
pharmaceutics

Article

Lipid Nanoparticles Containing Mixtures of Antioxidants to
Improve Skin Care and Cancer Prevention

Catarina Gonçalves 1, Maria João Ramalho 1 , Renata Silva 2,3 , Vera Silva 2,3, Rita Marques-Oliveira 2,3,
Ana Catarina Silva 2,4,5,* , Maria Carmo Pereira 1,* and Joana A. Loureiro 1,*

����������
�������

Citation: Gonçalves, C.; Ramalho,

M.J.; Silva, R.; Silva, V.;

Marques-Oliveira, R.; Silva, A.C.;

Pereira, M.C.; Loureiro, J.A. Lipid

Nanoparticles Containing Mixtures of

Antioxidants to Improve Skin Care

and Cancer Prevention. Pharmaceutics

2021, 13, 2042. https://doi.org/

10.3390/pharmaceutics13122042

Academic Editor: Timo L. M.

Ten-Hagen

Received: 15 October 2021

Accepted: 23 November 2021

Published: 30 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto,
4200-465 Porto, Portugal; up201608468@edu.fe.up.pt (C.G.); mjramalho@fe.up.pt (M.J.R.)

2 Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto,
4050-313 Porto, Portugal; rsilva@ff.up.pt (R.S.); veralssilva17@gmail.com (V.S.);
ritoliveira.m@gmail.com (R.M.-O.)

3 UCIBIO—Applied Molecular Biosciences Unit, REQUIMTE, Laboratory of Toxicology, Department of
Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

4 UCIBIO, REQUIMTE, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences,
Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal

5 FP-ENAS (UFP Energy, Environment and Health Research Unit), CEBIMED (Biomedical Research Centre),
Faculty of Health Sciences, University Fernando Pessoa, 4249-004 Porto, Portugal

* Correspondence: ana.silva@ff.up.pt (A.C.S.); mcsp@fe.up.pt (M.C.P.); jasl@fe.up.pt (J.A.L.)

Abstract: Oxidative stress, triggered by UV radiation, is one of the major causes of free radical-
associated disorders, such as skin cancer. The application of natural compounds (NCs) with antiox-
idant effects can attenuate free radicals’ accumulation and, therefore, provide a strategy for skin
care and cancer prevention. In this work, three natural compounds, naringenin, nordihydrogua-
iaretic acid (NDGA), and kaempferol, were encapsulated into nanostructured lipid carriers (NLCs)
aiming for the development of a formulation for cutaneous application with antioxidant properties.
For the experiments, different formulation parameters were evaluated to optimize the NLCs that
showed a diameter around 200 nm, which is an adequate particle size for incorporation in cosmetics.
Transmission electron microscopy (TEM) analysis confirmed the NLCs’ typical spherical morphology.
Encapsulation efficiency (EE) and loading capacity (LC) values revealed an effective production
process, with EEs over 90% and LCs near the maximum value. The developed NLCs revealed a
prolonged in vitro release of the natural compounds. The NLCs were stable under storage conditions,
maintaining their psychochemical characteristics for 30 days. Additionally, they did not show any
physical instability in accelerated stability studies, which also suggests long-term stability. Finally, the
NCs antioxidant activity was evaluated. Interestingly, the NDGA and kaempferol mixture provided
an antioxidant synergic effect. The NLC formulations’ cytotoxicity was tested in vitro in immor-
talized human keratinocytes (HaCaT). In addition, putative antioxidant effects of the developed
NLC formulations against tert-butyl hydroperoxide (t-BHP)-induced oxidative stress were studied,
and the NDGA-loaded NLC was revealed to be the one with the most protective effect. Therefore,
we concluded that the naringenin, NDGA, and kaempferol incorporation into NLCs constitutes a
promising strategy to increase their bioavailability and delivery to the skin.

Keywords: oxidative stress; drug delivery systems; bioactive compounds; solid lipid nanoparticles;
nanostructured lipid carriers

1. Introduction

Skin cancer, the most common cancer type worldwide, is the out-of-control growth
of abnormal cells in the epidermis, triggered by unrepaired DNA damage that leads to
mutations [1]. Individual risk factors for skin cancer include age, immunosuppression,
and genetic diseases, though UV radiation is the most important risk factor associated
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with all skin cancers [2]. The damaging UV radiation effects can be classified as direct or
indirect (immunosuppression, inflammatory response, and oxidative stress). Free radicals,
such as reactive oxygen species (ROS), can cause indirect damage to cellular components,
and growing evidence has suggested that increased ROS levels can induce malignant cell
transformation [3–7].

Antioxidants decrease ROS accumulation and attenuate their damaging effects. UV
radiation exposure can overcome the endogenous skin protection, which is why the appli-
cation of endogenous antioxidants is crucial to overcome the oxidative stress caused by
an imbalance between ROS and defense mechanisms [8–11]. Natural compounds (NCs)
are gaining increased attention due to their pharmacological health-benefitting properties,
including antioxidant activity.

In this work, three NCs—naringenin, kaempferol, and nordihydroguaiaretic acid
(NDGA)—were investigated due to their bioactive properties. Naringenin is abundant in
citric fruits, such as grapefruit, oranges, as well as tomatoes, etc. Regarding its anticancer
activity, NDGA exhibited dose-dependent suppressive effects of several pathways and
selective cytotoxicity in different cancer cell lines [12–17]. Nevertheless, naringenin is
an attractive bioactive compound mostly due to its antioxidant activity [12–17]. Addi-
tionally, some studies regarding naringenin’s effect on UV-B-radiated mice revealed a
high effectiveness to protect lipids and DNA from oxidative damage, as well as reduce
inflammation through the inhibition of pro-inflammatory factors. NDGA can also inhibit
the ROS-mediated depletion in the levels of endogenous antioxidants [14,15]. Kaempferol
can be found in plant-derived foods including beans, apples, strawberries, spinach, etc.
This antioxidant presents a high capacity to decrease free radicals’ production, as well as to
efficiently scavenge them. This elevated antioxidant potential can be due to the presence of
its hydroxyl groups, an oxo group, and a double bond between C2 and C3 [18]. Epidemio-
logical evidence has also shown that kaempferol can reduce the risk of developing skin,
liver, breast, lung, gastric, pancreatic, and ovarian cancers [18,19]. NDGA is a polyphenolic
lignan extracted from a creosote bush, Larrea tridentata. This compound has the capacity
to inhibit the oxidative DNA damage and lipid peroxidation (LPO) through the inhibi-
tion of lipoxygenases (LOX). Since LPO products have been implied in the regulation of
tumor cell growth, this NDGA’s capacity is also linked to its anticarcinogenic properties.
NDGA also prevents oxidative damage through other mechanisms, such as activating the
endogenous antioxidant system and ROS scavenging [20–25]. Moreover, these compounds
possess not only potent antioxidant activity, but also anticarcinogenic, anti-inflammatory,
neuroprotective, antidiabetic, and anti-aging properties, which favors their application in
cosmetic formulations. These allow for oxidative stress reduction and, therefore, can be
used in the prevention of many diseases such as skin cancer [13,14,18,20,21,24,26,27].

