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Abstract: Diabetic retinal disease (DRD) remains the most common cause of vision loss in adults
of working age. Progress on the development of new therapies for DRD has been limited by
the complexity of the human eye, which constrains the utility of traditional research techniques,
including animal and tissue culture models—a problem shared by those in the field of kidney
disease research. By contrast, significant progress in the study of diabetic kidney disease (DKD) has
resulted from the successful employment of systems biology approaches. Systems biology is widely
used to comprehensively understand complex human diseases through the unbiased integration
of genetic, environmental, and phenotypic aspects of the disease with the functional and structural
manifestations of the disease. The application of a systems biology approach to DRD may help to
clarify the molecular basis of the disease and its progression. Acquiring this type of information might
enable the development of personalized treatment approaches, with the goal of discovering new
therapies targeted to an individual’s specific DRD pathophysiology and phenotype. Furthermore,
recent efforts have revealed shared and distinct pathways and molecular targets of DRD and DKD,
highlighting the complex pathophysiology of these diseases and raising the possibility of therapeutics
beneficial to both organs. The objective of this review is to survey the current understanding of DRD
pathophysiology and to demonstrate the investigative approaches currently applied to DKD that
could promote a more thorough understanding of the structure, function, and progression of DRD.

Keywords: diabetic retinal disease; diabetic kidney disease; systems biology; diabetic retinopathy;
microangiopathy; neurovascular unit; treatment of diabetic retinopathy; clinical aspects of diabetic
retinopathy; research in diabetic retinopathy

1. Introduction

Diabetic Retinal Disease (DRD) is a complication of diabetes responsible for significant
morbidity and decreased productivity and quality of life [1,2]. The growing burden of
DRD has accompanied the epidemic growth in prevalence of diabetes, which has quadru-
pled over the last four decades from 108 million in 1980 to over 425 million worldwide
today [3,4]. The International Diabetes Federation projects these numbers will rise to
578 million by 2030 and 700 million by 2045 [5]. Despite the increase in DRD disease
burden, current pharmacologic approaches are limited to laser therapy and intravitreally
injected anti-vascular endothelial growth factor (VEGF) agents due largely to our limited
understanding of DRD pathophysiology [6-9]. A comprehensive understanding of the
molecular underpinnings of DRD, however, is limited by the use of traditional research
techniques, including cell culture and rodent models that do not recapitulate human
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DRD [10]. Thus, there is a significant unmet need for innovative research approaches to
reveal insights about DRD in humans that are not captured by model systems to inspire
the next wave of DRD therapies. Recent Diabetic Kidney Disease (DKD) studies using the
systems biology approach, which integrates different types of data, including genomics,
epigenomics, transcriptomics, proteomics, metabolomics, and phenomics (the systemic
study of phenotypes), have deepened our understanding of DKD pathogenesis (Figure 1).
The discovery of unanticipated insights about disease pathomechanisms is enhanced by
the use of agnostic bioinformatics analysis methods in systems biology. Systems biology is
rapidly becoming a valuable approach in the field of DRD research as well [11-26]. Thus,
our purpose is to detail the pathophysiologic understanding of DRD and highlight the
potential role of systems biology to innovate this approach clinically and scientifically in
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Figure 1. Systems Biology of diabetic retinal disease (DRD) and diabetic kidney disease (DKD): Integration of Multi-Scalar
Data. Individual studies examining either diabetic kidney disease (left column) or diabetic retinal disease (right column) are
listed based on the different types of data labeled vertically on the left, demonstrating downward multi-scalar integration of
data [12-36]. Additionally, the methods and physiologic manifestations of the disease are listed as clinical phenotype and
physiologic state, respectively.
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2. DRD: More Than a Vasculopathy

The current standard for DRD diagnosis relies on the decades-old Early Treatment
Diabetic Retinopathy Study (ETDRS) grading scale based exclusively on vascular abnormal-
ities [37—40]. Thus, most DRD evaluations rely on seven-field fundus photographs [41,42],
which reconstructs the inner retina surface by reflecting white light with 30-degree fields
of view from the posterior pole to determine the level of retinopathy present, such as no
retinopathy, non-proliferative, or proliferative diabetic retinopathy, and the presence or
absence of diabetic macular edema [43] (Figure 2). Consistent with this focus, laser therapy,
VEGEF inhibitors like bevacizumab (off-label), ranibizumab, aflibercept, and brolucizumab,
and corticosteroids such as dexamethasone intravitreal implant comprise the current thera-
pies for DRD [6-8]. However, the application of methods to better define the DRD clinical
phenotype (Figure 1) has called this vascular-centric view into question [44,45].

