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Abstract: In this work, SnO2 hollow microspheres functionalized with different incorporated amounts
of Pt@Co3O4 complex catalyst were innovatively designed by using an MOF template. The results
show that sensor based on the optimal incorporated amount of Pt@Co3O4 not only greatly enhances
the response value of SnO2 to formaldehyde (Rair/Rformaldehyde = 4240 toward 100 ppm) but also de-
creases the low detection limit (50 ppb), which is quite outstanding compared with other SnO2-based
formaldehyde sensors. Further analysis proves that the content of oxygen vacancy and chemisorbed
oxygen and the catalytic effect of ultra-small Pt play the key roles in improving the formaldehyde
sensing performance. Meanwhile, this present work demonstrates that oxide semiconductors func-
tionalized with the derivatives of MOF templated catalysts may lead to the discovery of new material
systems with outstanding sensing performance.

Keywords: Pt@Co3O4; formaldehyde; oxygen deficient; SnO2 hollow microspheres

1. Introduction

With the improvement of living standards, people are paying more and more atten-
tion to air quality. Among the different kinds of volatile organic compounds (VOCs),
formaldehyde has been identified as a carcinogen and teratogenic substance by the US
Environmental Protection Agency and the World Health Organization [1,2]. When its
concentration in air is 0.4–1 ppm, it irritates the eyes, nose and throat. When its concentra-
tion continues to increase, exceeding 3 ppm, human cells and tissues are damaged [3,4].
Therefore, the detection of formaldehyde becomes particularly important. At present,
infrared absorption spectroscopy, gas chromatography, ultraviolet absorption and chemilu-
minescence analysis have been developed and used in the detection of formaldehyde [5–8].
Although these instruments have high accuracy, they are not suitable for formaldehyde
detection due to high cost, complex operation and difficult real-time online detection. In
recent years, metal oxide semiconductor (MOS) gas sensors have become new hot spots in
the research of formaldehyde detection. From a practical view point, MOS sensors need
to meet the following key points: (1) high response and low detection limit, which means
that the sensor needs to have an obvious response to low concentrations of formaldehyde;
(2) high selectivity, which indicates that the sensor needs to have a specific recognition
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function for formaldehyde; (3) good stability, representing stable output capacity, which
determines the effective life of the sensor.

Tin oxide (SnO2), as a typical n-type semiconductor, is demonstrated to have excellent
sensing properties for formaldehyde. However, pure SnO2 sensing material still has
many shortcomings, such as low response value, unsatisfactory detection limit and poor
selectivity. In traditional approaches, noble metals, such as Pd, Au, Ag and Pt, incorporated
into SnO2 have been synthesized and the gas sensing properties toward formaldehyde
have been evaluated. For instance, Ruan’s group prepared Pd-decorated hollow SnO2
nanofibers [9]. The results of sensing performance showed that the SnO2 modified by Pd
had high response to formaldehyde (18.8 toward 100 ppm) and low detection limit (5 ppm)
at 160 ◦C. In Chung et al.’s work, a sensor based on a Au@SnO2 core–shell structure
was successfully built to detect formaldehyde gas [10]. The response value to 50 ppm
formaldehyde was about 11 at room temperature. Dong and his colleagues also found
that sensors based on Ag-decorated SnO2 possessed enhanced response (14.4 toward
10 ppm) to formaldehyde compared with the pure SnO2 [11]. Furthermore, sensors based
on Pt incorporated into SnO2 were also fabricated to detect formaldehyde in previous
work [12,13]. They showed a higher response and lower detection limit to formaldehyde
which was superior to Pd, Au and Ag-SnO2. Furthermore, apart from SnO2 sensing
materials, Pt had also been incorporated in other metal oxides when formaldehyde was
selected as the target gas. For example, Dong et al. also found that sensors based on
Pt-functionalized NiO possessed enhanced response to formaldehyde compared with the
pure NiO [14]. Ultra-fast and highly selective room-temperature formaldehyde sensors
have also been obtained by Pt-loaded MoO3 nanobelts in Gu et al.’s work [15]. Hence,
it seems that the incorporation of Pt can indeed improve the sensing characteristics of
SnO2 sensors for detecting formaldehyde. However, it is worth noting that the sizes of Pt
nanoparticles obtained in the literature above are mostly greater than 5 nm. In general, the
catalytic activity increases drastically as the particle size of noble metals decreases, leading
to the significantly enhanced response. Therefore, finding an effective method to obtain
ultra-small Pt nanoparticles and then to enhance the formaldehyde sensing properties of
SnO2 is imperative.

