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Special CollectionImmunology of Stroke:
From Animal Models to Clinical Trials

Introduction
An ischaemic stroke is due to a blockage of an 
artery supplying blood to the brain, resulting in 
cerebral infarction with accompanying symp-
toms such as sudden weakness, facial numbness, 
disability in speech and sight, or paralysis.1 A 
blockage can be caused by a blood clot formed 
within the artery (thrombotic stroke) or may be 
formed elsewhere, such as in the heart (known as 
an embolus), which then travels via the arterial 
system to the brain, causing embolic stroke. 
Stroke aetiology differentiation is also related to 
large or small vessel disease, whereas embolic 
strokes can be differentiated into cardiac embolic 
strokes or strokes with an arterial source (artery 
to artery).2 The formation of blood clots within 
an artery may be related to the presence of ath-
erosclerosis,1,3,4 diabetes mellitus, coronary heart 
disease, hypertension,5 as well as hyperlipidaemia.6 

During an ischaemic stroke, a pathway of events 
known as the ‘ischaemic cascade’ is activated 
temporally and spatially and is responsible for 
damage in the affected cerebrovascular tissue. In 
the ischaemic cascade, events such as energy 
failure, peri-infarct depolarization, excitotoxic-
ity, oxidative stress, and inflammation work in 
concert to cause rapid cell death in the affected 
tissue.1,7–9

During a cerebral arterial occlusion, the presence 
of a thrombus results in stagnant blood flow, 
which triggers a series of inflammatory cascades.4 
The neuroinflammation process may also be trig-
gered during reperfusion, resulting in further 
damage to the brain. Current understanding of 
stroke-induced inflammatory mechanisms is 
reviewed elsewhere by us and others.1,4,10–15 
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Briefly, the inflammatory cascade is initiated via 
the molecular release of cytokines and chemokines 
by inflammatory cells within the ischaemic terri-
tory, which leads to the activation of endothelial 
cells to upregulate numerous inflammatory medi-
ators that facilitate leukocyte infiltration into the 
brain parenchymal region. Infiltrated leukocytes 
produce and release cytotoxic and proinflamma-
tory chemicals that induce toxicity to neurons and 
glial cells. In addition, activation of the inflamma-
some complex in various brain cells leads to the 
production of proinflammatory cytokines such as 
IL-1β and IL-18.10,16,17 Similarly, the comple-
ment cascade is activated in neuronal and glial 
cells.18 Collectively, these mechanisms lead to 
structural and functional impairment of neuronal 
cells in the ischaemic area.

Many factors have been identified that affect 
stroke risk and functional outcome. Risk factors 
for stroke are numerous, and include lifestyle fac-
tors such as obesity, diabetes, smoking, advanced 
age and lack of physical activity.19,20 Thus, as the 
pathogenesis of stroke is known to be impacted by 
such environmental/external factors, there opens 
up a wider area of interest as to whether stroke 
incidence and outcome might also be influenced 
by epigenetics.

Gene expression can be modulated via changes in 
the DNA sequence itself, which may even be her-
itable if changes occur in DNA sequences affect-
ing germ cells. ‘Epigenetics’ refers to the 
interaction of environmental factors with the 
genome that may also result in heritable and mod-
ifiable gene expression or phenotype, which does 
not confer any changes in the DNA sequence 
itself.21,22 The eukaryotic genome is tightly regu-
lated in terms of its organization and differential 
control mechanisms from the DNA sequence to 
the post-translational level. At every level of eukar-
yotic control, such regulatory processes are being 
controlled by another layer of epigenetic regula-
tion. As such, exposure to various environmental 
stimuli may alter the epigenome status, which in 
turn differentially controls the modulation of gene 
expression and protein activity. As such, higher-
order DNA activity is modulated by a dynamic 
interaction between genes and environmental fac-
tors. Epigenetic processes thus serve as an impor-
tant spatial and temporal regulator of a number of 
biological processes in the body, such as homeo-
stasis, development and ageing.23,24

Recently, much attention has been shifted towards 
the study of epigenetics in influencing the risks 
and manifestation of various diseases, such as can-
cer. Epigenetic markers represent a useful and 
reliable prognostic risk biomarker and can be used 
to explain individual susceptibility towards the 
pathogenesis of diseases. However, stroke is not 
manifested as a monogenic disease, but represents 
a complicated polygenic disease that especially 
affects the ageing population, and is often con-
founded by many lifestyle-related metabolic disor-
ders. As individuals are subjected to a myriad of 
environmental factors throughout life, it is possi-
ble that stroke incidence and outcome may be dif-
ferentially regulated by epigenetic mechanisms 
between individuals. This may help to explain 
why outcomes from studies conducted on rodent 
models may be poorly translated into human 
stroke patients as their epigenomes will differ 
greatly. Until recently, epigenetic studies in stroke 
have been in their infancy, and relevant informa-
tion is only just beginning to emerge.

While conventional therapeutic approaches that 
aimed to intervene against ischaemic stroke dam-
age have been unsuccessful, new approaches have 
started to shift attention towards the area of 
regenerative medicine. Regenerative therapeutic 
approaches now aim to attenuate inflammatory-
induced damage, to promote neuroprotection 
and neural repair, prevent ischaemic-induced cell 
death, as well as maintain structural and func-
tional homeostasis by promoting cerebral remod-
elling and regeneration. These regenerative 
processes seem to be tightly regulated via epige-
netic mechanisms, and depending on the state of 
the epigenome of the individual, the degree of 
regeneration may differ and so the extent of dam-
age incurred will vary. As such, it is paramount 
that studies consider the complex and interrelated 
genetic and molecular interactions from an epige-
netic viewpoint. This review mainly focuses on 
how epigenetic mechanisms might contribute to 
post-ischaemic neuroinflammation and neuronal 
cell death. The next section will describe mecha-
nisms of epigenetics and epigenetic regulation of 
the inflammatory process that contributes to 
infarct development following ischaemic stroke.

Epigenetic mechanisms
The eukaryotic genome has a distinct organiza-
tional structure interlaced with multilayer 
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packaging and folding. Chromosomal DNA is 
often associated with histone proteins to form a 
structural core, termed the nucleosome. Each 
nucleosome consists of a 147-base-pair DNA 
wrapped around an octamer of histones made up 
of a pair of H2A and H2B dimers, as well as a pair 
of H3 and H4 dimers. Between two nucleosomes, 
DNA not associated with nucleosomes (coined 
‘linker DNA’) often associates with H1 histone 
proteins. This interaction is possible as DNA is 
negatively charged and is able to form tight bind-
ing with positively charged histone proteins (rich 
in basic lysine and arginine residues).25,26 As 

DNA replication and transcription during gene 
expression is dependent on the accessibility of 
replication and transcriptional machinery to 
DNA sites, nucleosomes thus serve as a form of 
steric hindrance that impede the access of such 
machinery.27 The relative packing of DNA with 
nucleosomes will determine the overall accessibil-
ity of DNA, defining two main regions termed 
‘euchromatin’ and ‘heterochromatin’. 
Euchromatin is defined as chromatin that is less 
tightly packed and highly involved in transcrip-
tion, whereas heterochromatin represents the 
opposite. The dynamic transition between a 
euchromatin and heterochromatin state is highly 
dependent on epigenetic modifications that occur 
on the DNA sequences or on amino histone 
tails.28 In this review, for didactic purposes, these 
epigenetic modifications and mechanisms can be 
broadly categorized into DNA methylation, his-
tone modifications and microRNA involvement. 
The overall epigenetic tags that are imprinted 
across the genome is termed the ‘epigenome’, 
which can be identified as microdomains residing 
within the nucleus, which in turn will regulate the 
overall DNA structure and accessibility to pro-
vide differential patterns of gene expression.29 In 
simpler terms, the overall epigenome can be 
viewed as a tug-of-war, in which different epige-
netic tags will either regulate positive or negative 
gene expression, and the sum of this dynamic 
interaction will determine the direction of gene 
expression.