Diabetic kidney disease stages

HYPERFILTRATION SILENT INCIPIENT DKD OVERT DKD “

Diabetic retinal disease stages

TIME

Figure 2. The parallel processes of diabetic kidney and retinal disease development and progression demonstrate an
opportunity to identify early pathomechanisms of DRD. This figure illustrates a key aspect shared by DRD and DKD: As
time progresses from onset of diabetes and adaptive measures have failed, progressive disease ensues (from left to right over
time). DKD researchers have recently identified molecular pathways active in early DKD (green bars, top left of chart) that
are associated with increased risk for disease progression before classic markers such as albuminuria, serum creatinine, or
GEFR are affected. By striving to characterize better the molecular pathways active in the analogous preclinical period of DRD
(green bar, bottom left of chart) that are associated with progression before VEGF has a central role and visual function is
impaired, targeted therapies halting or reversing early disease may become possible. The stages of DKD (top row) progress
from the hyperfiltration stage to the silent, incipient, overt DKD stages and ultimately to end-stage kidney disease (ESKD).
The stages of DRD (bottom row) progress from preclinical diabetic retinopathy to non-proliferative DR, to proliferative DR.
Biomarkers including albuminuria (navy line), creatinine (yellow line), and VEGF (green line) help diagnose the stage of the
disease and determine the estimated kidney function by GFR (red line). Similarly, a hypothetical visual function (blue line)
could potentially be estimated. GFR: Glomerular filtration rate, VEGF: Vascular endothelial growth factor, DR: Diabetic
retinopathy, NPDR: Non-proliferative diabetic retinopathy, PDR: Proliferative diabetic retinopathy.

Psychophysical tests, a series of well-validated assessments, have found a subset of
patients to have deficits in peripheral vision, night vision, color-hue discrimination, and
contrast discrimination during the preclinical DR stage, before the development of vascular
abnormalities [46—49]. These functional deficits were further corroborated by abnormal
measurements revealed by multifocal electroretinography (mfERG), an electrophysiologic
test of cone photoreceptor pathways in the retina, in patients with preclinical DRD [50-53].
The observed functional deficits were also directly linked to neuronal layer thinning ob-
served by optical coherence tomography (OCT) [54,55], which captures and reconstructs
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a cross-section of the different retinal layers on a cellular resolution [56]. Together, these
clinical phenotype modalities suggest that at least a subset of persons with diabetes experi-
ence visual function loss primarily from neurodegeneration [57-59], perhaps independent
of the vascular structural abnormalities observed in NPDR (Non-proliferative diabetic
retinopathy) and PDR (Proliferative diabetic retinopathy) [60,61]. The relationship between
these phenotypes warrants further investigation [62,63]. To this end, visual function testing
such as contrast sensitivity and visual fields are secondary endpoints in large clinical trials
(NCT04661358 and NCT042655261), and a new DRD grading scale is being developed that
will include visual function testing as an integral component [64].

3. DKD: Another Frequent Comorbidity in Diabetes

Like DRD, DKD has historically been viewed as a vasculopathy responsible for signif-
icant morbidity and mortality in diabetes. Indeed, DKD is consistently the most common
cause of end-stage kidney disease (ESKD) in the United States [65,66]. A recent estimate
concluded that chronic kidney disease affects about 9% of diabetics aged 22-64 and about
30% of diabetics aged 65 and above [2]. Similar to DRD, DKD progression is classically
described as a series of characteristic findings; hyperfiltration (an adaptive mechanism
to maintain glomerular filtration rate (GFR)) results in kidney hypertrophy, followed by
the development of albuminuria and loss of GFR (Figure 2). The clinical assignment of
DKD stage relies on serum and urine tests to monitor creatinine, cystatin C, electrolyte
imbalances, and albuminuria, and sometimes accompanied by kidney biopsy histology
(Figure 1).