Cobalt oxide (Co3O4), as a typical p-type semiconductor, is an attractive functional
material in the field of gas sensing. Importantly, building a p-n heterojunction between
Co3O4 and an n-type MOS has attracted considerable interest in improving the sensing
characteristic. Liu et al. prepared Co3O4/ZnO composites via the wet-chemistry route and
the response reached 20 toward 100 ppm formaldehyde at an operating temperature of
180 ◦C [16]. Zhang et al. fabricated Co3O4/In2O3 ribbon for detecting formaldehyde [17].
The as-prepared sensing materials displayed a high sensing response of 39 toward 200 ppm
formaldehyde at 260 ◦C. However, incorporation of Co3O4 into SnO2 to form a hetero-
structure for formaldehyde sensing applications is rarely reported.

Inspired by the above, in order to further improve the sensing characteristics of
formaldehyde, a novel material system of SnO2 containing Co3O4 and ultra-small Pt
nanoparticles should be developed. In this work, an effective catalyst loading method by
using MOF templated catalyst (Pt@ZIF-67) was adopted. TEM results indicated that fine
Pt nanoparticles of ~3 nm were uniformly encapsulated in ZIF-67 without agglomeration.
Then, Pt@Co3O4 complex catalysts were unprecedentedly functionalized on SnO2 hollow
microspheres through a solvothermal method followed by calcination. Consequently,
as expected, an ultra-sensitive formaldehyde sensor based on Pt@Co3O4-SnO2 hollow
microspheres was achieved.

2. Materials and Methods
2.1. Preparation of ZIF-67

The preparation process of ZIF-67 was as follows. Firstly, Co(NO3)2·6H2O (582 mg)
and 2-methylimidazole (656.8 mg) were added into 25 mL methanol solvent under stirring,
respectively. After ten minutes, the two kinds of solution were mixed together. Next, the
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mixed solution continued to be stirred for half an hour and then aged for one day. The
precipitate was collected by centrifugation (6000 r/min, 5 min) and washed with ethanol
and dried at 60 ◦C for 15 h.

2.2. Preparation of Pt@ZIF-67

Pt@ZIF-67 was prepared by adopting an improved method as stated in reference [18].
ZIF-67 (40 mg) and (NH4)2PtCl6 (4 mg) were dispersed in 3 mL deionized water and
stirred for six hours. During this process, platinum ions would enter the cavity of ZIF-67.
Subsequently, sodium borohydride (1 mg/mL) solution was applied to reduce Pt4+ to Pt0.
Accordingly, ZIF-67 templated Pt (Pt@ZIF-67) nanoparticles were successfully collected
by centrifugation (8000 r/min) and washed six times with deionized water and ethanol
alternately, then dried in air at 60 ◦C for 20 h.

2.3. Preparation of Pt@Co3O4-SnO2 Hollow Microspheres

The composites of Pt@Co3O4-SnO2 hollow microspheres were prepared via a hy-
drothermal method. SnCl4·5H2O (701.2 mg), oxalic acid (63 mg) and an appropriate
amount Pt@ZIF-67 (3 mg, 6 mg and 9 mg, respectively) were added into 9 mL deionized
water and 16 mL glycerol. After stirring for 15 min, the mixed solution was transferred
into a 50 mL stainless steel autoclave lined with Teflon and kept at 160 ◦C for 12 h in
an oven. After the temperature of the oven dropped, the precipitate could be collected
by centrifugating (8000 r/min) and washing six times with deionized water and ethanol
alternately, and then dried at 60 ◦C. Ultimately, the precursor was annealed in air at 500 ◦C
for 2 h with a heating rate of 2 ◦C/min to obtain Pt@Co3O4-SnO2 hollow microspheres.
The obtained composites were denoted as S3 (3 mg Pt@ZIF-67), S4 (6 mg Pt@ZIF-67) and
S5 (9 mg Pt@ZIF-67).

Co3O4@SnO2 hollow microspheres (labeled as S2) were prepared through the same
experimental procedure of S4 samples, except that the same amount of ZIF-67 was used
instead of Pt@ZIF-67 for preparing precursor solution.

The preparation steps of pure SnO2 hollow microspheres (labeled as S1) were the same
as S2–S5 except that Pt@ZIF-67 or ZIF-67 was not added.