DNA methylation
At the DNA sequence level, DNA methylation is 
one of the most well-studied epigenetic modifica-
tions. An epigenetic tag involves the covalent 
attachment of a methyl group to a cytosine ring at 
carbon position 5 (Figure 1). While cytosine is 
one of the principal conserved residues present 
throughout DNA, DNA methylation does not 
occur on every cytosine residue in the genome. 
Rather, the process of DNA methylation is biased, 
occurring only in regions termed CpG dinucleo-
tide islands. These islands are recognized by 
stretching over more than 500 base pairs of DNA, 
with guanine and cytosine composition to be 
above 55% frequency, as well as an overall observed 
frequency ratio of CG:GC to be at least 0.6.24 
These CpG islands are normally located in the 
promoter region of genes, which also tends to 
make up the 5′ gene transcript. Besides that, it 

Figure 1. DNA methylation. DNA methylation 
sites displayed bias at CpG islands or shores. 
Hypomethylation of CpG islands is normally 
associated with transcriptional activation. DNA 
methylation is mediated by a group of enzymes 
termed DNA methyltransferases (DNMTs), whereas 
the subsequent removal of methyl group from 
DNA is mediated by ten–eleven translocation (TET) 
enzymes. Methyl tags at CpG islands attract methyl-
CpG-binding domain (MBD) proteins, which may 
recruit chromatin-modifying complexes to creates a 
repressive chromatin, leading to gene silencing.

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 11

4 journals.sagepub.com/home/tan

has been recently identified that while CpG 
islands exist throughout the genome, their rela-
tive density differs across different positions.27 
Another term, coined the ‘CpG shores’, 2kb 
downstream of Cpg Islands, there exists a much 
lower density of Cpg sites termed Cpg shores. 
These Cpg shores contain DNA methylation 
sites, which challenges conventional norm that 
DNA methylation only occurs at high density 
CPg sites.24 As such, DNA methylation does not 
only occur at high-density CpG islands, but also 
at locations that contain low-density CpG resi-
dues, which challenge conventional understand-
ing of this relatively important and well-known 
epigenetic tag mechanism.

DNA methylation is often associated with tran-
scriptional inactivation. The addition of a methyl 
group to CpG sites can prevent gene transcription 
via various mechanisms. DNA methylation can 
directly prevent the binding of DNA-binding fac-
tors to transcriptional sites. Moreover, the addi-
tion of methyl groups to CpG sites can be 
recognized by a family of proteins termed ‘methyl-
CpG-binding domain (MBD) proteins’. Binding 
of these proteins to methylated CpG sites will in 
turn recruit histone or chromatin-modifying com-
plexes, which in turn will assemble a spectrum of 
complexes that centrally mediate the repression 
of gene transcription. The addition of methyl 
groups to CpG sites is mediated by DNA methyl-
transferase (DNMT) family member enzymes.30 
Of the five family members reported within this 
family of enzymes, only DNMT1, DNMT3a and 
DNMT3b possess enzymatic activity. By trans-
ferring a methyl group from S-adenosyl methio-
nine to DNA, DNMT3a and DNMT3b are 
primarily involved in de novo methyl group trans-
fer, whereas DNMT1 is involved in the maintenance 
of DNA methylation status in the epigenome.31,32 
The cellular reservoir of S-adenosyl methionine is 
maintained by another group of enzymes called 
‘methylenetetrahydrofolate reductases’ (MTHFRs). 
This enzyme group plays a critical role in the 
metabolism of folate and methionine, which are 
needed to support the role of DNA synthesis or 
methylation.33–35 On the other hand, recent find-
ings have discovered the presence of TET 
enzymes, which help to mediate DNA demethyl-
ation via a sequential process.36

Surprisingly, while DNA methylation represents 
a prevalent form of epigenetic modification,  
the presence of DNA methylation in the 

mammalian genome is relatively rare (~1%). 
This is because 5-methylcytosine is genetically 
unstable in DNA sequences as it cannot be 
excised or repaired by the DNA repair system. 
As a result, 5-methylcytosine undergoes sponta-
neous deamination to thymine, otherwise the 
presence of this methylated residue will be a 
potential mutational hotspot. The consequence 
of this is the rapid depletion of CpG sites in the 
genome, where the remaining CpG sites are 
subsequently scattered around the genome in 
low proportions.37 Despite the low proportion 
of CpG sites within the genome, DNA methyla-
tion is still critical in many biological processes 
besides gene silencing, such as differentiation, 
genomic imprinting, genomic stability and X 
chromosome inactivation.

Histone modifications
Histones that form part of the nucleosome struc-
ture represent a globular structure with their 
amino terminal tail protruding from each subu-
nit. These histone tails are subjected to a myriad 
of post-translational modifications, such as meth-
ylation, acetylation and phosphorylation. These 
post-translational modifications of histone tails 
play various critical functions, regulating impor-
tant aspects of chromatin packing and organiza-
tion, transcriptional activation or repression, 
DNA repair, as well as telomere maintenance. 
Compared to DNA methylation, histone modifi-
cation represents a relatively short-term reversible 
change that is especially sensitive to external stim-
uli changes.38–40 As different histone modifica-
tions confer different cellular outcomes, the 
distinct expression of total histone modifications, 
termed the ‘histone code’, will in turn determine 
the sum of the total interacting changes in 
response to a particular stimulus to produce the 
overall cellular outcomes.

Acetylation of histones
Acetylation of histone tails has been widely inves-
tigated for its role in influencing chromatin acces-
sibility as well as gene expression. The covalent 
addition of acetyl groups to histone tails at the 
epsilon-amino group of conserved lysine residues 
is regulated by a family of writer enzymes termed 
histone acetyltransferases (HATs) (Figure 2). It 
has been generally described that histone acetyla-
tion is associated with a permissive chromatin 
state and drives transcriptional activation.41 This 
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may be achieved via the synergistic interaction 
with nucleosome remodelling complexes, such as 
the SWI/SNF-lie ATPase family members with 
HATs.42–44 Nucleosome remodelling may result 
in the sliding of nucleosome away from DNA 
through weakening of DNA–histone interaction, 
thereby promoting the accessibility of DNA to 
transcriptional machineries. On the other hand, 
the removal of acetyl groups is regulated by  
eraser enzymes known as histone deacetylases 
(HDACs).45,46 Deacetylation of histone tail resi-
dues may also recruit repressive proteins and 
thereby result in a repressive chromatin state that 
generally silences transcription.41 As histone acet-
ylation and deacetylation is a highly volatile pro-
cess that is extremely sensitive to stimulus 
changes, their regulatory influences on the 

chromatin structure and subsequent functional 
importance in gene expression has drawn much 
attention in the investigation of epigenetic and 
disease progression. Besides that, other signifi-
cant processes that are regulated by histone acety-
lation or deacetylation include transcriptional 
elongation and DNA repair.46–49

Methylation of histones
Histone methylation represents another form of 
histone modification that also helps to regulate 
chromatin accessibility and the level of gene 
expression (Figure 3). Compared to DNA meth-
ylation, methylation at histone levels occurs at 
the amino terminal tails, and the effects on gene 
expression are often reversible and complex. 

Figure 2. Histone acetylation. Histone acetylation occurs at the amino termini of histone tails, and is mediated 
by a class of enzymes termed histone acetyltransferase (HATs). Subsequent removal of an acetyl group is 
mediated by another class of enzyme called histone deacetylases (HDACs). Histone acetylation is commonly 
associated with permissive chromatin accessibility and transcriptional activation.