However, this classic DKD description does not capture the wider clinical variability
of this disease. While some studies have estimated microalbuminuria to have an 80% pre-
dictive value for DKD progression [67,68], newer estimates suggest that DKD progression
occurs in only 30-45% of patients with microalbuminuria [69]. In addition, accumulat-
ing evidence indicates that progression of kidney disease can also occur in individuals
with type 1 or type 2 diabetes without albuminuria [70]. Lack of albuminuria in DKD is
analogous to preclinical DRD causing vision loss via neurodegeneration, thus implicating
multiple potential pathomechanisms involved in the development of both DKD and DRD.

This variation in DKD and DRD presentations and the existence of multiple pheno-
types complicates our ability to understand, predict, and treat this disease, necessitating
novel research approaches to determine the basis for this complexity. Such efforts are
paramount in order to advance the current DKD treatment paradigm, which largely re-
mains unchanged since the discovery of angiotensin receptor inhibition in the 1990s and
consists of glycemic control, blood pressure management, fluid balance, and angiotensin-
converting enzyme (ACE) inhibition [71-77]. Indeed, our diagnostic and therapeutic
understanding of DKD is now advancing with the incorporation of systems biology ap-
proaches [27-36,78].

4. Systems Biology Yields Insights into Pathomechanisms of DKD

In contrast to reductionist investigations that focus on single or a few molecules, the
power of systems biology lies in its unbiased and agnostic multi-scalar integration of data
generated from genomics, transcriptomics, proteomics, metabolomics, and lipidomics
studies, along with tissue morphometry and clinical data and biomarkers to interrogate
the true physiologic state of individuals in health and disease [11] (Figure 1). Systems
biology has been integral in the targeted diagnostics of population subsets, especially
helpful for DKD research given the variation of phenotypes. In a study of Pima Indians
with diabetes and normal kidney function without albuminuria who were at high risk of
developing progressive DKD, kidney tissue demonstrated early transcriptional pathway
alterations that correlated with structural changes—findings that predicted GFR decline
or development of albuminuria over the subsequent decade [33]. Agnostic pathway
analysis also revealed enrichment of transcripts in pathways associated with mitochondrial
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dysfunction, inflammation, and tubular metabolic dysfunction, implicating these pathways
in early DKD pathogenesis.

Systems biology studies have identified trackable biomarkers that correlate closely
with structural and functional abnormalities early in DKD, including urine haptoglobin [79],
urinary collagen fragments [80], epidermal growth factor (EGF) [30], and urine monocyte
chemoattractant protein-1 (MCP-1) [81]. These urinary biomarkers can serve as readouts
for the transcriptional networks involved in DKD pathogenesis and may be useful to create
a new framework to assess early DKD, especially during the timeframe when current
methods of defining clinical phenotype such as albuminuria or decrease in GFR are not
detectable [69].

In addition to these advances to diagnostics [35], systems biology has also revealed
insights on DKD pathophysiology that have paved the way for targeted therapeutics.
Indeed, identification of inflammatory processes in early DKD with the involvement of
the Janus Kinase/Signal Transducer and Activator of Transcription Pathway (JAK/STAT)
pathway [82,83] led directly to successful clinical trials with baricitinib, a potent inhibitor
of this pathway, repurposed from its FDA approved role as a therapeutic for rheuma-
toid arthritis [84]. The potent suppression of albuminuria with baricitinib treatment [77]
suggests that its efficacy may be tied to the population of individuals who experienced
albuminuria with DKD and/or DRD.

Together, the recent progress in DKD research highlights a new framework by which
advances in personalized diagnostics and novel therapeutics can intervene at a time point
early enough when disease progression is reversible. Figure 1 lists the materials used for
systems biology analysis in DKD, consisting of biopsies that define kidney structure and
easily accessible urine and serum. The overlap of material sources of clinical phenotyping
and systems biology lends itself to the multi-scalar integration of biopsy-derived transcrip-
tomics with serum-derived proteomics and metabolomics (Figure 1), allowing researchers
to evaluate the overall efficacy of medications like dapagliflozin [32].