2.4. Material Characterization

The morphologies and surface characteristics of these samples were observed by
scanning electron microscopy (SEM, Merlin Compact, Carl Zeiss NTS GmbH, Oberkochen,
Germany). The crystallinity, purity and composition were examined by X-ray diffraction
(XRD, Smartlab, Rigaku Corporation, Tokyo, Japan) with Cu-Kα1 radiation (λ = 0.15406 nm).
The internal microstructures, crystal planes and element distribution of the samples were
analyzed by transmission electron microscope (TEM, Titan G260-300, FEI, Hillsboro, OR,
USA), high-resolution TEM (HRTEM) and energy-dispersive X-ray spectroscopy (EDS).
Furthermore, the research of oxygen species in the samples and the study of valence states
of Pt, Co and Sn were carried out by X-ray photoelectron spectroscopy (XPS, ESCALAB
250Xi, Thermo Scientific K-Alpha, Waltham, MA, USA) with a mono Al Kα (1486.6 eV,
6 mA × 12 kV).

2.5. Measurement of Formaldehyde Gas Sensors

In this work, ceramic substrate with attached silver–palladium interdigitated elec-
trodes (Ag-Pd IDEs) is adopted, whose specific parameters are shown in Figure 1a. The
specific steps of the fabrication of the sensor devices are as follows to ensure that the
consistency of the resistance baseline and response of multiple sensors are the same. An
appropriate amount (3–5 mg) of the as-prepared samples is mixed with a certain amount
(0.3–0.5 mL) of ethanol to form a uniform slurry. The slurry is then applied to the surface
of the Ag-Pd IDEs with a small brush to form a dense sensing layer. Figure 1b shows
the schematic illustration of the blank sensor coated with the sensing layer. Furthermore,
the multifunctional gas sensing testing system, CGS-MT (Beijing Sino Aggtech, Beijing,
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China), which is composed of a temperature control system, test chamber (5 L) with two
sensor channels (Figure 1c) and circulating water system, is used to analyze the gas sensing
performance of the as-obtained samples. The data acquisition is achieved through test
software on the computer connected to the CGS-MT instrument. The sensing performance
is studied under laboratory conditions (~15 RH%, 18 ◦C).
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The corresponding gas concentration (e.g., formaldehyde) can be derived from the
following Equation [19]:

C =
22.4× φ× ρ×V1

M×V2
× 1000 (1)

where C (ppm) and M (g/mol) are the concentration and the molecular weight of formalde-
hyde, respectively. ϕ and ρ (g/mL) represent the mass fraction (37%) and the density
(0.82 g/mL) of the formaldehyde aqueous solution, respectively. V1 (µL) and V2 (5 L) are
the volume of formaldehyde aqueous solution to be injected and the volume of the test
chamber, respectively.

The details of the complete test procedure are as follows. First, open the circulating
water system and put the fabricated sensors into an air-filled test chamber for aging for
three days. Afterwards, the sensor resistances gradually tend to a stable value, usually
represented by Ra. Second, inject a certain concentration of target gas into the closed
chamber with a microliter syringe. After a while, the resistance stabilizes again and is
abbreviated as Rg. Then, open the lid of the chamber to refill the entire chamber with
fresh air, and the resistance returns to near Ra again. During the test process, the resistance
and response change continuously with time and are recorded by the test software on the
computer connected to the CGS-MT instrument. The response value and response/recovery
times are defined as follows. Taking the n-type MOS sensor to detect reducing gas as an
example, the response value is defined as Ra/Rg. The response (τres) and recovery (τrecov)
times refer to the time periods from Ra changing to Ra − |Ra − Rg| × 90% and from Rg
changing to Rg + |Ra − Rg| × 90%, respectively [15].

3. Results
3.1. Structural and Morphological Characteristics

Figure 2a shows the XRD diffraction patterns of ZIF-67, Pt@ZIF-67 and simulated
ZIF-67. The diffraction peaks of as-synthesized ZIF-67 and Pt@ZIF-67 are identical to the
results of the published XRD data of simulated ZIF-67 [20]. On the one hand, it indicates
that the ZIF-67 synthesized in this work is pure phase. On the other hand, it shows
that the encapsulation of noble metal Pt does not change the internal structure of ZIF-67.
Figure 2b,c present the SEM images of ZIF-67 and Pt@ZIF-67, respectively. As can be seen,
the morphologies of Pt@ZIF-67 do not match well with ZIF-67. Compared with the solid
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structure of ZIF-67 (Figure 2d), Pt@ZIF-67 shows an obvious core–shell structure (Figure 2e),
indicating that the encapsulation of Pt into ZIF-67 destroys the original morphology of
ZIF-67 [21,22]. The reason can be explained as follows. During the process of the Pt4+

entering the ZIF-67 cavity, the NH4+ coming from (NH4)2PtCl6 hydrolyzes to produce
H+, which provides an acidic environment that can corrode and dissolve ZIF-67 from the
outside to inside (NH4