Figure 3. Histone methylation. Histone methylation normally shows preference at either lysine or arginine 
residues of histone tails. Addition of methyl groups to these residues is mediated by either lysine or arginine 
methyltransferases, respectively. Methyl group addition to arginine residues can either be symmetrical 
or asymmetrical, and is mediated by several subfamily members of arginine methyltransferases. Unlike 
histone acetylation, effects of histone methylation on gene transcription are still unclear. Both transcriptional 
activation and deactivation have been reported to be associated with histone methylation.
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The addition of methyl groups onto the histone 
amino terminal tails normally occurs at either 
lysine or arginine residues.26,50 However, given 
the conservative nature of residues that are able 
to be methylated, it has been generally observed 
that histone methylation occurs at different posi-
tions, and the effects generated are often depend-
ent on the positions of the residues being 
methylated. Besides that, at a specific residue, 
the addition of methyl groups can be mono-, di- 
or trimethylated at lysine residues, whereas in 
the case of arginine residues it can either be 
mono- or dimethylated.26,51 Dimethylated argi-
nine residues have another layer of complexity, 
where the methylation can either be in a sym-
metrical or asymmetrical topology.50,52 As a 
result, given the possible permutations and com-
binations of methylation patterns, it is therefore 
difficult to predict the effects of histone methyla-
tion on the transcription of genes. Despite the 
complexity of the mechanisms governing histone 
methylation, it has been widely reported that 
certain well-known methylation marks have been 
associated with transcriptional activation and 
repression.29,51,53 For instance, methylation at 
histone 3 lysine 4 is generally associated with 
transcriptional activation, whereas methylation 
at histone 3 lysine 9 is transcriptional repressive.54 

Furthermore, the reversible nature of histone 
methylation and demethylation is mediated by 
the dynamic interaction between lysine or argi-
nine methylases or demethyltransferases. The 
coordinated action and interplay between these 
readers and erasers will lead to diverse methyla-
tion marks, which in turn will regulate gene 
expression spatially and temporally.

MicroRNAs
MicroRNAs (miRNAs) represent an important 
emerging player in the field of epigenetics, involv-
ing precise interaction with specific genes and the 
ability to modulate the level of gene expression. 
miRNAs belong to a class of short non-coding 
RNAs, which exert their action at the post-tran-
scriptional level, and are an important fine-tuner 
in the control of gene expression.39 Biogenesis of 
miRNAs is often complicated and involves multi-
sequential steps (Figure 4). miRNA genes are 
first transcribed in the nucleus by RNA polymer-
ase II into a primary transcript. This primary 
transcript, termed primary miRNAs (pri-miR-
NAs), is often very large and contains multiple 
miRNA genes occupying various loci across the 
pri-miRNAs. Following this, these pri-miRNAs 
will undergo micro-processing by a class of 

Figure 4. MicroRNAs. miRNA processing follows a complicated cascade. Transcription in the nucleus first 
produces a long transcript containing numerous miRNA transcripts by RNA polymerase II, termed primary 
miRNAs (pri-miRNAs). Subsequent processing by Drosha/DGCR8 complexes yields a precursor miRNA (pre-
miRNA) to be transported via Exportin-5 towards the cytosol. In the cytosol, pre-miRNAs undergo a second 
round of processing to become mature miRNAs via interaction with the Dicer/TRBP complex. Eventually, these 
mature miRNAs will be packaged into an RNA-induced silencing complex (RISC). Together with RISC, mature 
miRNAs tend to recognize the 3′ untranslated region (3′ UTR) sites of messenger RNA (mRNA) specifically. 
Targeting by mature miRNAs will either lead to mRNA silencing or degradation.
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RNaseIII enzymes called a Drosha/DGCR8 
complex.55 This process will result in the genera-
tion of shorter hairpin–loop structures, called 
‘precursor miRNAs’ (pre-miRNAs). Subsequently, 
pre-miRNAs will be exported out of the nucleus 
into the cytoplasm via the action of Exportin-5 
protein.56 In the cytoplasm, pre-miRNAs will 
undergo a second round of cleavage by another 
RNaseIII enzyme termed ‘Dicer’, which will 
produce a duplex of the mature miRNAs.57 To 
mediate its biological activity of gene silencing, 
this duplex of mature miRNAs will undergo 
asymmetrical unwinding by the Dicer/TRBP 
complex, where a single strand of the mature 
miRNAs will then associate with a ribonuclear 
particle to form the RNA-induced silencing com-
plex (RISC). The mature miRNAs in the RISC 
complex have been found to commonly recognize 
the 3′ untranslated region (3′ UTR) of the mRNAs, 
which may suppress protein synthesis or mediate 
mRNA degradation.58 miRNAs play many impor-
tant biological roles in organisms, controlling the 
processes of cellular proliferation, differentia-
tion and metabolism, as well as development.59 
Recently, miRNAs have been reported to be dys-
regulated in many diseases, such as cancer and 
neurodegenerative diseases. Interestingly, miR-
NAs have also been recently proposed to be a use-
ful and accurate disease biomarker for diagnosis 
and prognosis prediction. However, given that 
miRNAs can only recognize partial sequences in 
mRNAs, miRNAs can recognize a myriad of 
mRNAs simultaneously and work differently in a 
cell-context-dependent manner. As such, studies 
investigating the roles of miRNAs in diseases 
need to understand the complicated regulatory 
network that miRNAs operate.60

Epigenetic regulation of inflammation in 
stroke

DNA methylation and inflammation in stroke
Using in vitro experiments, an ischaemic insult to 
cultured cells results in hypomethylation in the 
global genomic landscape. However, depending 
on the temporal aspect of stroke progression, 
certain regions of the genome experience 
enhanced DNA methylation. These results may 
reveal a temporal regulation of DNA methylation 
in response to stroke, which may play different 
roles in neurotoxicity and neuroprotection.61 
Besides that, studies have shown that a low level 

of methylation in blood LINE-1 repetitive 
sequences is associated with higher stroke risk 
and poorer prognosis and mortality.62 Recent 
studies have reported that hypomethylation of 
LINE-1 DNA sequence is associated with higher 
VCAM-1 levels, which may promote stroke-
induced inflammation and thereby exacerbate 
stroke injury.63 Hypomethylation of CpG sites of 
TNF receptor associated factor 3 (TRAF3) is 
also associated with enhanced platelet conglom-
eration in patients receiving clopidogrel (an anti-
platelet drug), thus increasing the recurrence of 
ischaemic stroke.64 Conversely, hypermethylation 
of the thrombospondin-1 (THBS1) gene promo-
tor region leads to gene silencing. THBS1 is 
secreted by platelets and is an inflammatory 
mediator needed to induce angiogenesis during 
cerebral ischaemia, which leads to neurore-
pair.65,66 Gene silencing of THBS1 via DNA 
methylation during stroke prevents neurorepair, 
thus exacerbating stroke injury.58,67,68 Similarly, 
another study has shown that methylation of pro-
tein phosphatase magnesium dependent 1A 
(PPM1A), which is involved in the inflammatory 
healing process, have led to increased risks of vas-
cular recurrence in stroke patients who are treated 
with aspirin.69 As such, epigenetic modulation of 
DNA methylation during stroke may regulate 
inflammatory damage and repair processes dur-
ing stroke injury, as well as subject patients to 
chronic inflammation that further increases stroke 
recurrence. However, other studies have reported 
contradictory results that no significant changes 
were observed in global DNA methylation status 
in large-artery atherosclerosis stroke, small-artery 
disease stroke, as well cardio-aortic embolism 
stroke.70 As such, DNA methylation may be con-
founded by different pathologies. Careful consid-
eration and further studies are needed to gain a 
deeper understanding of the roles of DNA meth-
ylation in different stroke subtypes. Nonetheless, 
it has been recently proposed that the level of 
DNA methylation correlates with the chronologi-
cal age of patients and serves as a good prognostic 
marker to assess stroke risk.71