This approach is in contrast to DRD clinical phenotyping modalities, for which ob-
taining biosamples for systems biology analyses is not part of clinical care (Figure 1).
One potential method is vitreous humor sampling of patients, which could provide in-
formation about vitreous proteins and lipids, as well as the transcriptional state of cells
that have dislodged from the retinal surface. Indeed, vitreous samples are sometimes
available for biochemical analysis when patients are undergoing vitrectomy surgery for
clinical disease [85,86]. In combination with retinal transcriptional analysis in diabetic
rodents [17] and proteomic analysis of post-mortem human retinas [18], a systems biology
application to DRD research appears imminently feasible. Combining DRD datasets with
existing datasets from other diabetes-centric studies, such as serum lipidomic studies and
DKD-specific studies, provides an opportunity to broaden and deepen understanding of
common and tissue-specific alterations induced by diabetes.

5. Shared Pathophysiology of DRD and DKD: An Avenue for Further Investigation

“Diabetic renal-retinal syndrome” describes the clinical phenomena of: (1) DRD vascu-
lar abnormalities as predictors of impaired renal function [87,88]; and (2) microalbuminuria
as an accurate biomarker of DRD progression [89]. DKD and DRD share pathophysio-
logic changes between their analogous structures, such as loss of endothelial glycocalyx, a
hallmark of early DKD progression, which has similarly been observed in DRD [90-92].
Likewise, basement membrane (BM) thickening of blood vessels is an early finding [93,94]
thought secondary to increased levels of transforming growth factor-beta (TGF-3) in the
kidneys [94-96] and retina [97]. These shared findings suggest a common pathomechanism
of DKD and DRD. However, there are also clear differences between these pathomecha-
nisms, since DRD and DKD do not always coincide [98]. The common and unique aspects
of DKD and DRD emphasize the cross-applicability of DRD diagnostics applied to DKD
categorization and vice versa.
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Indeed, an important step forward in accurately assessing DKD and DRD lies in
determining the spectrum of disease phenotypes [57-59,70] via patient/population-specific
systems biology analyses across organs towards personalized diagnostic and therapeutic
delivery (Figure 3). In this way, systems biology findings would be able to not just vertically
integrate -omics data but also horizontally connect DRD findings with DKD discoveries
(Figure 3. With this approach, the potential to precisely determine individual diabetes
pathophysiology may be realized using a combination of kidney biopsies, retinal imaging
modalities, and biomarkers like albuminuria [89], creatinine, and vascular endothelial
growth factor (VEGF) [99] (Figure 2). Thus, the human-centric findings from systems
biology may be used to redefine human disease and create a novel framework to develop
new hypotheses that can be tested with different clinical and animal models (Figure 3).
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Figure 3. Integrative biology towards personalized medicine. Three main domains of research are depicted and include

clinical data, model systems, and systems biology. Within each domain, multiple nodes of scientific research are detailed.

For example, the systems biology domain includes genomics, epigenomics, transcriptomics, proteomics, and metabolomics

research. The combination of these three domains contributes to integrative knowledge of pathomechanisms of disease,
which when applied to both DKD and DRD culminates in personalized medicine.

The ultimate manifestation of intimate collaboration is the development of novel
therapeutics for the complications of diabetes. Historically, the Diabetes Control and Com-
plications Trial/Epidemiology of Diabetes Interventions and Complications (DCCT/EDIC),
UK Prospective Diabetes Study (UKPDS), and Action to Control Cardiovascular Risk in
Diabetes (ACCORD) trials established the importance of glycemic, blood pressure, and
dyslipidemia control in DRD therapy [100-104]. Many of these findings, along with the
importance of the renin-angiotensin system in DRD and DKD [104-106], have improved
the standard of care for both complications. Interestingly, the DCCT emphasized the com-
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parable magnitude of effect on the eyes, kidneys, and nerves from the same treatment [100],
supporting the viability of organ-agnostic diagnosis and treatment.