+ + H2O→ NH3·H2O + H+). Similar results appear in our previous
work [20]. Meanwhile, the conclusion that ZIF-67 can be corroded and dissolved in an
acidic environment has also been confirmed in the literature [22,23]. From Figure 2e, it
can also be concluded that large numbers of dark nanoparticles of about 3 nm are evenly
distributed on ZIF-67. Figure 2f proves that the interplanar spacing of well-distributed
dark nanoparticles is 0.225 nm, which exactly corresponds to that of Pt (111) [24].
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Figure 3a reveals the XRD diffraction patterns of the five samples. All the recorded
diffraction peaks of S1–S5 are well indexed to the characteristic peaks of SnO2 (JCPDS:
77–447). It is remarkably observed that there are no characteristic peaks of Co3O4 or Pt
in the XRD patterns, which is mainly due to their relatively small incorporated amounts.
Importantly, the influence of the derivatives of ZIF-67 (Pt@ZIF-67) on the phase structures
of SnO2 hollow spheres has been found from the 25.5◦ to 27.5◦ amplified diffraction peaks
(Figure 3b). It seems that the derivatives of ZIF-67 (Pt@ZIF-67) do not cause any shift in
diffraction peaks due to the ultra-low incorporated concentration.
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The SEM results of S1–S5 are shown in Figure 4a–e. It can be clearly seen that the
as-prepared samples are highly uniform with a hollow sphere-like morphology, and the
diameters are about 2 µm. Moreover, from the high-magnification SEM of the inserted
images of S1–S5, the nanoparticles on the surface of S2–S4 samples are more dense and
smaller compared to S1. In addition, the low-magnification panoramic SEM image of S4 is
given in Figure 4f, which not only indicates the good dispersity of these microstructures,
but also confirms the porous and hollow property again.
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The TEM image of Figure 5a clearly shows the hollow structure of S1 (pure SnO2),
which is consistent with the experimental result of the SEM. The inset in Figure 5a is the
selected area electron diffractive (SAED) pattern, confirming that pure SnO2 is polycrys-
talline in nature. The HRTEM result in Figure 5b reveals the lattice distances of 0.177 nm,
0.264 nm and 0.335 nm which correspond to the crystal plane of SnO2 (211), (101) and (311),
respectively. Figure 5c,d show the relevant TEM and HRTEM images of S4. Obviously, the
porosity of the shell of S4 is significantly lower than that of S1, which is also consistent with
the result of the SEM images. The EDS elemental mapping images exhibited in Figure 5e–h
confirm the presence of Sn, Co, O and Pt elements in the S4 samples. It is worth noting
that Pt and Co exist in the section shown by the white rectangle, indicating that part of
ZIF-67 has not been corroded and dissolved during the stirring and solvothermal process,
while the Pt in the yellow rectangle is dispersed in SnO2 hollow microspheres in the form
of ultra-small nanoparticles. Additionally, it can be clearly seen that other cobalt element
are uniformly distributed in SnO2 hollow microspheres. In summary, both platinum and
cobalt exist in two forms, one of them in which both are loaded on SnO2 in the form of
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Pt@Co3O4 complex catalyst, and the remaining platinum and cobalt are incorporated into
the SnO2 hollow microspheres in the form of nanoparticles and doping.

Nanomaterials 2022, 12, x FOR PEER REVIEW 7 of 15 
 

 

The TEM image of Figure 5a clearly shows the hollow structure of S1 (pure SnO2), 
which is consistent with the experimental result of the SEM. The inset in Figure 5a is the 
selected area electron diffractive (SAED) pattern, confirming that pure SnO2 is 
polycrystalline in nature. The HRTEM result in Figure 5b reveals the lattice distances of 
0.177 nm, 0.264 nm and 0.335 nm which correspond to the crystal plane of SnO2 (211), (101) 
and (311), respectively. Figure 5c,d show the relevant TEM and HRTEM images of S4. 
Obviously, the porosity of the shell of S4 is significantly lower than that of S1, which is 
also consistent with the result of the SEM images. The EDS elemental mapping images 
exhibited in Figure 5e–h confirm the presence of Sn, Co, O and Pt elements in the S4 
samples. It is worth noting that Pt and Co exist in the section shown by the white rectangle, 
indicating that part of ZIF-67 has not been corroded and dissolved during the stirring and 
solvothermal process, while the Pt in the yellow rectangle is dispersed in SnO2 hollow 
microspheres in the form of ultra-small nanoparticles. Additionally, it can be clearly seen 
that other cobalt element are uniformly distributed in SnO2 hollow microspheres. In 
summary, both platinum and cobalt exist in two forms, one of them in which both are 
loaded on SnO2 in the form of Pt@Co3O4 complex catalyst, and the remaining platinum 
and cobalt are incorporated into the SnO2 hollow microspheres in the form of 
nanoparticles and doping. 