Despite being present in several consumed foods, the high hydrophobicity and low
bioavailability of these natural compounds raises the need for new and innovative adminis-
tration strategies to take advantage of their beneficial properties. The topical administration
of these compounds is one of the surging approaches, due to the skin’s large surface area;
however, transdermal penetration of active molecules is difficult due to the skin’s barrier
function. To have a better chance to permeate the skin, the compounds should fulfill a
certain physicochemical profile: low molecular weight, low melting point, and amphiphilic
characteristics [28,29]. Additionally, it is important to consider other factors, such as com-
pounds’ degradation at the surface, binding correctly to the skin, metabolism, etc., which
make topical application more difficult [28,30].

Nanotechnology poses as an attractive field that can provide advanced solutions, im-
proving the active compounds’ penetration through the skin [31–33]. Lipid nanoparticles
(LNs) are the most used nanoparticles for topical application, due to their lipidic compo-
sition and, therefore, compatibility with the stratum corneum (SC) through hydrophobic
interactions. Additionally, the compounds to be encapsulated in this project are hydropho-
bic, and LNs allow their dissolution into the lipid matrix. For cosmetic applications, the
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LNs’ size usually ranges between 150 and 300 nm, which minimizes systemic circulation
and toxicity potential [34,35].

LNs exhibit biocompatibility with the skin, biodegradability, long-term stability, and
provide formulation simplicity and versatility, which makes them an attractive option to
explore in the cosmetic industry [35]. These allow for the sustained and controlled release
of entrapped compounds, incrementing the bioavailability and stability by protecting of
the incorporated labile compounds from degradation (light oxidation, hydrolysis, etc.), and
overall allow for the skin application of molecules that are usually hard to transport [36,37].

Nanostructured lipid carriers (NLCs) are LNs composed of a matrix with solid and
liquid lipids. NLCs present an unordered lipid matrix that leads to a higher degree of
imperfections and, therefore, allows for a higher compound incorporation. An additional
advantage of the NLCs is the minimized risk of compound expulsion over time, because
the mixture of a liquid lipid with a solid lipid in the NLCs’ formulation prevents lipid
recrystallization [35,36].

The goal of this work was to develop a cosmetic formulation using NLCs to simulta-
neously transport three potent natural antioxidant compounds (naringenin, kaempferol,
and NDGA) into the skin to prevent free radical accumulation and oxidative stress that can
lead to skin carcinogenesis.

2. Materials and Methods
2.1. Materials

Naringenin (N, 4′,5,7-trihydroxytlavanone, ≥98% purity, molecular weight (MW)
272.25 g/mol), kaempferol (K, 3,4′,5,7-tetrahydroxyflavone, ≥97% purity, MW 286.24 g/mol),
and nordihydroguaiaretic acid (NDGA, 4-[4-(3,4-dihydroxyphenyl)-2,3-dimethylbutyl]benzene-
1,2-diol, ≥97% purity, MW 302.36 g/mol) were purchased from Sigma-Aldrich (Darmstadt,
Germany). Precirol® 5 ATO (glyceryl distearate), Gelucire® 39/01, Cetyl palmitate, Sup-
pocire DM Pellets, Compritol® H105 ATO, Gelucire® 50/13 (Stearoyl polyoxyl-32 glyc-
erides), Suppocire NA15 Pellets, Gelucire® 43/01 (hard fat compounds), Apifil® (PEG-8
beeswax), and Labrafac® WL1349 (medium-chain triglycerides) were purchased from
Gattefossé (Nanterre, France). Dynasan® 114 (glyceryl tristearate), Softisan® 100 (hydro-
genated coco-glycerides), and Softisan® 154 (hydrogenated palm oil) were provided from
IOI Oleo GmbH (Hamburg, Germany). Glyceryl monostearate, stearic acid, Miglyol®

812 (medium-chain triglycerides), Cetyol® V (decyl oleate), isopropyl myristate, and
Microcare® (cetyl dimeticone) were purchased from Acopharma S.A. (Terrassa, Spain).
Pluronic® F-127 (MW 12,600 g/mol), HEPES hemisodium salt, pH 7.4, (MW 249.30 g/mol),
2,2-diphenyl-1-picrylhydrazyl (DPPH, MW 394.32 g/mol), and uranyl acetate (≥98% pu-
rity, MW 424.15 g/mol) were also purchased from Sigma-Aldrich (Darmstadt, Germany).
Dulbecco’s modified Eagle’s medium (DMEM) with 4.5 g/L glucose and GlutaMAX™, fetal
bovine serum (FBS), 0.25% trypsin/1 mM EDTA, and Hanks’ balanced salt solution (HBSS)
without calcium and magnesium (HBSS (−/−)) were purchased from GibcoTM (Thermo
Fisher Scientific, Alfagene, Portugal). Antibiotics (100 U/mL penicillin, 100 µg/mL strepto-
mycin) were obtained from Biochrom (Berlin, Germany). Dimethyl sulfoxide (DMSO) was
purchased from Merck (Darmstadt, Germany). Neutral red (NR) solution, tert-butyl hy-
droperoxide (t-BHP) solution, 2′,7′-Dichlorofluorescin diacetate (DCFH-DA), and Triton™
X-100 detergent solution were acquired from Sigma-Aldrich (Darmstadt, Germany). All
sterile plastic material was obtained from Corning Costar (New York, NY, USA).