However, systems biology-driven insights offer an alternative approach to therapeu-
tics development. One example is the aforementioned JAK-STAT pathway affected in DKD.
As the JAK-STAT pathway is also affected in DRD [107], it is possible that baricitinib [77], or
other ocular therapeutics that act on this JAK-STAT pathway may become viable treatment
options for DRD. If useful in DRD treatment, baricitinib would continue the history of
discovering effective DRD therapies from clinical trials focused outside of the eye.

Regardless of whether baricitinib-mediated suppression of albuminuria [77] translates
to novel DRD medications, this possibility emphasizes the need for the further identifica-
tion and development of appropriate clinical endpoints to be used in DRD studies. The
importance of additional endpoints is highlighted by the cautionary note that prolonged
VEGEF inhibition may accelerate retinal degeneration [108]. It is unclear whether the accel-
erated loss of peripheral visual field sensitivity after 5 years of ranibizumab [109] is due
to DRD progression and/or due to the therapy. While the need for additional endpoints
has been reaffirmed [110], and efforts to include mfERG and psychophysical tests are
underway [111,112] (NCT04265261), the selection of additional endpoints beyond the eye
may prove to be particularly important, as demonstrated by DCCT/EDIC, UKPDS, and
ACCORD [100-104].

As these systems biology studies integrate the various levels of data (Figure 1), it
becomes increasingly important to recognize the implications of novel diagnostics and
therapeutics on the management of diabetes across organ systems and to have the endpoints
necessary to monitor progress. Indeed, JDRF supports research for the express purpose
of building on common avenues of investigation between DRD and DKD to make shared
discoveries possible [113]. The inclusion of research, diagnostics, and therapeutics across
organ systems will allow clinicians to identify and treat diabetic complications based on
individual pathophysiology.

6. Conclusions: Where Do We Go from Here?

The fields of DRD and DKD have progressed dramatically since their categorizations
as complications of diabetes. With the use of systems biology, new signaling pathways,
biomarkers, and therapeutic targets have been identified for both diseases. However,
there continues to exist a need to integrate these findings into the clinical evaluation and
treatment of DRD and DKD. By allowing these two diseases to walk in tandem with multi-
scalar investigation and assessment scientifically and medically, new strategies effective in
the care of diabetic patients may be revealed.

Progress in DRD research and new therapies has been exceedingly slow with the
reliance on classic reductionist scientific methods. Given the recent boon in development
of systems biology techniques applied to other complex diseases such as DKD, DRD
researchers can now take advantage of these transformative technologies. By employing
agnostic analytic methods to big datasets, DRD research has an unparalleled and unbridled
opportunity to reveal novel pathomechanisms involved in human DRD. Armed with
more specific knowledge of human pathomechanisms of DRD, researchers will then be
able to reapproach model systems to determine which model most closely recapitulates
human biology of the research question to be asked (Figure 3). Furthermore, systems
biology analysis of classic and novel model systems such as human stem cell-derived
retinal organoids can help determine which model systems could be utilized for further
hypothesis-driven mechanistic studies to validate these human-derived data. In DKD
research, for example, interrogation of human kidneys and several mouse models of DKD
revealed transcriptional networks unique to each mouse model, which was shared in
human tissue, allowing researchers to choose a model more pertinent to their interest, as
well as helping to explain earlier varied results among models [114].

Towards this goal, recent progress in human stem-cell-derived retinal organoids [115]
provides a mechanism to study patient-specific aspects of disease and allows personalized
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screening of potential therapeutics ex vivo. By recapitulating an individual’s diseased tis-
sue with the individual’s specific genetic background ex vivo, ophthalmologic researchers
are advancing the National Institutes of Health’s (NIH) mandate to accelerate the de-
velopment and application of precision medicine. Indeed, the NIH National Center for
Advancing Translational Sciences’ (NCAT) Tissue Chip initiatives [116] are actively funding
the development of such approaches. The Tissue Chip Development, Tissue Chips for
Modeling Diabetes, and Clinical Trials on a Chip projects are aimed at the development
and implementation of microphysiologic systems recapitulating tissue architecture and
function. Integration of tissue chip technologies within clinic trials will soon have real-life
patient impact. Clearly, the transformation of the field of DRD research is underway.
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