 
Figure 5. (a,b) TEM and HRTEM images of S1 (pure SnO2). (c,d) TEM and HRTEM images of S4. (e–
h) EDS elemental mapping images of Sn (e), O (f), Co (g) and Pt (h). 

The chemical states of Sn, Co and Pt in S1–S5 are verified by the high-resolution XPS 
spectra in Figure 6a–c. Figure 6a shows the two characteristic peaks of Sn 3d at ~494.3 eV 
and ~486.1 eV for Sn 3d3/2 and Sn 3d5/2, respectively, suggesting that the chemical state of 
the Sn element is +4 [25,26]. Figure 6b shows that the valence states of Co in the samples 
are composed of +2 and +3. In particular, the binding energies of Co2+ peaks are at ~780.3 
eV and ~794.8 eV, and the binding energies corresponding to Co3+ are ~776.0 eV and ~793.8 
eV [27]. Figure 6c displays the valence states of Pt [28,29]. For the XPS peaks of Pt in S3 
and S4, they are not obvious due to the ultra-low incorporated amount. Therefore, the 
high-resolution XPS peak of platinum in S5 is studied. As shown in Figure 6c, peaks of Pt 
4f5/2 and Pt 4f7/2 are located at 73.3 and 70.0 eV (gap = 3.3 eV), respectively, illustrating the 
nature of metal platinum (Pt0). There is no other obvious peak when the binding energy 
is greater than 75 eV, which also proves that Pt2+ and Pt4+ mostly do not exist in the sample 
[30–32]. Figure 6d reveals the high-resolution O 1s XPS analysis of S1–S5. The O 1s spectra 
can be classified into three oxygen species, named O1, O2 and O3, with binding energy of 
~529.5, ~530.5 and ~532.0 eV, respectively. O1 is attributed to the lattice oxygen. O2 
represents the hydroxyl groups bonded to the metal cations in the oxygen vacancy region. 
O3 corresponds to chemisorbed and dissociated oxygen from the water molecules 
unavoidably adsorbed on the surface [33–36]. Among them, O1 is relatively stable and 

Figure 5. (a,b) TEM and HRTEM images of S1 (pure SnO2). (c,d) TEM and HRTEM images of S4.
(e–h) EDS elemental mapping images of Sn (e), O (f), Co (g) and Pt (h).

The chemical states of Sn, Co and Pt in S1–S5 are verified by the high-resolution XPS
spectra in Figure 6a–c. Figure 6a shows the two characteristic peaks of Sn 3d at ~494.3 eV
and ~486.1 eV for Sn 3d3/2 and Sn 3d5/2, respectively, suggesting that the chemical state of
the Sn element is +4 [25,26]. Figure 6b shows that the valence states of Co in the samples
are composed of +2 and +3. In particular, the binding energies of Co2+ peaks are at
~780.3 eV and ~794.8 eV, and the binding energies corresponding to Co3+ are ~776.0 eV and
~793.8 eV [27]. Figure 6c displays the valence states of Pt [28,29]. For the XPS peaks of Pt in
S3 and S4, they are not obvious due to the ultra-low incorporated amount. Therefore, the
high-resolution XPS peak of platinum in S5 is studied. As shown in Figure 6c, peaks of Pt
4f5/2 and Pt 4f7/2 are located at 73.3 and 70.0 eV (gap = 3.3 eV), respectively, illustrating
the nature of metal platinum (Pt0). There is no other obvious peak when the binding
energy is greater than 75 eV, which also proves that Pt2+ and Pt4+ mostly do not exist
in the sample [30–32]. Figure 6d reveals the high-resolution O 1s XPS analysis of S1–S5.
The O 1s spectra can be classified into three oxygen species, named O1, O2 and O3, with
binding energy of ~529.5, ~530.5 and ~532.0 eV, respectively. O1 is attributed to the lattice
oxygen. O2 represents the hydroxyl groups bonded to the metal cations in the oxygen
vacancy region. O3 corresponds to chemisorbed and dissociated oxygen from the water
molecules unavoidably adsorbed on the surface [33–36]. Among them, O1 is relatively
stable and does not have any influence on the response. O2, as active sites, can support
the adsorption and chemical reaction of oxygen and formaldehyde gas, proving that an
increase in O2 content can indeed enhance the response of the sensor [37–39]. O3, namely
O−(ads), can directly participate in the oxidation–reduction with formaldehyde. Obviously,
the total relative percentages of O2 and O3 in S4 have been greatly improved due to the
incorporation of an appropriate amount of Pt-Co3O4 in SnO2 hollow microspheres, whose
value has reached 27.5%.
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3.2. Gas Sensing Characteristics