2.2. Methods
2.2.1. Formulation Studies
Lipid Screening

When developing a LN dispersion, the choice of the most suitable lipids is fundamen-
tal, which leads to the formation of an appropriate solid nanoparticle matrix. The used
methodology was previously described and adapted to this work [38]. Briefly, a 1:100 mass
ratio of each natural compound (NC) as added to the solid lipids and the mixture was
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heated up to 80 ◦C (temperature above the solid lipid melting point) and stirred for 1 h. The
solubility was determined visually, at 15 min intervals, evaluating the presence or absence
of crystals/aggregates of the compounds in the lipid. For the liquid lipids, a 1:100 ratio
of NC to oil was stirred magnetically for 1 h, checking for the presence or absence of the
compounds’ crystals. To ensure the compatibility between the solid and liquid lipids,
the solubility was tested, with a 50:50 mass ratio of each, which were also heated with
magnetic stirring for 1 h. Finally, they were cooled down to room temperature (20 ± 1 ◦C)
for solidification, and the miscibility was assayed visually.

Surfactants Compatibility Evaluation

Nanoparticles were prepared without the NCs to identify the most suitable surfactant.
Different production conditions were also assessed: Ultra-Turrax T25 (0.5, 1, and 2 min)
and sonication time (5, 10, 15, and 30 min). The produced placebo NLCs were studied
and monitored over time according to their mean diameter, polydispersity index (PdI),
and zeta potential (ZP) through dynamic light scattering (DLS) using a ZetaSizer Nano ZS
(Malvern Instruments, Worcestershire, UK) [39]. Size measurements were performed at
25 ◦C with an angle of detection of 173◦ backscatter. The obtained values were determined
from 3 measurements of 11 runs each. Zeta potential values were also determined at 25 ◦C,
using the Smoluchowski mathematical model to obtain the data resulting from 20 runs of
3 measurements. The physical appearance of the solutions was also evaluated.

2.2.2. Nanoparticle Preparation

The method was adapted from the ones performed by Tichota et al. (2014) [38,40]. A
mixture of the solid lipid (with a weight of 700 mg) and liquid lipid (a weight of 300 mg)
was heated to at least 5 ◦C above the solid lipid melting point, allowing for the solid lipid
to melt completely. In the lipidic phase, 20 mg of each NC was also added. At the same
time, the aqueous phase, containing an aqueous surfactant solution, was heated at the
same temperature. Then, the lipid phase was dispersed in the aqueous one. An emulsion
was obtained using a high-shear homogenizer (Ultra-Turrax T25, Janke and Kunkel IKA-
Labortechnik, Staufen, Germany) at 13,500 rpm, and sonicated using a Vibra-Cell™ CV18
(Sonics and Materials, Newtown, CT, USA) at an amplitude of 80% and an ultrasonic
frequency of 24 kHz. Then, samples were left to cool to room temperature with subtle
stirring, allowing for lipid crystallization and NLC formation. The production of all NLCs
was done in triplicate.

2.2.3. Nanoparticle Characterization

NLCs were characterized according to their mean diameter, PdI, and ZP by DLS
(Zetasizer Nano ZS, Malvern Instrument, UK) at 25 ◦C. Samples were diluted in ultrapure
water (1:100). Measurements were run in triplicate with 11 runs each. Measurements
occurred on the day after the production (day 1), and on days 7, 14, and 30, to assay the
NLCs’ stability over time. NLCs were also characterized according to their morphology
following the method previously described [41]. Firstly, 5 µL aliquots of each sample were
deposited on a 400-mesh carbon-formvar copper grid (Agar Scientific, Essex, UK) and left
to absorb for 5 min. The samples were stained with a 2% (w/v) aqueous uranyl acetate
solution and left to air-dry. Transmission electron microscopy (TEM) was performed using
a JEM 1400 electron microscope (JEOL, Tokyo, Japan), with an acceleration voltage of 80 kV.

2.2.4. Determination of Encapsulation Efficiency and Loading Capacity

The NC-loaded NLCs were diluted in ultrapure water and then filtered (Amicon®

Ultra Centrifugal Filters Ultracell®—3 kDa, Merck Millipore Ltd., Tullagreen, Carrigtwohill;
from Sigma-Aldrich Química, S.A), at 14,500× g and 25 ◦C for 3 min to separate the free
compounds from the compound-loaded NLCs. A mixture of 3:7 (v/v) of the supernatant
and pure ethanol was prepared and the amount of free compound was quantified by UV-
Vis absorbance measurements (BioTek Synergy HT Microplate Reader, BioTek, Winuschi,
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VT, USA) at the characteristic wavelength of each compound (282 nm for NDGA, 289 nm
for naringenin, and 367 nm for kaempferol). The amount of the free compound was
calculated through a calibration curve for each compound solution. This determination
was performed in triplicate. Encapsulation efficiency (EE) and loading capacity (LC) were
calculated through Equations (1) and (2):

EE (%) =
Total amount of added NC−Unentrapped NC

Total amount of added NC
× 100 (1)

LC (%) =
Total mass of encapsulated NC

Total mass of NLC + Total mass of encapsulated NC
× 100 (2)

2.2.5. In Vitro Release

The in vitro release profiles of the NC-loaded NLCs were assessed in simulated physi-
ological environment. The NC-loaded NLCs were diluted in a 10 mM solution of HEPES
hemisodium salt buffer to a volume of 5 mL and placed at 37 ◦C and continuous stirring
of 200 rpm. At predetermined timepoints, aliquots of 200 µL were collected from the
release medium. To separate the released compounds from the NLCs, the samples were
ultra-centrifugated (Amicon® Ultra Centrifugal Filters Ultracell®—3 kDa, Merck Millipore
Ltd., Tullagreen, Carrigtwohill; from Sigma-Aldrich Química, S.A) at 14,500× g and 25 ◦C
for 3 min. The amount of the released compound was quantified by UV-Vis absorbance
as described in Section 2.2.4 (BioTek Synergy HT Microplate Reader, BioTek, Winuschi,
VT, USA). This test was performed in triplicate. The percentage of the released natural
compound (NC) at each time point was calculated from the following equation:

Released NC (%) =
Amount of NC at time t

Total amount of NC
× 100 (3)

2.2.6. Antioxidant Assay

The performed method was conducted as described previously [42]. Briefly, stock
methanolic solutions of each NC were prepared, as well as a 0.16 mM DPPH methanolic
solution. Each NC sample was added to 175 µL of DPPH solution, to a final concentration
of NC or a mixture of NCs of 4 µM, and a final volume of 200 µL. The tested mixtures were
naringenin (N):NDGA (2 µM N + 2 µM NDGA), N:kaempferol (K) (2 µM N + 2 µM K),
NDGA:K (2 µM NDGA + 2 µM K), and N:NDGA:K (1.3 µM N + 1.3 µM NDGA + 1.3 µM
K). The mixture was vortexed for 1 min and left to stand at room temperature for 30 min in
the dark, and subsequently, its absorbance was read at 517 nm. Each NC and mixture of
NCs was tested in triplicate. The ability of each sample to scavenge DPPH was calculated
through the following equation:

Scavenging effect (%) =

(
1−

Asample −Asample blank

Acontrol

)
× 100 (4)

where Asample is the absorbance of the test sample (DPPH solution plus test sample),
Acontrol represents the absorbance of the control (DPPH solution without sample), and
Asample blank is the absorbance of the sample only (sample without the DPPH solution).

2.2.7. Accelerated Stability

Accelerated stability experiments allow one to estimate the changes that may occur
during storage, anticipating stability problems over time [43]. For that purpose, NLCs
were diluted in ultrapure water (1:100) to a final volume of 1 mL. The NLC samples were
submitted to two 3000× g cycles of 30 min (Eppendorf AG 5804 centrifuge, Hamburg, Ger-
many). After each cycle, samples were examined visually to observe the presence/absence
of phase separation, creaming, or flocculation, which predicts stability problems. The size,
PdI, and ZP of the samples were also evaluated by DLS. This experiment was performed
in triplicate.
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2.2.8. In Vitro Cytotoxicity Assay and Evaluation of the Protection of the Formulations
against Oxidative Stress
Culture of Immortalized Human Keratinocytes Cells

Immortalized human keratinocytes (HaCaT) cells were routinely cultured in 75 cm2

flasks using DMEM with 4.5 g/L glucose and GlutaMAX™, supplemented with 10%
FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin. The cells were maintained in a
5% CO2-95% air atmosphere, at 37 ◦C, and the cell culture medium was changed every
2 days. When at 80–90% of confluence, the cultures were passaged by trypsinization (0.25%
trypsin/1 mM EDTA). For the studies, the cells were seeded in 96-well plates at a density
of 20,000 cells/well. The cells used in all experiments were taken between the 42nd and
50th passages.

Neutral Red (NR) Uptake Assay to Evaluate Formulations’ Cytotoxicity

The cytotoxicity of the NLC formulations was evaluated in HaCaT cells, as previously
described by Vaz et al. (2019) [40]. For the evaluation, 24 h after cell seeding, cells were
exposed to the formulations (0–1000 µg/mL) prepared in a fresh cell culture medium. After
6 and 24 h of exposure to the tested NLC formulations, cytotoxicity was evaluated by
neutral red (NR) uptake assay. Triton™ X-100 (1%) was used as positive control. Briefly,
the cell culture medium was aspirated, and a fresh cell culture medium containing NR
(50 µg/mL) was added. The cells were then incubated, at 37 ◦C, in a humidified 5%
CO2–95% air atmosphere, for 90 min. After that, the cell culture medium was removed,
and the NR dye retained by viable cells was extracted with lysis buffer (absolute ethyl
alcohol/distilled water (1:1) with 5% acetic acid). The absorbance was measured at 540 nm
in a multi-well plate reader (PowerWaveX BioTek Instruments, Winuschi, VT, USA). The
percentage of NR uptake relative to that of the control cells (0% formulation) was used as the
cytotoxicity measure. The cytotoxicity of the free drugs (0.81 µg/mL) was also evaluated
by the NR uptake assay, as performed for the NLC formulations. Four independent
experiments were performed in triplicate.

Evaluation of the Protection of the Formulations against Oxidative Stress: Effects on
t-BHP-Induced Increase in ROS Levels

The NLC formulations’ in vitro putative antioxidant effect was assayed using HaCaT
cells. The ability of the developed NLCs in protecting against a tert-butyl hydroperoxide (t-
BHP)-induced increase in the intracellular levels of ROS and reactive nitrogen species (RNS)
was evaluated. Briefly, a DCFH-DA probe was applied, and when it was in the cytoplasm,
the probe was hydrolyzed, and 2′,7′-dichlorodihydrofluorescein (DCFH) was formed.
When ROS/RNS are present in the medium, DCFH is oxidized into the highly fluorescent
2′,7′-dichlorofluorescein (DCF), which can be quantified and whose fluorescence intensity
is proportional to the levels of ROS/RNS [44]. This way, HaCaT cells were seeded for
24 h in 96-well plates (20,000 cells/well) and, after that, the cells were pre-incubated with
20 µM of DCFH-DA, protected from light, at 37 ◦C, in a 5% CO2–95% air atmosphere for
1 h. Then, DCFH-DA was removed, and the cells were subjected to t-BHP (0–500 µM)
in the presence or absence of the tested NLC formulations (50 µg/mL). The exposure
occurred for 24 h at 37 ◦C, in a 5% CO2–95% air atmosphere. After that, the fluorescence
was measured at 485 nm excitation and 530 nm emission wavelengths in a multi-well
plate reader (PowerWaveX BioTek Instruments, Winuschi, VT, USA). Four independent
experiments were performed in triplicate.