It has been reported that DNMT3a is responsible 
for degeneration of motor neurons in vitro using 
cultured NSC34 cells. Moreover, both DNMT1 
and 3a are upregulated during induced apoptosis 
of NSC34 cells.72 Using the DNMT inhibitor 
RG108 in vivo, methylation of CpG sites is also 
inhibited with the concomitant blockage of apoptosis 

https://journals.sagepub.com/home/tan


Therapeutic Advances in Neurological Disorders 11

8 journals.sagepub.com/home/tan

of motor neurons.72 However, this study is being 
conducted with the amyotrophic lateral sclerosis 
mechanism in mind. Moving forward, it will be 
interesting to investigate the roles of DNMT in 
neuronal cell death or glial cell activation follow-
ing ischaemic stroke. DNA methylation is also 
reported to regulate differentiation and matura-
tion of various cell types.30 Post-mitotic neurons 
are highly enriched in DNMT1 and DNMT3a.73 
While studies have linked these enzymes to syn-
aptic plasticity in learning and memory,31 further 
studies are required to investigate the roles of these 
enzymes in the neuronal response in ischaemic 
stroke. Furthermore, it has been established that 
enhanced expression of DNMT1 in macrophages 
leads to downregulation of peroxisome-prolifera-
tor activator receptor gamma (PPARγ), which 
helps to upregulate the expression of proinflam-
matory cytokines that drives atherosclerosis in 
mice.74 Another study also reported that DNA 
methylation profiles represent a useful biomarker 
to assess atherosclerotic progression in the human 
aorta.75 This lends useful insight on the roles of 
DNA methylation in association with atheroscle-
rosis pathogenesis, which is a major risk factor for 
ischaemic stroke. In a mouse model of ischaemic 
stroke, mild ischaemic insult resulted in upregula-
tion of DNA methylation, which is correlated 
with poor stroke outcome.76 Inhibition of DNMT 
resulted in neuroprotection from this mild ischae-
mic damage. However, using another stroke 
model that encapsulates excitotoxicity and 
necrotic death, DNMT is not involved in stroke 
outcome.76 These findings may highlight the 
potential roles of DNMT in mediating pathologi-
cal outcomes in response to various degrees of 
ischaemia, and also the importance of variability 
in studying epigenetics using different stroke 
models. Furthermore, DNMT1 has been discov-
ered to regulate the crosstalk between major 
immune signalling pathways, such as T-cell 
receptor (TCR) and B-cell receptor (BCR) path-
ways.77 DNMT1 downregulates the activity of 
TCR/BCR pathways, which drives immunosup-
pression in cardiovascular disease and stroke,77 
which may explain the higher risks of infection 
associated with post-stroke patients.78

In addition, methylenetetrahydrofolate reductase 
(MHTFR) has also been implicated to trigger 
inflammatory responses and thereby is correlated 
with increased stroke risk.79 MHTFR is an enzyme 
responsible for the catalytic regeneration of 

methionine, which eventually is required as a 
methyl donor for DNA methylation.80 For many 
years, it has been widely investigated that individ-
uals exhibiting polymorphism of C677 > T dem-
onstrate hyperhomocysteinemia, a condition 
characterized by accumulation of homocysteine, a 
product formed following DNA methylation.80 
MHTFR is responsible for the reconversion of 
homocysteine to methionine.81 However, individ-
uals possessing this genetic variant lack the ability 
to regenerate the methyl reservoir, leading to the 
build-up of homocysteine.82 Interestingly, indi-
viduals possessing this genetic variant often have 
increased risk of cardiovascular and stroke 
events.83 Elevation in the homocysteine level is 
able to induce a plethora of inflammatory 
responses within the cerebral territory. Within 
endothelial cells of the vasculature, high levels of 
homocysteine are able to induce oxidative stress, 
as well as generate a myriad of proinflammatory 
mediators such as TNF and inducible nitric oxide 
synthase (iNOS).84 Together, hyperhomocyst-
einemia is able to drive the pathogenesis of 
endothelial dysfunction, which promotes the 
development of cerebral vascular damage and 
increases the risk of stroke.33,35,85–87 However, in 
other studies, MHTFR polymorphism association 
with stroke risk is contradictory. In one study con-
ducted on the Black Sea Turkish population, 
MHTFR polymorphism did not seem to influence 
the risk of ischaemic stroke.88 Moreover, in a 
North Indian population, MHTFR polymor-
phism was also not correlated with ischaemic or 
haemorrhagic stroke risk.89 Besides that, this 
observation is consistent with results reported in 
Central and Northern Europe, whereas in Italy, 
MHTFR polymorphism is associated with ischae-
mic stroke risk.34 The presence of heterogeneous 
observations with regards to MHTFR polymor-
phism and stroke risk may be due to confounding 
factors like ethnicity, as well as inconsistency in 
the sample size within the populations studied. 
Interestingly, while genetic variants may account 
for the manifestation of hyperhomocysteinemia, it 
has also been discovered that the level of homo-
cysteine within the body is epigenetically regu-
lated. In one study, a young patient with a reported 
case of concomitant Crohn’s disease and C677 > 
T polymorphism displayed increased inflamma-
tion, as well as deficiency in vitamin B6 levels.90 
This patient subsequently developed a large-artery 
stroke, highlighting that the increased risk of 
stroke may be confounded by other factors.90
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Many factors have since been identified to modify 
the serum level of homocysteine, including life-
style factors (e.g. age, smoking, diet and drugs).82 
For instance, low vitamin (e.g. B6 and B12) and 
folate levels and migraine have been associated 
with increased risk of stroke.91–93 As such, many 
studies have started to investigate whether modi-
fying these environmental factors might also 
modify the plasma level of homocysteine, and 
thus provide an epigenetic approach to attenuate 
stroke risk. It has been reported that an appropri-
ate intake of vitamins, antioxidants, as well as 
folic acid supplementation, confers protection 
against stroke.91,94,95 However, one group 
reported that DNA methylation of the MHTFR 
gene that mediates vitamin B12 and serum folate 
levels increased the risk of ischaemic stroke.96 As 
such, it is still unclear whether the association of 
MHTFR with stroke risk is due to the deficiency 
of these dietary cofactors or the epigenetic regula-
tion of MHTFR that leads to these deficiencies in 
the serum. More studies need to be undertaken, 
but clinical trials have started with these dietary 
cofactors in stroke prevention.91,95