Firstly, the response influenced by the operating temperature is investigated. As shown
in Figure 7a, S4 exhibits the best response to formaldehyde (Rair/Rformaldehyde = 4240 toward
100 ppm), which is 10.4 times that of pure SnO2 (408 toward 100 ppm). Within the tempera-
ture range of 200 to 350 ◦C, the optimum operating temperature of all sensors based on
S1–S5 for detecting formaldehyde is the same, that is, 300 ◦C. Moreover, the incorporated
amount of Pt@Co3O4 has a significant effect on the response of SnO2 toward formaldehyde.
Specifically, when the amount of Pt@Co3O4 incorporated is increased in S4 from that in S3,
the response of SnO2 toward formaldehyde is enhanced from 2990 to 4240. When the incor-
porated amount of Pt@Co3O4 continues to increase in S5, the response decreases instead,
which is may be due to the saturation of catalytic sensitization and catalyst aggregation
caused by the excessive amounts of noble metal Pt [40]. Figure 7b shows the response of the
five sensors based on S1–S5 with respect to different gases at a concentration of 100 ppm
at 300 ◦C, proving that all sensors, especially the S4 sensor, have good specific detection
capabilities for formaldehyde. Figure 7c demonstrates the superior reliability of the five
sensors by evaluating the transient response characteristics toward six cycles of 100 ppm
formaldehyde at 300 ◦C. In addition, to optimize the sensing performance of the sensors at
300 ◦C, the explicit relationship between formaldehyde concentration and response is fur-
ther investigated in detail. As shown in Figure 7d, the S4 sensor always shows the highest
response toward 1–150 ppm of formaldehyde among the five sensors. The inset figure is
the responses of the sensors toward low concentration (1–10 ppm) of formaldehyde.



Nanomaterials 2022, 12, 1881 9 of 15

Nanomaterials 2022, 12, x FOR PEER REVIEW 9 of 15 
 

 

performance of the sensors at 300 °C, the explicit relationship between formaldehyde 
concentration and response is further investigated in detail. As shown in Figure 7d, the 
S4 sensor always shows the highest response toward 1–150 ppm of formaldehyde among 
the five sensors. The inset figure is the responses of the sensors toward low concentration 
(1–10 ppm) of formaldehyde. 

 
Figure 7. Sensing performances of S1–S5: (a) Response to 100 ppm formaldehyde in the temperature 
range of 200–350 °C. (b) Response to 100 ppm of interfering analytes at 300 °C. (c) Six-cycle dynamic 
formaldehyde sensing characteristics at 300 °C. (d) Response toward different concentration of 
formaldehyde. 

Subsequently, other sensing characteristics of the S4 sensor toward formaldehyde are 
further shown in Figure 8. First of all, compared with the pure SnO2 hollow microspheres 
(S1), the sensor based on S4 not only shows a higher response, but also shorter response 
time. As shown in Figure 8a, the response times of S1 and S4 toward 100 ppm 
formaldehyde at 300 °C are 26 s and 13 s, respectively, implying that SnO2 hollow 
microspheres functionalized with an optimal amount of Pt@Co3O4 are a key factor in 
achieving both an excellent response and response time. Secondly, the dynamic resistance 
variation curve of the S4 sensor toward 1–0.05 ppm of formaldehyde at 300 °C is exhibited 
in Figure 8b. The response of the S4 sensor toward 1 ppm formaldehyde at 300 °C is 16.5. 
Notably, the result reveals a noticeable response to a low concentration of formaldehyde 
and the detection limit is 50 ppb (Rair/Rformaldehyde = 1.9). Moreover, long-term stability of 
response and resistance of the S4 sensor for detecting 100 ppm formaldehyde at 300 °C is 
observed. As shown in Figure 8c, the results show that the attenuation rates of the 
response and resistance are 11% and 24%, respectively, indicating that the sensor based 
on S4 is of great significance to realize the accurate detection of formaldehyde gas. 
Importantly, the comparisons of response and limit of detection between the S4 sensor 
and other reported SnO2-based formaldehyde sensors are displayed in Table 1 [9,12,13,41–
47]. Mostly, the sensor fabricated in this work has outstanding advantages in terms of 
response and limit of detection. It is worth noting that the limits of detection of [12] (60 

