documented [3, 72]. The ENFA marginality and specialization

factors support this view, by indicating that hotspot conditions differ markedly from the aver-

age conditions in the larger study area.

Fig 7. Monthly changes in mixed layer depths (MLD) in the western North Pacific, March to November, 2004.

https://doi.org/10.1371/journal.pone.0237742.g007

PLOS ONE Modeling skipjack tuna pelagic hotspots

PLOS ONE | https://doi.org/10.1371/journal.pone.0237742 August 20, 2020 15 / 25

https://doi.org/10.1371/journal.pone.0237742.g007
https://doi.org/10.1371/journal.pone.0237742


Habitat suitability and fishing activities

The ENFA models indicated the importance (higher values of first factor) of Kd490 when fish-

ing locations were situated in the Kuroshio-Oyashio Transition Zone (July, October and

November) compared to the Kuroshio area (March to June). In the Kuroshio area where

Fig 8. Histograms of mixed layer depths (MLD) sampled at fishing locations, March to November, 2004.

https://doi.org/10.1371/journal.pone.0237742.g008
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waters are warm and oligotrophic, Kd490 had little influence on habitat models, compared to

the 3 months (July, October and November), when fishing occurred in the mixed zone, where

waters are more turbid and productive. Previous work has indicated that turbidity influences

tuna distribution [53], and skipjack tuna are attracted to productive waters because they forage

on small organisms (small fishes, squids) whose forage requirements are met by dense

Fig 9. Depth-temperature profile illustrated as mean monthly temperature (derived from 4D-VAR generated data) at fishing locations.

Dashed lines illustrate ±1 standard deviation from the mean.

https://doi.org/10.1371/journal.pone.0237742.g009
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plankton blooms [12, 17]. However, they remain in waters whose temperature is physiologi-

cally tolerable, and visibility is good.

Our results showed positive first factor coefficients for SSH when the fishing locations are

within Kuroshio waters (warmer and lower chlorophyll-a), and negative first factor coefficients

when in the mixed zone (cooler and higher chlorophyll-a). This can be attributed to the differ-

ences in SSH values between these two regions, which are oceanographically very distinct. The

sea surface height data are useful in identifying ocean currents and cold and warm core eddies.

For the western North Pacific, the Kuroshio and Oyashio currents, and eddies pinched off

from these currents have distinct SSH signatures that are useful as indicator variables for hot-

spot modelling [3]. The edges of large warm core eddies, easily identifiable with SSH data, are

known to provide good fishing grounds for skipjack tuna [17].

The ENFA model results indicate that the first factor coefficients for the wind variable were

low for all months except April, 2004. The surface wind speed data were used in this work

mainly for two reasons. First, surface winds driven by typhoons and hurricanes cause mixing of

the upper mixed layer, which can induce upwelling and cause elevated productivity [73]. Such

elevated productivity can lead to further downstream aggregation of tuna. Second, during

extremely windy conditions, tuna fishing can be hindered by bad weather. Consequently, fish-

ery data can show temporal gaps in certain areas simply because vessels were not able to fish

under bad weather conditions [74]. While both reasons are valid, surface wind induced produc-

tivity and bad weather considerations may not have direct effects on tuna habitats, compared to

the other variables. In addition, the frequency of these two events during a fishing season maybe

low, and therefore had little influence in selection of fishing locations by fishermen, which con-

sequently expresses as minimal contribution in ENFA models and HSI computation.

The spatial congruence between predicted hotspots (July-October; 2007 and 2008) and

areas fished (as indicated by the 5x5 degree data) point that ENFA models correctly predicted

Fig 10. Mean monthly mixed layer depths (MLD) and temperature at 5m at fishing locations, March to November, 2004.

https://doi.org/10.1371/journal.pone.0237742.g010
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some of the areas that were indeed fished, or where skipjack tuna were present. This shows

that the ENFA models and the datasets used can be applied successfully to predict potential

habitat hotspots or fishing zones for skipjack tuna. The discrepancies in predicted areas and

mapped polygons might be explained by possible inability by the ENFA models to predict all

potential areas, and the coarseness of the 5x5 degree data from which the mapped polygons

were derived. Given that the ENFA models were constructed using a much finer resolution

occurrence dataset, comparing the model output to a polygon derived from a coarser resolu-

tion dataset was bound to show some discrepancies.

Sub-surface environment variability

Sub-surface temperature and mixed layer depth data generated by an ocean circulation model,

were used to determine sub-surface conditions around the fishing locations. Two approaches

can be used to remotely measure ocean sub-surface habitats utilized by tuna, ocean circulation

model data and data from tagging experiments. Tags are often expensive and deployment can

be costly and labor intensive, thus limiting the numbers that can be deployed at a given time.