2.2.9. Statistical Analysis

Statistical evaluation was made using the GraphPad Prism 8 for Windows (GraphPad
Software, San Diego, CA, USA). The normality of the data distribution was evaluated using
the KS, D’Agostino and Pearson omnibus and Shapiro–Wilk normality tests. For data with a
parametric distribution, one-way ANOVA was used to perform the statistical comparisons,
followed by the Dunnett’s multiple comparisons test. For data with a non-parametric
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distribution, the Kruskal–Wallis test was used to perform the statistical comparisons,
followed by the Dunn’s multiple comparisons test. In the evaluation of the antioxidant
effect of the formulations, the comparisons were performed using two-way ANOVA
followed by the Tukey’s multiple comparisons test. Details of the performed statistical
analysis are described in the figure legend. Differences were considered to be significant
for p-values < 0.05.

3. Results and Discussions
3.1. Formulation Studies

The lipids’ selection was based on their proven reported compatibility with the skin,
since the goal of this formulation was for topical use. Thus, the solubility of the natural
compounds was examined in several solid Supplementary (Table S1 and Figure S1) and
liquid (Supplementary Table S2 and Figure S1) lipids. Out of the 15 tested solid lipids, the
ones that were revealed to be the most compatible with all three NCs were Gelucire® 50/13
and Apifil®. Concerning the liquid lipid screening, out of the five tested oils, Miglyol®

812 and Labrafac WL1349 were revealed to be the ones that were able to dissolve all
three NCs. Testing the several possible combinations, the ones that showed potential for
NLC formulation were Gelucire® 50/13 with Labrafac WL1349 and Apifil with Miglyol®

812 (Supplementary Table S3 and Figure S2).
Then unloaded NLC formulations were produced using these lipids, testing two dif-

ferent surfactants (Tween 80 and 10% Pluronic® F-127) and different production conditions.
Based on the NLCs’ physicochemical properties, the selected combination was Apifil® with
Miglyol® 812 and 10% Pluronic® F-127. The production conditions for these formulations
were 30 s of Ultra-Turrax T25 and 5 min of ultrasonication at an amplitude of 80% and
an ultrasonic frequency of 24 kHz. These formulations presented a normal milky-like
appearance, and their physicochemical properties were analyzed over time to evaluate
their stability (Table 1). The formulations maintained a constant and stable particle size
(p > 0.05) after 6 months of approximately 200 nm, which is an adequate dimension for
cosmetic formulations. They also presented a PdI below 0.3, which is an acceptable value
for LNs, suggesting that no particle aggregations occurred. Regarding the ZP values, these
remained stable over the studied time (p > 0.05). LNs are usually considered to be stable
when they present ZP values above or below +30 mV and−30 mV, respectively [35]. This is
valid for purely electric stabilization, but despite the NLCs not having a sufficient negative
charge, the system was revealed to be stable, through there was steric hindrance caused by
the non-ionic surfactant used (Pluronic® F-127) [45]. This study proved the feasibility of
the selected NLC formulations to be a drug-delivery system for the selected NCs, since
they maintained stability for to up to 6 months.

Table 1. The mean diameter (size), polydispersity index (PdI), and zeta potential (ZP) of the unloaded
NLC formulations (mean ± SD, n = 3).

Measurement
NLC

Size (nm) PdI ZP (mV)

Day 1 222 ± 13 0.231 ± 0.005 −14.4 ± 0.9
Day 7 229 ± 10 0.220 ± 0.014 −15.2 ± 1.7
Day 14 227 ± 8 0.264 ± 0.075 −14.2 ± 0.7

Month 6 225 ± 9 0.215 ± 0.012 −15.9 ± 0.6

3.2. Natural Compound-Loaded Nanoparticles’ Characterization and Stability Studies

NC-loaded NLCs’ physicochemical properties were evaluated over time. Measure-
ments were conducted on the day after production, and 7, 14, and 30 days after, to evaluate
the NLCs’ stability (Table 2). NLCs presented sizes close to 200 nm, which prevents their
systemic circulation and is adequate for cosmetic incorporation [31,34]. The NLCs’ mean
diameter did not significantly change during the 30-day study (p > 0.05), which proves
their stability over time. Comparing these results with the ones obtained for the unloaded
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NLCs (Table 1), it can be observed that naringenin-loaded and NDGA-loaded NLCs pre-
sented a similar diameter to the unloaded NLCs (p > 0.05). Kaempferol-loaded NLCs
exhibited smaller dimensions than unloaded NLCs, but their sizes are still suitable for
cosmetic application (p < 0.05). For all the produced samples, PdI remained below 0.3,
revealing that the loaded NLCs are monodisperse, which guarantees their size homogene-
ity distribution [46,47]. The ZP values remained constant throughout the stability study
(p > 0.05). Additionally, naringenin- and NDGA-loaded samples exhibited ZP values that
were significantly different from the ones of the unloaded NLCs (p < 0.05), suggesting that
the encapsulation of these NCs can induce changes on the particle’s surface charge. This
can be explained by the different distribution of the NCs into the NLCs: if the NCs are close
to the NLCs’ surface, the ZP could be significantly affected in comparison to the unloaded
NLCs. Besides, it has been reported that, during the NLCs’ production process, some of
the NCs could be adsorbed in the particle’s surface, therefore changing its surface charge
and ZP [48].

Table 2. The mean diameter (size), polydispersity index (PdI), and zeta potential (ZP) of the naringenin-, NDGC-, and
kaempferol-loaded NLCs (mean ± SD, n = 3).