Figure 7. Sensing performances of S1–S5: (a) Response to 100 ppm formaldehyde in the tempera-
ture range of 200–350 ◦C. (b) Response to 100 ppm of interfering analytes at 300 ◦C. (c) Six-cycle
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Subsequently, other sensing characteristics of the S4 sensor toward formaldehyde are
further shown in Figure 8. First of all, compared with the pure SnO2 hollow microspheres
(S1), the sensor based on S4 not only shows a higher response, but also shorter response
time. As shown in Figure 8a, the response times of S1 and S4 toward 100 ppm formalde-
hyde at 300 ◦C are 26 s and 13 s, respectively, implying that SnO2 hollow microspheres
functionalized with an optimal amount of Pt@Co3O4 are a key factor in achieving both an
excellent response and response time. Secondly, the dynamic resistance variation curve of
the S4 sensor toward 1–0.05 ppm of formaldehyde at 300 ◦C is exhibited in Figure 8b. The
response of the S4 sensor toward 1 ppm formaldehyde at 300 ◦C is 16.5. Notably, the result
reveals a noticeable response to a low concentration of formaldehyde and the detection limit
is 50 ppb (Rair/Rformaldehyde = 1.9). Moreover, long-term stability of response and resistance
of the S4 sensor for detecting 100 ppm formaldehyde at 300 ◦C is observed. As shown in
Figure 8c, the results show that the attenuation rates of the response and resistance are
11% and 24%, respectively, indicating that the sensor based on S4 is of great significance
to realize the accurate detection of formaldehyde gas. Importantly, the comparisons of
response and limit of detection between the S4 sensor and other reported SnO2-based
formaldehyde sensors are displayed in Table 1 [9,12,13,41–47]. Mostly, the sensor fabricated
in this work has outstanding advantages in terms of response and limit of detection. It is
worth noting that the limits of detection of [12] (60 ppb) and this work (50 ppb) are not
greatly different. Compared with the doping amount (1 wt%) and particle size of Pt (>5 nm)
in [12], the sensing properties of Pt@Co3O4-SnO2 toward formaldehyde are significantly
enhanced even by the quite low Pt loading (~0.3 wt%) due to the finer dispersion of Pt
(~3 nm) attained by using Pt@ZIF-67. Therefore, the sensor fabricated in this work is more
meaningful for eventual practical application due to the expensive price of noble metals.
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Table 1. Comparison of formaldehyde sensing properties in this work with other SnO2-based sensors.

Materials Concentration (ppm) Temperature (◦C) Response (Ra/Rg) Limit of Detection (ppm)

Pd/SnO2 [9] 100 160 18.8 5
Pt/SnO2 [12] 1 200 16.08 0.06
Pt/SnO2 [13] 1 350 4.5 –

SnO2 [41] 100 220 30 1
SnO2 [42] 50 180 79 1
SnO2 [43] 100 120 57 0.5

NiO/SnO2 [44] 100 200 27.6 0.13
Zn-SnO2 [45] 100 400 25.7 0.5

In2O3/SnO2 [46] 10 275 8.7 0.5
SnO2/rGO/Au [47] 100 200 32.7 1

Pt@Co3O4-SnO2
(this work)

100
1 300 4240

16.5 0.05

4. Discussion

SnO2 is one of the most widely researched n-type MOS materials, whose sensing
mechanism is related to the adsorption/desorption of formaldehyde on the surface of
sensitive materials and controlled by the chemical reaction between formaldehyde and
chemically adsorbed oxygen [48,49]. Generally, for sensors based on SnO2 in air, the
oxygen molecules adsorbed (O2(ads)) on the surface of SnO2 will remove electrons from
the conduction band of SnO2, thereby resulting in a decrease in the numbers of carriers in
SnO2. Then, the sensor remains in a high-resistance state (Ra). Meanwhile, the oxygen will
become different kinds of chemically adsorbed oxygen (mainly O− (ads), O2− (ads) and
O−2 (ads)), whose generating process can be expressed by the formulas below [50].

O2 (gas)→O2 (ads), (2)
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O2 (ads) + e−→O−2(ads) (T < 150 ◦C), (3)

O−2 (ads) + e− →2O− (ads) (150 ◦C < T < 400 ◦C), (4)

O− (ads) + e− →O2−(ads) (T > 400 ◦C). (5)

Considering the formulas above and the optimal temperature (300 ◦C) in this work,
the chemically adsorbed oxygen mainly reacts with formaldehyde in the form of O− (ads).
The reaction equation is as follows [51].