In the absence of information from tagging experiments, data from general circulation models

are useful for indicating the sub-surface conditions under which fish were caught, and also for

improving synoptic coverage of vertical habitat utilization [75]. This approach improves our

knowledge of the horizontal and the vertical habitat. The results of such work are important in

improving fishery forecasting models in the western North Pacific. Skipjack tuna are pelagic

fishes and the pole and line fishery targets fish within the upper mixed layer of the water col-

umn where they confine in waters high in dissolved oxygen [67, 76]. The upper mixed layer is

affected by surface warming, which influences the depth, temperature, and primary produc-

tion in the mixed layer [32]. Understanding how a warm-water species like skipjack tuna

responds to seasonal temperature variations in the upper mixed layer can provide insights into

their biological responses in a warmer ocean [77, 78]. First, from the MLD data (Fig 7), the sea-

sonal shoaling of the mixed layer from spring to summer and deepening in winter is as

expected for the western North Pacific [79–81]. Second, the seasonal shoaling of MLDs is asso-

ciated with the seasonal warming, which raises the sea surface temperatures from spring to

summer, when the fish migrate north. The shoaling of the thermocline compresses the depth

(Fig 8) at which tuna have access to abundant food, resulting in increased vulnerability of the

fish to surface fisheries [82]. The depth of the mixed layer (Fig 8) affects the temperature of the

mixed layer [83, 84], the amount of solar insolation available to phytoplankton cells [54], and

the quantities of nutrients available for photosynthesis [85], which in turn affects primary pro-

duction, and by extension secondary production. Model predictions indicate that mixed layer

depths are likely to be shallower in the 21st century, as the western North Pacific Ocean warms

up [80, 81]. As a result of surface warming, the western North Pacific is expected to stratify fur-

ther (with the MLD becoming shallower) in January and February which would cause the

spring bloom to occur earlier [81, 86]. Similar findings show spring blooms [80] and forage

biomass [87] will shift northward due to climate change. This is expected to prolong the grow-

ing season at high latitudes, driven primarily by increased stratification leading to better pho-

tosynthetic efficiency in spring and summer [80]. These findings correspond with projections

from a number of models which show a consistent shoaling of the mixed layer in the Kuroshio

Extension [88] and expansion of the subtropical biome could lead to an increase in primary

production and fish catch [78, 89].

The monthly mean temperature-depth profiles (Fig 9), though not as detailed as those

acquired through archival tags which provide diurnal variability of ambient and peritoneal

temperatures of tagged fish [32, 90], provide important information on the vertical habitat
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underlying locations where skipjack tuna were caught. In a study by [90], skipjack tuna in the

Kuroshio area were observed to dive to varying depths during the day but in most instances

retained the body cavity temperature at around 17˚C. In some instances, skipjack tuna swam

in waters where temperature dropped to 12˚C during deep dives. Our findings on the tempera-

ture-depth profiles are consistent with the previous work [32, 90]. Recently, [67] also found

that throughout skipjack tuna’s northward migration in the western North Pacific, their verti-

cal distribution became shallower in higher latitudes, which is thought to be a strategy to avoid

exposure to the cold water less than 18˚C. This information can help managers to assess how

these fishes are likely to respond biologically to warming of the upper ocean. In the western

North Pacific, skipjack tuna have been caught as far as 44oN [15] in summer and autumn sea-

sons when warm waters provide conducive habitat in higher latitudes. The zonal extent of the

northward migration could largely depend on how much warming can alter the surface or

mixed layer temperatures during the autumn-winter period, as well as the characteristics of

the Oyashio Current whose cold waters and winter mixing inhibit northward migration of

skipjack tuna [70].

Our work was subject to three limitations which are worth highlighting. First, we used a

single-year fishery dataset which limited our ability to make inter-annual comparisons of hot-

spots variability within the study area. Failure to use a multi-year dataset can only be explained

by our inability to access more data due to logistical and administrative processes at the time

the work was conducted, and not unavailability of the data. Future work using a multi-year

dataset would therefore expand the scope of our work by extensively analyzing the inter-

annual variability of skipjack tuna hotspots, and the effects of ocean and climate variability on

hotspot formation. Second, we used chlorophyll-a and Kd490 satellite derived datasets with

missing values due to clouds. The missing data values hampered the computation of HSI

scores in affected pixels, hence the spatial coverage of HSI in months where cloud coverage

was extensive does not present a full picture of hotspot dynamics. Third, our models were

computed at 0.25-degree spatial resolution, on a monthly time scale, which were also the spa-

tial and temporal resolutions of our input datasets. We suggest that using higher resolution

datasets for smaller zones within our study area could refine hotspot analysis, and certainly

improve the utility of the outputs at shorter time-scales.

In summary, based on our findings, we make the following conclusions:

i. ENFA models generated and predicted skipjack tuna habitat hotspots, which were consis-

tent with the known distribution ecology and seasonal migration pattern of the species. The

good performance of ENFA models was demonstrated by the 4 metrics used to evaluate

model quality in ENFA. Consequently, our attempts to predict potential hotspots in subse-

quent years were successful, and the qualitative comparisons between predicted and fished

areas showed correspondence when compared with polygons indicating areas fished for the

same period. In addition, we conclude that the models were robust at explaining the ecologi-

cal importance of the variables used in formation of skipjack tuna habitat hotspots.

ii. The combined application of diverse datasets and tools (e.g. fishery and satellite datasets,

ocean circulation model datasets and ecological niche models) in fisheries oceanography

can improve our understanding of pelagic hotspots, thus facilitating better tools for fishing

ground prediction and management.
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