Histone acetylation and deacetylation in stroke
Using in vitro studies on murine and rat neuro-
glial cells, it has been shown that the administra-
tion of HDAC inhibitor trichostatin A helps to 
drive proinflammatory responses such as the 
upregulation of IL-6, iNOS and TNF.97 This 
proinflammatory response is attenuated via inhi-
bition of NF-κB, which suggests that the modu-
lation of histone acetylation status in microglial 
cells could act through an NF-κB-dependent 
manner to drive the proinflammatory response.97 
Another group has also reported that acetylation 
at histone 3 lysine 9 (H3K9Ac) is upregulated in 
the ischaemic territory and is associated with 
microglial activation.98 Inhibition of HDAC in 
an in vitro model found that H3K9Ac upregula-
tion leads to decreased expression of proinflam-
matory genes like TNF, IL-6, iNOS and STAT1, 
as well as an increase in anti-inflammatory genes 
like IL-10 and STAT3.99 The overall effect 
improved neuronal survival consistent with a 
neuroprotective action of HDAC inhibitors.99 
Notably, it has been reported that trichostatin 
A-mediated neuroprotection via HDAC inhibi-
tion was not present in gelsolin-deficient mice 
after ischaemic stroke.100 It was also demon-
strated that trichostatin A-mediated HDAC 

inhibition was highly dependent upon the 
expression of gelsolin, in addition to NF-κB.97,100 
Furthermore, in a rat model of intracerebral 
haemorrhage, administration of the anti-epilep-
tic drug valproic acid (VA) reduces inflamma-
tion and brain injury. Such changes were 
mediated via an interaction of VA with HDAC, 
leading to its inhibition.101 Moreover, in a rat 
model of focal cerebral ischaemia, VA adminis-
tration was reported to ameliorate blood–brain 
barrier disruption and subsequent brain oedema 
through the downregulation of matrix metallo-
proteinase 9 (MMP-9), tight junction degrada-
tion, and the NF-κB pathway via suppression of 
HDAC.102 Moreover, another HDAC inhibitor, 
sodium butyrate, is reported to downregulate 
proinflammatory mediators IL-1β and IL-18, 
and increase expression of the neuroprotective 
protein insulin growth factor 1 (IGF-1) in 
ischaemic stroke.103 In a rat model of permanent 
ischaemic stroke, the post-stroke injection of 
HDAC inhibitors, sodium butyrate, trichostatin 
A or VA, improved functional outcome.104 This 
amelioration of stroke-induced tissue injury was 
mediated through inhibition of H3 histone dea-
cetylation, which in turn reduced inflammation 
as assessed by microglia number and activity, 
and expression of proinflammatory markers.104 
HDAC inhibitors also upregulated expression of 
heat shock protein 70 (Hsp70), a neuroprotec-
tive protein, and reduced expression of phospho-
rylated AKT, p53, iNOS and cyclooxygenase-2, 
in the ischaemic territory.104 Importantly, these 
inhibitors conferred protective benefits when 
administered at around 3 h after stroke onset, 
which is a potentially relevant therapeutic win-
dow for use in humans.

It has been established that ischaemic stroke 
causes a drastic reduction in H3 acetylation.105 
Treatment with another HDAC inhibitor, suber-
oylanilide hydroxamic acid (SAHA), prevents 
this reduction in neurons and astrocytes and 
improves stroke outcome.105 Consistent with the 
previous study, SAHA treatment resulted in 
upregulation of Hsp70 and the anti-apoptotic 
Bcl-2, as well as reduced expression of proinflam-
matory markers such as IL-1.105,106 Similarly, it 
has been reported that stroke induces a drastic 
decrease in histone 3 lysine 9 lysine 14 acetylation 
(H3K9K14Ac),107 with a myriad of genes also 
dysregulated, particularly those associated with 
HDAC3.107 Again, administration of the HDAC 
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inhibitor, SAHA, reduces the level of neuroin-
flammation and ischaemic cell death.107

It is important to note that the epigenetic status of 
one cell type in the ischaemic territory may also 
influence the activity of neighbouring cells. 
Microglial activation can influence the reduction 
in acetylation of H3 and H4 histones in astro-
cytes, thereby leading to the downregulation of 
astroglial nuclear factor-erythroid 2-related factor 
2 (Nrf2), a mediator important in anti-oxidant 
defence in astrocytes.108 Treatment with the 
HDAC inhibitor VA or the GSK3β inhibitor lithium 
can restore the level of acetylation and thereby 
maintain anti-oxidant defence previously sup-
pressed due to inflammation.108

It is important to note that the HDAC family 
described in the studies above consists of many 
members. While HDAC inhibitors have been 
shown to be protective against stroke-induced 
damage, most studies using HDAC inhibitors did 
not investigate drug specificity against individual 
HDAC members. In a study of focal cerebral 
ischaemia induced by photothrombosis, HDAC 
inhibition using trichostatin A was ineffective in 
HDAC2 knockout mice.109 Functional improve-
ment in stroke outcome was observed when 
HDAC2 was present, and inhibition of HDAC2 
using SAHA improved functional recovery.109 
This demonstrates the importance of considering 
the roles of individual HDAC members in stroke 
pathogenesis. Moreover, using RNA interference, 
another group found in overexpression and 
mutant studies that HDAC4 forms a complex 
with nuclear hormone receptor corepressor 
(N-CoR).110 Together, this complex is then able 
to induce the recruitment of monocyte enhancer 
factor 2 (MEF2) transcription to regulate IL-2 
expression.110 Likewise, HDAC11 regulates 
expression of IL-10 in antigen-presenting cells.111 
HDAC3 has been reported to contribute to neu-
rotoxicity-induced death of neurons, such that 
inhibiting HDAC3 with IGF-1, or inhibiting 
GSK3β, ameliorates this neurotoxicity.112 Thus, 
different HDAC members appear to operate dif-
ferentially across cell types and via varying mech-
anisms of action. As such, understanding how 
specific members of HDAC regulate expression 
of inflammatory mediators will be critical to 
inform the development of drugs to target epige-
netic mechanisms in stroke. Overall, it appears 
that inhibition of HDAC during cerebral ischaemia 

confers neuroprotective effects via multiple 
mechanisms.

The concepts of ischaemic preconditioning and 
the induction of ischaemic tolerance have recently 
gained increased interest. Briefly, it has been 
hypothesized that an intentional ischaemic insult 
to the brain will induce a plethora of genetic 
reprogramming resulting in a state of tolerance 
that will limit the pathogenesis following a subse-
quent stroke. Such changes in gene expression are 
thought to confer a neuroprotective effect to 
reduce the risk and damage associated with 
stroke.113 Regarding epigenetics, ischaemic pre-
conditioning has been reported to induce a pro-
acetylation status in H3 and H4 histones, which is 
neuroprotective during cerebral ischaemia. Many 
strategies have been utilized to induce ischaemic 
preconditioning. One example of induction of 
ischaemic tolerance is the chronic dietary intake 
of acetate.114 It has been reported that acetate 
supplementation promoted the acetylation of 
H3K9, H4K8 and H4K16.114 Acetylation at these 
sites has been shown to reduce neuroglial inflam-
matory responses, as well as the secretion of pro-
inflammatory cytokines like IL-1β.114 Besides this 
method, other approaches have been investigated 
and are reviewed elsewhere.115

The level of histone acetylation during stroke is 
also an important determinant for functional 
recovery. Stroke patients may suffer from mem-
ory and cognitive impairment,116 and HDAC2 
has been reported to be a negative regulator of 
learning and memory, as well as of synaptic 
plasticity.117 Treatment with HDAC inhibitors 
activates the downstream cAMP response ele-
ment binding protein (CREB): CREB-binding 
protein (CBP) complex, which promotes memory 
formation.118 In rats subjected to stroke, adminis-
tration of apigenin inhibits HDAC and promotes 
upregulation of memory formation mediators 
such as CREB and brain-derived neurotrophic 
factor (BDNF).119 Further, cognitive impairment 
in post-stroke dementia (PSD) – another com-
mon pathology in stroke patients120 – can be ame-
liorated by treatment with the flavonoid icariin, 
which promotes histone acetylation in mice.120 
Thus, while HDAC may be an important media-
tor of inflammatory responses during stroke, tar-
geting HDAC may attenuate inflammatory 
damage and promote functional outcome. In con-
trast, HDAC4 has been reported to be a positive 
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regulator of learning and memory formation.121 
Thus, specific members of the HDAC family 
appear to operate in a differential manner, and 
careful consideration needs to be given when tar-
geting HDAC members in order to avoid 
toxicity.