HCHO(ads) + 2O− (ads)→ CO2 + H2O + 2e−. (6)

Accordingly, the generated electrons in the chemical reaction will return to the con-
duction band of SnO2, increasing the number of the carriers, thus leading to the sensor
having a low-resistance state (Rg). According to the formula of response and response times,
the specific value can be calculated. In this work, the enhanced formaldehyde sensing
performance of S4 can be attributed to three main reasons.

(I) The large difference in charge carrier concentration in Pt@Co3O4-SnO2 and SnO2
plays a leading role in improving the formaldehyde sensing performance, which can
be explained by the change in the initial resistance of the sensor in air (Ra). Figure 9
provides the resistances in air of the five sensors. The Ra of the sensor based on S1 is
8.6 MΩ which is enhanced 28 times with Pt@Co3O4 incorporation (S4, 242 MΩ). This is
closely related to the existence of p-type Co3O4 and ultra-small Pt nanoparticles. On one
hand, p-n heterojunctions between p-Co3O4/n-SnO2 can contribute to the enhancement
of the resistance. The work function of p-Co3O4 (6.1 eV) is larger than that of n-SnO2
(4.91 eV) [52,53]. When the p-Co3O4 grain encounters the n-SnO2 grain, a p-n heterojunction
is produced at the interface, causing the electrons in SnO2 to be transferred to Co3O4 and the
holes in Co3O4 to move to SnO2. Thus, a potential barrier will be created with energy band
bending, directly increasing the Ra value of the sensor. On the other hand, the spillover and
catalytic effect of ultra-small Pt play important roles in regulating the Ra value. It is well
known that Pt can act as a specific site which is conducive to making the oxygen molecules
in air easily adsorb and then transfer to chemisorbed oxygen, thus significantly increasing
the amount of O−(ads), which can be confirmed by the high-resolution XPS spectra of O 1s
(Figure 10) [54]. As shown in Figure 6d, the relative content of O3 in S4 is the highest among
the five samples, being consistent with the theoretical analysis above. According to the
formula in (4), this process will cause more electrons to be extracted from the conduction
band of SnO2. Therefore, the Ra of SnO2 further increases with the introduction of Pt. Since
the sensor response is defined as the ratio of Ra to Rg (Ra/Rg), a better response is usually
accompanied by a higher initial resistance. Thus, it is reasonable that a sensor based on
SnO2 functionalized with Pt@Co3O4 has a more excellent response. However, the response
change trend of the S5 sensor is inconsistent with the change in Ra, suggesting that it is not
comprehensive enough to consider the influence of Ra on response alone. As is well known,
the incorporation of excessive noble metals will make the surface catalytic activity of the
sensitive body excessively enhanced, resulting in the desorption rate of formaldehyde
molecules being greater than the adsorption rate [55]. Consequently, fewer formaldehyde
molecules will participate in the reaction with chemically adsorbed oxygen, and finally the
response will be reduced instead.

(II) The increase in oxygen vacancy is considered to be another key reason to improve
the response of the sensor. As shown in Figure 6d, it can be concluded that the percentage
of oxygen vacancy (O2) in the S4 sample is also the highest. By combining that with the
analysis above, it makes sense that the incorporation of an optimal amount of Pt@Co3O4
can maximize the response of SnO2 toward formaldehyde.
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(III) The improved response times of the S4 sensor can be understood in relation to the
catalytic effect of ultra-small Pt nanoparticles [56]. Due to the ultra-small Pt, formaldehyde
molecules can be easily decomposed into many active groups, which will promote the
sensing reaction between formaldehyde and chemically adsorbed oxygen (O−(ads). As a
consequence, the response time value effectively decreases when Pt is incorporated into
the SnO2 hollow microspheres.

5. Conclusions

In this work, we have prepared series of Pt@Co3O4-SnO2 hollow microspheres by
using different incorporated amounts of Pt@ZIF-67. Compared with pure SnO2 (S1), the
sensor based on Pt@Co3O4-SnO2 hollow microspheres (S4) showed the most excellent
response to formaldehyde (S = 4240 toward 100 ppm), which is 10.4 times that of pure
SnO2 (S1). Furthermore, the response time and selectivity are also enhanced after the
incorporation of Pt@Co3O4 into SnO2. These noticeably improved sensing properties
are achieved by the p-n heterojunction between p-Co3O4 and n-SnO2, the spillover and
catalytic effect of ultra-small Pt and the increase in oxygen deficient. These results prove
that the unique synthetic route of Pt@Co3O4 complex catalyst incorporated into MOS is a
highly effective way to fabricate chemiresistive sensors.
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