Measurement
Naringenin NDGA Kaempferol

Size (nm) PdI ZP (mV) Size (nm) PdI ZP (mV) Size (nm) PdI ZP (mV)

Day 1 208 ± 3 0.223 ± 0.017 −9.0 ± 0.3 213 ± 4 0.234 ± 0.007 −22.9 ± 4.1 176 ± 7 0.221 ± 0.002 −12.0 ± 2.2
Day 7 204 ± 7 0.205 ± 0.011 −10.1 ± 0.9 207 ± 9 0.224 ± 0.009 −20.8 ± 0.4 180 ± 8 0.219 ± 0.013 −8.9 ± 0.8

Day 14 204 ± 11 0.205 ± 0.004 −9.7 ± 0.3 204 ± 6 0.234 ± 0.026 −20.3 ± 0.8 180 ± 7 0.221 ± 0.007 −14.5 ± 0.8
Day 30 204 ± 6 0.205 ± 0.004 −12.0 ± 1.8 207 ± 5 0.214 ± 0.002 −19.9 ± 1.1 182 ± 6 0.209 ± 0.005 −13.1 ± 0.7

Samples of unloaded and natural compound-loaded NLCs were also characterized by
TEM (Figure 1). All samples revealed a typical NLC spherical morphology, as expected [49,50].
Most samples disclosed particles of approximately 200 nm, confirming the obtained DLS
results. However, some discrepancies could be found, and some NLCs presented a slightly
smaller size. This can be explained due to the PdI associated with every sample, and due to
the impregnation technique. Additionally, other authors reported mean sizes determined
by DLS to be slightly higher than by TEM due to the interference of the dispersant in the
hydrodynamic diameter [51].
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3.3. Encapsulation Efficiency and Loading Capacity

The results obtained for EE and LC values are presented in Table 3. For all samples,
high EE values were obtained at over 90%, suggesting that the vast majority of the added
NCs were in fact incorporated inside the LNs. All samples also revealed high LC values,
near the maximum value (1.058%). These results prove that NCs’ encapsulation into LNs
allows, in fact, for a suitable drug-delivery system for naringenin, NDGA, and kaempferol.
These high EE and LC values are most likely due to the high NC hydrophobicity and
the lipid screening that was previously performed, which had the goal to select the most
compatible lipids with the three NCs. Additionally, according to the literature, the addition
of the oil to the solid lipid matrix prevents its perfect crystallization, allowing for a greater
drug EE and incorporation [52]. The mixture of single NC-loaded NLCs was evaluated
instead of a single NLC containing the mixture of the three compounds, to avoid possible
interactions between the NCs that could interfere with their activity.

Table 3. Encapsulation efficiencies and loading capacity of naringenin, NDGA, and kaempferol in
the NLCs (mean ± SD, n = 3).

Naringenin NDGA Kaempferol

Encapsulation efficiency (%) 91.1 ± 1.7 89.8 ± 1.9 98.8 ± 0.7
Loading capacity (%) 0.97 ± 0.02 0.95 ± 0.02 1.05 ± 0.01

3.4. In Vitro Release Studies

The obtained in vitro release profiles for NC-loaded NLCs were evaluated for 19 days
(Figure 2).
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Figure 2. In vitro release profile of the developed NC-loaded NLCs in HEPES buffer (mean ± SD,
n = 3).

While naringenin-loaded NLCs released 21 ± 2% of their content after 19 days, NLCs
containing NDGA and kaempferol revealed a very minimal release of the compounds.
This prolonged release can be explained due to the NCs hydrophobicity and compatibility
with the lipidic matrix due to the performed lipid screening. The high hydrophobicity
and compatibility of the NCs allows for an easy incorporation of the compounds into the
lipidic matrix, which provides high EE values. However, these physicochemical features
of the NCs also make their release in these conditions difficult, since the used buffer is
water-based. It has been described that this prolonged release occurs when the molecules
are located inside the core of the nanoparticles [53,54].

Thus, the obtained results suggest that the developed NLCs are suitable for the
delivery of the selected NCs for subsequent application in skin care. A slow and sustained
release is advantageous for cosmetic formulations allowing for them to decrease the amount
of applied formulation.
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3.5. Antioxidant Activity Assay

The antioxidant activity of the compounds was evaluated in terms of the NCs’ ability
to scavenge DPPH (Table 4). Among the three studied NCs, NDGA presented the highest
antioxidant activity, and naringenin presented the lowest (p < 0.05). The potential antioxi-
dant effect synergies from the combined use of more than one antioxidant were further
evaluated (Table 4). The obtained results showed that the mixture containing NDGA
and kaempferol was the only mixture with a synergistic effect, with significantly higher
antioxidant activity values (18± 2) than the theoretical values (14.8) (p < 0.05). On the other
hand, the mixture containing naringenin and kaempferol presented an antagonist effect
instead of a synergistic effect, as depicted by the lower obtained antioxidant activity values
(3.4 ± 0.4) than the theoretical values (4.6) (p < 0.05). The remaining tested combinations
(NDGA plus naringenin, and NDGA plus naringenin plus kaempferol) did not present
either a synergistic or an antagonist effect, since the obtained antioxidant activity values
were not different for the theoretical ones (p > 0.05) (Table 4).

Table 4. DPPH radical-scavenging activities of natural compounds. NDGA (4 µM), naringenin (N) (4 µM), and kaempferol
(K) (4 µM), as well as mixtures of NDGA and N (2 µM NDGA + 2 µM N), NDGA and K (2 µM NDGA + 2 µM K), N and K
(2 µM N + 2 µM K), and NDGA and N and K (1.3 µM NDGA + 1.3 µM N + 1.3 µM K) (mean ± SD, n = 3).

Antioxidant Activity (%) NDGA N K NDGA:N NDGA:K N:K NDGA:N:K

Obtained 21.8 ± 1.6 1.4 ± 1.3 7.8 ± 1.4 12.3 ± 1.2 17.8 ± 1.7 3.4 ± 0.4 10.7 ± 0.7
Theoretical - - - 11.6 14.8 4.6 10.3

Based on the obtained results, the in vitro protective effect of the most promising
mixture (NDGA plus kaempferol) was further evaluated alongside with the NCs alone in
skin cells. Despite not exhibiting a synergetic effect, the mixture of the three NCs (NDGA
plus naringenin plus kaempferol) was also selected to be further tested in vitro, since cell
behavior could affect the antioxidant activity. Additionally, NCs possess several health-
promoting properties and the combination of the three NC could still be advantageous.