Histone methylation and demethylation in 
stroke
Stroke outcome is known to be variable in adult 
and middle-aged rodent models,54 in association 
with functional impairment of astrocytes with 
increasing age that may be related to histone 
modifications. Following ischaemic stroke, his-
tone 3 lysine 4 trimethylation (H3K4me3) is more 
highly enriched in astrocytes of young adults than 
is histone 3 lysine 9 trimethylation (H3K9me3), 
unlike in middle-aged rats.54 Histone methylation 
in a site-specific pattern results in more highly 
packed chromatin, leading to modulation of vas-
cular endothelial growth factor and microRNA-20 
expression.54 Besides providing insight as to how 
age may affect the severity of stroke, histone 
methylation at different sites may also differen-
tially affect downstream gene expression. As such, 
investigation into the relative expression of his-
tone methylation tags in stroke may allow us to 
decipher more detail about the molecular mecha-
nisms governing the pathogenesis of stroke.

Using an in vitro neuronal model of stroke, inhibi-
tion of H3K9 methyltransferase enzymes, G9a 
and SUV39H1, using chaetocin and RNA inter-
ference demonstrated neuronal resistance to cell 
death, potentially mediated by more active tran-
scription of BDNF at its promoter site.122 
Furthermore, during rat transient global cerebral 
ischaemia in vivo, levels of lysine-specific dem-
ethylase 1 (LSD-1) are reported to correlate with 
H3K4 mono-, di- and trimethylation levels in the 
brain.123 Interestingly, LSD-1 expression differs 
spatially and temporally following cerebral ischae-
mia, which may highlight the particular vulnera-
bility of specific areas of the brain to stroke 
injury.21,123 Moreover, mild to moderate ischae-
mia perturbs the activity of histone lysine methyl-
ases (KMTs) and histone lysine demethylases 
(KDMs), thereby leading to a global reduction in 
histone 3 lysine 9 dimethylation (H3K9me2) in 
the striatum.50 Treatment with dimethyloxalylg-
lycine (DMOG), an inhibitor of KDM4 or JMJD2 
types of histone lysine demethylases, increases 

expression of H3K9me2 with concomitant 
improvement in neurological function after 
stroke.50 Modulation of histone methylation lev-
els may thus be a potential target to regulate 
stroke-induced damage or recovery. Furthermore, 
many studies also demonstrate a link between his-
tone lysine methylases and demethylases in 
inflammation. TNF is reported to reduce meth-
ylation of H3K9 and H3K27, which is involved in 
the upregulation of ICAM-1 in cerebral vessels.124 
Using both inhibitor and overexpression stud-
ies, it has been shown that G9a lysine methylases 
and KDM4B lysine demethylases are implicated 
in modulating the level of methylation at these 
two sites, which mediates the influence of TNF 
on expression of either ICAM-1 or VCAM-1, 
thereby affecting neutrophil infiltration.124 
Notably, in human stroke patients, the levels of 
serum TNF are reported to be correlated with 
H3K9Ac and H3K4me3, which may influence 
stroke outcome.125 Clearly, epigenetic mecha-
nisms represent complex processes that may be 
impacted by other histone modifications. HDAC 
inhibition has been reported to increase H3K4me2 
at the Hsp70 promoter region in neurons and 
astrocytes.126 As such, epigenetic modulation of a 
specific histone mark may not be sufficient to 
induce a change, but rather it may be more useful 
to consider interactions relevant to the status of 
the entire epigenome.

Besides histone lysine methylation, histone argi-
nine may also play an inflammatory role that exac-
erbates stroke injury. It has been reported that rats 
with hyperhomocysteinemia have relatively low 
levels of asymmetric monomethylarginine 
(ADMA).53 As hyperhomocysteinemia is associ-
ated with increased inflammation and stroke risk, 
findings of hypomethylation of histone arginine 
residues in association with hyperhomocysteine-
mia may warrant further study. Another group has 
provided evidence of a more direct role of histone 
arginine in ischaemic stroke, in which levels of 
ADMA and symmetric monomethylarginine 
(SDMA) are highly expressed.52 ADMA, a well-
known NOS inhibitor, may not only contribute to 
reduced cerebral blood flow, but also oxidative 
stress and excitotoxicity-mediated neuronal death, 
to exacerbate damage from ischaemic stroke.52 As 
such, the levels of ADMA could be a biomarker of 
ischaemic stroke damage. ADMA and SDMA lev-
els have also been associated with the expression 
of inflammatory mediators following ischaemic 
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stroke, such as monocyte chemotactic protein-1 
(MCP-1), MMP-9, tissue inhibitor of matrix met-
alloproteinase-1 (TIMP-1), IL-6, C-reactive pro-
tein and S100B.127 Interestingly, the expression of 
these mediators correlates with histone arginine 
methylation,127 which could explain a relationship 
with inflammation in stroke.

Thus, while conventional therapeutics have been 
targeted for direct intervention against neutrophil 
transmigration without success, future studies 
might instead be redirected towards the modula-
tion of critical histone writers and erasers to target 
stroke inflammation.

MicroRNAs and inflammation in stroke
MicroRNAs have been implicated in various 
aspects of stroke pathophysiology, including 
excitotoxicity, oxidative stress, apoptosis and 
inflammation.60 The roles of miRNAs in regulat-
ing inflammation during stroke will be discussed 
here. In stroke patients with intracerebral haem-
orrhage, both spatial localization and expression 
levels of a wide array of miRNAs have been 
reported to be altered.128 In adult rats subjected 
to focal cerebral ischaemia, expression of miR-
124a, one of the more highly enriched miRNAs in 
the brain, was reduced in neural progenitor cells 
in the subventricular zone of the brain.129 This 
expression pattern of miR-124a was accompanied 
by increased activation of Notch signalling.127 
Using an in vitro neural progenitor cell model, 
miR-124a was found to regulate stroke-induced 
neurogenesis with an involvement of Notch 
signalling.129 Another study using a rat model of 
ischaemic stroke reported that miR-124 is upreg-
ulated in the plasma and may thus be a useful 
biomarker for stroke injury.130 In human ischae-
mic stroke patients, blood levels of miR-30a and 
miR-126 were reduced for 24 weeks.131 
Interestingly, another microRNA, let-7b, was 
found to display a differential pattern of expres-
sion across different stroke subtypes. Let-7b was 
lower in stroke patients of a large atherosclerosis 
subtype compared to non-stroke patients, whereas 
in other types of ischaemic stroke, let-7b was 
higher than in healthy individuals.131 The screen-
ing of different types of microRNAs may thus 
serve as a useful tool to assess the risks and prog-
nosis of specific stroke subtypes. Indeed, expres-
sion of different microRNAs following stroke 
varies considerably in a tissue-dependent and 

stroke-subtype manner, coinciding with earlier 
findings that miRNAs work in a context-depend-
ent setting. As such, future studies need to care-
fully consider the potential roles that these 
miRNAs may contribute to stroke before further 
targeted interventions are developed.

miRNAs have been demonstrated to regulate var-
ious aspects of thrombus formation,132 which may 
thus contribute to the early phase of neuroinflam-
mation following stroke. miR-19a, which has 
been reported to be reduced following ischaemic 
stroke, is associated with tissue factor pathway 
inhibitor (TFPI) and plasminogen activator 
inhibitor 1 (SERPIN1), as well as tissue factor III 
that modulates thrombus formation.132 Furthermore, 
other prominent downregulated miRNAs that 
were associated with the modulation of other 
clotting mediators and identified to be altered in 
ischaemic stroke include miR-let-7i, miR-122 
and miR-148.132 Overall, downregulation of these 
miRNAs would be expected to promote blood 
clotting, and thus facilitate thrombus formation 
in the early phase of the inflammatory cascade 
during stroke. As such, therapies targeted at 
increasing levels of these miRNAs could prevent 
re-occlusion due to blood clotting.