3.6. Accelerated Stability

The results obtained for the accelerated stability assays are presented in Table 5. No sig-
nificant changes were observed in the size and ZP values between the two centrifugations
for all three studied nanoformulations (p > 0.05).

Table 5. The mean diameter (size), polydispersity index (PdI), and zeta potential (ZP) of the naringenin-, NDGA-, and
kaempferol-loaded NLCs after the accelerated stability assay (mean ± SD, n = 3).

Measurement
Naringenin NDGA Kaempferol

Size (nm) PdI ZP (mV) Size (nm) PdI ZP (mV) Size (nm) PdI ZP (mV)

After 30 min
centrifugation 197 ± 8 0.210 ± 0.013 −12.1 ± 0.5 208 ± 9 0.221 ± 0.006 −21.3 ± 1.2 186 ± 10 0.206 ± 0.017 −9.5 ± 0.9

After 60 min
centrifugation 198 ± 7 0.193 ± 0.023 −12.8 ± 0.4 208 ± 8 0.221 ± 0.008 −22.3 ± 0.4 186 ± 4 0.209 ± 0.024 −10.3 ± 2.9

These results indicate that the centrifugations did not disrupt the NLCs nor influence
their stability and homogeneity. Regarding the visual aspect of the tested samples, no
physical instability (phase separation, flocculation, creaming) was observed, with the
NLCs’ suspension exhibiting the same homogenous appearance as at the beginning of the
experiment (Supplementary Figure S3). The obtained results can predict the long-term
stability of the developed NC-loaded NLCs, suggesting that these NLCs are adequate for
incorporation in cosmetic formulations.
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3.7. In Vitro Cytotoxicity Assay and Evaluation of the Protection of the Formulations against
Oxidative Stress
3.7.1. Formulations Cytotoxicity

In vitro cytotoxicity assays were performed to select the non-cytotoxic concentrations
to be used in the evaluation of the antioxidant effects of the formulations against t-BHP-
induced oxidative stress. The obtained results for NR uptake assay are presented in
Figure 3. A concentration-dependent reduction in NR uptake was observed for all the
formulations, including the unloaded NLCs. Accordingly, with the obtained data, no
significant cytotoxicity was detected after 24 h of exposure to 50 µg/mL of all the tested
formulations, while a significant reduction in NR uptake was observed for concentrations
equal to or higher than 100 µg/mL.

Pharmaceutics 2021, 13, x FOR PEER REVIEW 12 of 18 
 

 

 
Figure 3. Cytotoxicity of the developed formulations evaluated in HaCaT cells by the neutral red 
(NR) uptake assay 24 h after exposure. Results are expressed as mean ± SD from four independent 
experiments performed in triplicate. Statistical comparisons were made using one-way ANOVA 
followed by the Dunnett’s multiple comparisons test (for data with a parametric distribution) or 
using the Kruskal–Wallis test followed by the Dunn’s multiple comparisons test (for data with a 
non-parametric distribution) ** p < 0.01; *** p < 0.001; **** p < 0.0001 for each formulation vs. 0 
μg/mL). In all cases, p values < 0.05 were considered significant. 

Based on the obtained results, the 50 μg/mL concentration was selected for the sub-
sequent experiments, since this concentration did not present significant cytotoxicity 24 h 
after exposure. The cytotoxicity of the free NCs (alone or in mixtures, as in the formula-
tions) was evaluated at the concentration of 0.81 μg/mL, the concentration of the NC pre-
sent in 50 μg/mL of each formulation, to assess if the NC also did not exhibit toxicity. The 
obtained results are presented in Figure 4. As expected, no significant cytotoxic effects on 
NR uptake were detected after 24 h of contact with the tested NCs, suggesting that this 
concentration is, in fact, non-cytotoxic for HaCaT cells. 

  

Figure 3. Cytotoxicity of the developed formulations evaluated in HaCaT cells by the neutral red
(NR) uptake assay 24 h after exposure. Results are expressed as mean ± SD from four independent
experiments performed in triplicate. Statistical comparisons were made using one-way ANOVA
followed by the Dunnett’s multiple comparisons test (for data with a parametric distribution) or
using the Kruskal–Wallis test followed by the Dunn’s multiple comparisons test (for data with a non-
parametric distribution) ** p < 0.01; *** p < 0.001; **** p < 0.0001 (for each formulation vs. 0 µg/mL).
In all cases, p values < 0.05 were considered significant.

Based on the obtained results, the 50 µg/mL concentration was selected for the
subsequent experiments, since this concentration did not present significant cytotoxicity
24 h after exposure. The cytotoxicity of the free NCs (alone or in mixtures, as in the
formulations) was evaluated at the concentration of 0.81 µg/mL, the concentration of the
NC present in 50 µg/mL of each formulation, to assess if the NC also did not exhibit toxicity.
The obtained results are presented in Figure 4. As expected, no significant cytotoxic effects
on NR uptake were detected after 24 h of contact with the tested NCs, suggesting that this
concentration is, in fact, non-cytotoxic for HaCaT cells.
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Figure 4. Cytotoxicity of the free natural compounds (alone or in combination) evaluated in HaCaT
cells by the NR uptake assay 24 h after exposure to a 0.81 µg/mL concentration. Results are expressed
as mean ± SD from four independent experiments performed in triplicate. Statistical comparisons
were made using one-way ANOVA followed by the Dunnett’s multiple comparisons test. In all cases,
p values < 0.05 were considered significant.