Initiation of the inflammatory cascade occurs 
with the release of inflammatory mediators by 
resident brain cells such as microglia. In the 
ischaemic territory, these activated cells release 
mediators that propagate inflammatory dam-
age.60 Although these inflammatory mediators 
display potential for use as biomarkers of neuro-
inflammation and mediators of injury during 
stroke, therapeutics to target them have not been 
successful. However, recent studies have shown 
that miRNAs play an important role in modulat-
ing the expression and release of inflammatory 
mediators in a cell-dependent manner, which was 
previously poorly understood. miR-155 is well 
known to be a proinflammatory miRNA, and it is 
heavily involved in the inflammatory process dur-
ing stroke.133 It has been implicated as a regulator 
of macrophage differentiation and phenotype 
determination and its presence is necessary for 
macrophages to adopt a proinflammatory sta-
tus.133 Moreover, miR-155 is necessary to induce 
proinflammatory signalling in microglia,134 where 
it is reported to downregulate suppressor of 
cytokine signalling 1 (SOCS-1) protein, resulting 
in microglial inflammation via upregulation of 
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inflammatory molecules such as iNOS.134 
Inhibition of miR-155 using oligonucleotides 
reduces both inflammation by microglia and neu-
ronal apoptosis.134 Furthermore, miR-155 pro-
motes secretion of both TNF and IL-1β via 
signalling of NF-κB and toll-like receptor 4 
(TLR-4), and downregulation of myeloid differ-
entiation primary response gene (MyD88).135 
Again, in mice following ischaemic stroke, treat-
ment with the miR-155 antagomir, acetylbritan-
nilactone, resulted in a reduced infarct volume 
through decreased expression of proinflammatory 
molecules, and a concomitant improvement in 
neurological score, thereby exerting a neuropro-
tective function.136 As such, miR-155 is consid-
ered to be damaging during stroke, and future 
studies should seek to develop an antagomir that 
is translatable into humans. Another microRNA 
that is associated with proinflammatory effects in 
stroke is miR-210.137 Treatment with an miR-
210 inhibitor in mice subjected to MCAO 
stroke resulted in an overall decrease in expres-
sion of proinflammatory cytokines such as 
TNF, IL-1β and IL-6, as well as chemokines 
like CCL2 and CCL3. This was associated with 
reductions in cerebral infarct volume and neu-
rological impairment.137

Interestingly, it has been demonstrated that 
inflammasome activity may be regulated via the 
action of miRNAs.138 The inflammasome is a 
cytosolic complex known to play a role in ischae-
mic stroke by promoting inflammatory and cell 
death mechanisms.10 Roles for NLRP1 and 
NLRP3 inflammasomes and caspase-1 activation 
are well established in ischaemic stroke-induced 
neuroinflammation.16 It was shown that follow-
ing intracerebral haemorrhage, miR-223 can 
suppress the NLRP3 inflammasome by binding 
to its 3′ UTR sites.138 As a result, both caspase-1 
activation and IL-1β release were inhibited, lead-
ing to reduced brain oedema and improved neu-
rological scoring following stroke.138 That study 
provides novel insight in that microRNAs may 
not only regulate cytokine secretion directly, but 
also indirectly regulate their expression, such as 
through inflammasomes. As such, certain micro-
RNAs seem to be closely associated with inflam-
matory responses in stroke and may reveal the 
mechanism behind the spatial and temporal 
control of these proinflammatory cytokines 
and chemokines action. Conversely, as compared 
to miR-155, miR-let-7a has been implicated in 

anti-inflammatory responses mediated by micro-
glia during stroke.139 miR-let-7a has been found 
to induce upregulation of anti-inflammatory 
mediators and recovery molecules, such as IL-4, 
IL-10, BDNF in microglia, as well as downregu-
late expression of proinflammatory iNOS and 
IL-6.139 While miR-155 may regulate microglial 
inflammatory activity, other miRNAs, such as 
miR-let-7a, may regulate the opposite activity. 
However, notably, it has also been reported that 
miR-155 can increase expression of the neuro-
protective cytokine, IL-10.140 Nonetheless, it 
seems that miR-155 predominantly exerts proin-
flammatory effects in the brain during stroke. As 
such, microRNA agomirs and antagomirs that 
can modulate the levels of critical miRNAs are 
likely to be important for maintaining anti-
inflammatory influences in the ischaemic brain 
territory. Indeed, many studies have attempted 
to inhibit critical miRNAs involved in maintain-
ing neuroinflammation in stroke, with results 
being promising so far.137,141,142

It has been reported that microRNAs regulate the 
release of cytokines and chemokines, which acti-
vate endothelial cells and promote the extravasa-
tion and migration of neutrophils following 
cerebral ischaemia.143 Indeed, certain microR-
NAs appear to be responsible for regulating 
endothelial cell activation and expression of adhe-
sion molecules, to facilitate leukocyte adhesion.143 
For example, miR-146 is critical for controlling 
vascular inflammation by preventing endothelial 
activation via suppression of the NF-κB, mitogen 
activated protein kinase (MAPK) pathway, as 
well as downstream EGR transcriptional activity.143 
Moreover, miR-31 and miR-17-3P are each 
induced by TNF and antagonize expression of 
E-selectin and ICAM-1.144 Inhibition of these 
microRNAs increased neutrophil adhesion to 
endothelial cells, whereas the microRNA mimet-
ics prevented leukocyte adhesion.144 miR-126 is a 
widely studied microRNA involved in vascular 
inflammation and angiogenesis, and which is a 
proposed biomarker for ischaemic stroke.145 miR-
126 is expressed by endothelial cells and inhibits 
VCAM-1 expression, thus modulating the level of 
vascular inflammation.145 Furthermore, in a 
Chinese population the presence of a polymor-
phism at a single site affecting the miR-491-5p 
binding site may lead to an increased risk of cer-
ebral ischaemia.146 miR-491-5p antagonizes the 
expression of MMP-9, and so this alteration in 
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binding may affect miR-491-5p activity and 
upregulate MMP-9 expression to facilitate 
blood–brain barrier disruption and leukocyte 
extravasation.146 Another reported study indi-
cated that a functional polymorphism in the 3′ 
UTR site of angiopoietin-1 gene leads to an alter-
ation in the binding sites of miR-211, which in 
turn helps to reduce the risk of stroke occur-
rence.147 In addition, miR-107 has been reported 
to target Dicer-1, which upregulates expression of 
vascular endothelial growth factor (VEGF), 
which should then facilitate post-stroke angiogen-
esis and promote recovery.148 Thus, overall, dif-
ferent miRNAs appear to be able to differentially 
modulate various aspects of the maintenance of 
vascular function.

Epigenetic intervention in stroke
With the rise in numbers of studies focusing on 
epigenetic mechanisms, a revolution of informa-
tion has emerged to inform a better understand-
ing of neuroinflammation and neurotoxicity 
underlying stroke pathophysiology. Unfortunately, 
despite the elucidation of numerous molecular 
and cellular mechanisms that govern tissue injury 
following stroke, approved treatments for clinical 
stroke are limited to tissue plasminogen activator 
(tPA) and the recent introduction of mechanical 
thrombectomy.149 However, the significant time 
limitations that apply to the use of these treat-
ment strategies (i.e. <4.5 h for tPA and <8 h for 
thrombectomy in patients on blood thinners or 
who have received rTPA), means that >80% of 
ischaemic stroke patients are essentially left 
untreated, providing an enormous impetus for 
new stroke therapies to be developed.

Epigenetics represent a novel area in the study of 
stroke, and we have discussed that various epige-
netic tags can be useful for predicting stroke risk, 
outcome and recovery. The epigenome varies 
considerably across individuals, and is heavily 
dependent upon the myriad of environmental 
stimuli that an individual is exposed to through-
out their lifetime. Due to the diverse combina-
tions of interplaying factors, every individual will 
have a unique epigenetic code, which may result 
in varying degrees of stroke risk, outcome and 
recovery. This concept may provide a better 
explanation for the interindividual variability that 
manifests across different stroke patients. A 
related aspect influenced by epigenome status 

may be the degree of inflammation occurring in 
individual stroke patients. If so, it is plausible that 
future therapies could be developed to modify the 
epigenomic status occurring during stroke to 
push it towards a state of regeneration rather than 
inflammation. Indeed, certain lifestyle factors 
have been shown to influence stroke risk, and as 
such there are likely to be good life practices asso-
ciated with good health and the avoidance of 
stroke due specifically to epigenetic mechanisms. 
Such practices may involve modulation of an 
individual’s epigenetic tags to promote neuropro-
tection and tissue regeneration. In this last part of 
the review, we shall briefly highlight some recent 
findings with epigenetic drugs developed in ani-
mal models, and some lifestyle practices with 
potential to protect against stroke incidence and/
or improve recovery.

Drugs to modulate epigenetic mechanisms in 
stroke
Given that DNA methylation profiles change 
considerably during stroke, a focus has been 
directed towards investigating the roles of 
DNMTs in stroke pathology. DNMTs have been 
found to be heavily involved in mediating changes 
in global DNA methylation status, and there have 
been studies assessing DNMT inhibitors for ame-
lioration of stroke outcome.76 For example, treat-
ment of mice with a DNMT inhibitor, 
5-aza-2′-deoxycytidine (also known as decit-
abine), conferred protection in a model of 
stroke.76 However, this DNMT inhibitor appears 
to be effective only in the context of mild ischae-
mic damage, and the beneficial effect was not rep-
licated in a stroke model of excitotoxic/necrotic 
cell death.76 In a study using another DNMT 
inhibitor, zebularine, in a rat model of ischaemic 
stroke, this agent was reported to reduce neuro-
logical damage.39 Both decitabine and zebularine 
are cytosine analogues that are nonspecific in 
their pharmacological actions,39 which probably 
limits their usefulness in different stroke models 
and will slow their translational progress. As a 
result, there is a need to develop alternative drugs 
that are more specific, such as the MG98 anti-
sense oligonucleotide, which shows specificity 
towards inhibiting mRNA translation of 
DNMT1.150–153 In addition, second-generation 
DNMT inhibitors, such as procainamide, 
hydralazine and VA, have also shown potential to 
modify the epigenetic machinery, which could 
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thus be useful as stroke therapeutics.150–153 
However, while targeting epigenetic regulation 
through DNA methylation may yield more prom-
ising results than conventional therapies, such 
drugs have still only been shown to inhibit 
DNMT. Notably too, a reduced level of DNMT1 
in post-mitotic neurons may confer neuroprotec-
tion during cerebral ischaemia, and in the absence 
of DNMT1 using mutant studies, neuroprotec-
tion is abrogated in mice.154 Thus, future research 
directed towards the development of DNMT 
inhibitors for stroke should consider the possible 
implications of total elimination of DNA methyl-
ation during stroke, including the broader com-
plexities of DNA methylation epigenetics.

Besides DNMT inhibitors, it has been demon-
strated more extensively that HDAC inhibitors 
can modify epigenetic programming in stroke and 
that this may ameliorate stroke injury.100,150,155–158 
As discussed, prominent HDAC inhibitors in 
stroke research include VA, trichostatin A and 
sodium butyrate. These therapeutics have been 
widely tested in stroke models and have been con-
sistently found to reduce ischaemic injury and to 
improve functional recovery.100,150,155–158 Besides 
the finding that HDAC inhibitors can modulate 
the histone acetylation machinery, it has also been 
discovered that HDAC inhibitors can attenuate 
proinflammatory pathways such as NF-κB and 
MMP-9 activity during stroke.100,150,155–158 The 
amelioration of the inflammatory response in 
stroke through reprogramming histone acetyla-
tion reveals great potential for the use of epige-
netic drugs in the treatment of stroke. In 
conjunction with these more prominent HDAC 
inhibitors, other drugs such as SAHA (or vori-
nostat), sodium 4-phenylbutyrate and entinostat 
have also been reported to provide neuroprotec-
tion against experimental stroke injury.105,159,160 
Modulation of histone acetylation status might 
therefore be able to alleviate inflammation during 
stroke, as well as modulate a myriad of other rel-
evant protective mechanisms.

With a sufficient level of understanding of the 
specificity of various miRNAs and their sub-
strates, there is optimism about the plausibility 
of developing miRNA-epigenetic drugs. Indeed, 
the development of synthetic miRNA mimetics 
has already been employed in many studies, and 
has illuminated the spatial and temporal regulation 
of inflammation during stroke. As mentioned, 

miRNA agomirs are synthetic mimetics that per-
form a similar function to that of biological miR-
NAs in vivo, whereas miRNA antagomirs act as 
inhibitors that prevent the action exerted by spe-
cific miRNAs.161,162 miRNAs that are neuropro-
tective tend to be downregulated in stroke, 
whereas other miRNAs that drive toxic inflam-
matory responses tend to be upregulated (Table 1). 
As such, future studies should assess the effects 
of delivering miRNA agomirs and/or antago-
mirs, as appropriate, to promote a neuroprotec-
tive microenvironment during stroke. In such a 
manner, miRNAs could serve as a regenerative 
medicine to be delivered to stroke patients, 
although until now there has been limited devel-
opment in animals due to low delivery efficiency, 
bioavailability and half-life, as well as some cyto-
toxicity,163–168 and no studies have yet been per-
formed in humans. It is too early to speculate as 
to the likely success of such an approach, but 
future studies might consider the general con-
cept of targeting miRNA biosynthesis and degra-
dation in vivo system to modulate the levels of 
key miRNAs.

Conclusion
Stroke continues to be a major cause of death 
globally, and despite extensive research into the 
molecular and cellular mechanisms of its patho-
genesis, the use of tPA administration and/or 
mechanical thrombectomy involve strict eligibility 
criteria that greatly limit their usefulness. While 
many molecular targets have been identified to 
mediate inflammation during stroke, very few 
clinical trials have provided evidence to support 
positive effects of anti-inflammatory treatment 
strategies in acute ischaemic stroke.169,170 The lack 
of major progress in these research attempts could 
be in part due to a lack of understanding of the 
spatial and temporal regulation of key molecular 
players in the inflammatory cascade. Further, 
owing to interindividual variation in the degree of 
vulnerability and extent of damage induced dur-
ing stroke, it has been suggested that the epige-
nome status of an individual may be relevant for 
their ensuing stroke pathology. Indeed, through 
DNA methylation, histone modifications, and 
miRNAs, inflammatory mediators can be regu-
lated in an epigenetic context. Epigenetic regula-
tion also provides a rational explanation as to why 
stroke is such a complex disease, with the possibil-
ity that overall epigenetic tags are created from the 
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interplay of multiple genes and environmental fac-
tors. This may partly explain why findings from 
animal models may not be translatable to human 
subjects as their epigenomes will differ greatly. As 
such, this review proposes the exploration of an 
epigenetic approach to intervention for stroke, 
involving not only epigenetic-related drugs, but 
also positive lifestyle practices such as dietary 
restriction and healthy eating.
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