3.7.2. Evaluation of the Protection of the Formulations against Oxidative Stress: Effects on
t-BHP-Induced Increase in ROS Levels

The antioxidant protective effects of the developed NLC formulations at a concen-
tration of 50 µg/mL were assessed, and the obtained results at 6 and 24 h incubation are
presented in Figures 5 and 6, respectively. The mixture of NDGA-loaded plus kaempferol-
loaded NLCs, and the mixture of all NLC formulations (NDGA-loaded, kaempferol-loaded,
and naringenin-loaded) were also evaluated. Unloaded NLCs were used as a control.
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Figure 5. Intracellular levels of ROS/RNS 6 h after exposure to t-BHP (0–500 µM) in the presence
or absence of the developed NLC formulations. Results are expressed as mean ± SD from six
independent experiments performed in triplicate. Statistical comparisons were made using two-way
ANOVA followed by the Tukey’s multiple comparisons test (* p < 0.05, ** p < 0.01, *** p < 0.001;
**** p < 0.0001; in purple the statistical analysis for each condition versus 0 µM t-BHP is represented;
in red the statistical analysis at each t-BHP concentration for the comparison between NC-loaded NLC
formulations and the unloaded NLC formulation is presented; in black the statistical analysis at each t-
BHP concentration for the comparison between each NLC formulation and t-BHP alone is represented;
in blue the statistical analysis at each t-BHP concentration for the comparison between the different
NC-loaded NLC formulations is represented). In all cases, p-values < 0.05 were considered significant.
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Figure 6. Intracellular levels of ROS/RNS 24 h after exposure to t-BHP (0–500 µM) in the presence or absence of the
developed NLC formulations. Results are expressed as Mean ± SD from 6 independent experiences, performed in triplicate.
Statistical comparisons were made using Two-way ANOVA followed by the Tukey’s multiple comparisons test (* p < 0.05,
*** p < 0.001; **** p < 0.0001; in purple the statistical analysis for each condition versus 0 µM t-BHP is represented; in
red the statistical analysis at each t-BHP concentration for the comparison between NC-loaded NLC formulations and
unloaded NLC formulation is presented; in black the statistical analysis at each t-BHP concentration for the comparison
between each NLC formulation and t-BHP alone is represented; in blue the statistical analysis at each t-BHP concentration
for the comparison between the different NC-loaded NLC formulations is represented). In all cases, p-values < 0.05 were
considered significant.

At a 100 µM t-BHP, only a slight tendency for antioxidant activity was verified for all
tested formulations and mixtures for both 6 h incubation and 24 h incubation. However,
for 250 and 500 µM t-BHP, it was verified that naringenin-loaded NLCs do not have an
antioxidant effect against t-BHP-induced oxidative stress, since that formulation did not sig-
nificantly decrease ROS/RNS levels. These results are corroborated from the ones obtained
in the antioxidant assay (Table 4), where naringenin presented lower DPPH-scavenging
activity. The remaining studied formulations and mixtures exhibited antioxidant activity
for 250 and 500 µM t-BHP, proved by the significant decrease in the ROS/RNS intracellular
levels when compared with the control cells. These results suggest that the NLCs have the
capacity to penetrate into the cells and exert their antioxidant activity. Additional studies
including confocal intracellular imaging are underway to delineate penetration of the skin
and intracellular localization.

Additionally, for 24 h incubation at 500 µM t-BHP, the NDGA-loaded NLC formulation
was demonstrated to be the most protective formulation against t-BHP-induced oxidative
stress. Indeed, in the presence of 50 µg/mL of the NDGA-loaded NLC formulation,
ROS/RNS intracellular levels significantly decreased to 140.3% and 180.9% after 24 h
exposure to 250 and 500 µM t-BHP, when compared to 172.3% and 256.6% of 250 and
500 µM of t-BHP alone. This is in accordance with the results obtained in the antioxidant
activity assay (Table 4), where NDGA presented the strongest DPPH-scavenging activity
among all the tested NCs.

Furthermore, although it was not the most efficient formulation, the mixture of the
three loaded NLC formulations still proved to significantly improve the protective effects
against oxidative stress. Additionally, and as expected, the empty NLC formulation was not
able to decrease ROS/RNS production when compared to t-BHP alone, suggesting that the
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protective effects observed for the formulations are most likely a result of the antioxidant
effects exerted by the NLCs loaded with the NCs. These results suggest that the developed
NC-loaded NLCs are adequate for the development of novel cosmetic formulations with
antioxidant activity.

4. Conclusions

In this work, formulations of NLCs containing three natural compounds with antioxi-
dant activity—naringenin, NDGA, and kaempferol—were prepared. The formulations and
production process were optimized to yield nanoparticles with adequate physicochemical
properties for incorporation in cosmetic formulations. The developed NLCs maintained
their characteristics over 30 days, revealing stability during storage. High EE and LC
values were obtained for all NLCs, suggesting an efficient formulation process, with low
compound loss, low production costs, and thus, the achievement of more sustainable
products. The developed NLCs exhibited a prolonged in vitro release profile, which is
beneficial for cosmetic formulations allowing them to decrease the amount and frequency
of the applied formulation. The long-term stability of the NLC formulations, revealed by
the accelerated stability assay, is also advantageous for cosmetics. The NC-loaded NLCs
presented, as expected, good antioxidant activity, and the mixture containing NDGA and
kaempferol revealed to be the most promising due to a synergic effect. The developed NLC
formulations and free NCs were evaluated in vitro in HaCaT cells, where no significant
cytotoxicity was detected after exposure to 50 µg/mL of the formulations. Finally, the
antioxidant effects of the NLC formulations against induced oxidative stress were studied
in vitro in the same cells. Although the mixtures of all NC-loaded NLCs showed significant
antioxidant effects, the NDGA-loaded NLCs presented the highest protective effect against
t-BHP-induced oxidative stress. However, despite not exhibiting the strongest protective
effect, the mixture of the three loaded NLC formulations still proved to confer protection
against the oxidative stress, and therefore has the potential to be used for cosmetic ap-
plications alongside with NDGA-loaded NLCs. Furthermore, the mixture of the selected
molecules could benefit from the other therapeutic activities of each natural compound,
such as anticarcinogenic, anti-inflammatory, and anti-aging activities.

The results of this work suggest that lipid nanoparticles, in particular NLCs, are
promising carriers to deliver the combination of naringenin, NDGA, and kaempferol to the
skin, improving their bioavailability. This paves the way for new cosmetic products with
health-promoting properties for skin care and skin cancer prevention. This formulation
can be further incorporated into a hydrogel, to facilitate cutaneous application, and tested
in human volunteers. Besides, the developed formulation could have different fields of
application, e.g., for neurodegenerative disorders prevention, since oxidative stress is
closely related with these diseases.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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