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Abstract 

Background: Reports on body mass index (BMI) trajectories from childhood into late adolescence, their deter-
minants, and subsequent cardiometabolic risk markers, particularly among European populations have been few. 
Moreover, sex-specific investigation is necessary considering the sex difference in BMI, and the sex-specific association 
between BMI and some cardiometabolic risk markers.

Methods: Using a sample from the DOrtmund Nutritional and Anthropometric Longitudinally Designed study, we 
explored sex-specific trajectories of the BMI standard deviation score (SDS) from 4 to 18 years of age in 354 males and 
335 females by latent (class) growth models. The determinants of trajectory were assessed by logistic regression. We 
identified cardiometabolic risk markers that were highly associated with BMI SDS trajectory by random forest regres-
sion, and finally we used generalized linear models to investigate differences in the identified cardiometabolic risk 
markers between pairs of trajectories.

Results: We observed four: ‘low-normal weight’, ‘mid-normal weight’, ‘high-normal weight’, and ‘overweight’, and 
three: ‘‘low-normal weight’, ‘mid-normal weight’, and ‘high-normal weight’ trajectories in males and females, respec-
tively. Higher maternal prepregnancy BMI was associated with the ‘overweight’ trajectory, and with ‘high-normal 
weight’ trajectory in both sexes. In addition, employed mothers and first-born status were associated with ‘high-
normal weight’ trajectory in females. BMI SDS trajectory was associated with high-density lipoprotein-cholesterol 
and interleukin-18 (IL-18) in males, and diastolic blood pressure and interleukin-6 (IL-6) in females. However, only 
males following the ‘overweight’ trajectory had significantly higher IL-18 when compared to their ‘low-normal weight’ 
counterpart.

Conclusions: We identified sex-specific distinct trajectories of BMI SDS from childhood into late adolescence, higher 
maternal prepregnancy BMI as a common determinant of the ‘high-normal weight’ and ‘overweight’ trajectories, and 
‘overweight’ trajectory being associated with elevated IL-18 in late adolescence–young adulthood. This study empha-
sizes the role of maternal prepregnancy BMI in overweight, and highlights IL-18 as a cardiometabolic signature of 
overweight across life.

Keywords: Body mass index, Trajectory, Latent (class) growth models, Maternal prepregnancy body mass index, 
Cardiometabolic risk markers, Diastolic blood pressure, High-density lipoprotein cholesterol, IL-6, IL-18

© The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/
publi cdoma in/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

Cardiovascular Diabetology

*Correspondence:  koluwagb@uni-bonn.de 
1 Nutritional Epidemiology, DONALD Study, Department of Nutrition 
and Food Sciences, Rheinische Friedrich-Wilhelms-University Bonn, Bonn, 
Germany
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-9454-5970
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12933-019-0813-5&domain=pdf


Page 2 of 14Oluwagbemigun et al. Cardiovasc Diabetol            (2019) 18:9 

Background
Overweight (including obesity), a condition of exces-
sive body fat accumulation, is still a major health chal-
lenge in modern societies. Individuals transiting from 
late adolescence into young adulthood are at a signifi-
cant risk of being overweight [1]. It is widely acknowl-
edged that overweight status in late adolescence–young 
adulthood extends back into childhood and adolescence 
[1–3]. Ample evidence from different populations dem-
onstrated that childhood and adolescence overweight 
status indeed predict adult overweight status [4–8]. 
These findings confirm that while overweight in young 
adulthood is important, the age of onset and duration 
should not be ignored. These three dimensions–intensity, 
age of onset, and duration are usually captured through 
developmental patterns (trajectories) [9]. Therefore, it 
is important to identify groups of individuals following 
similar trajectories, and a commonly used approach is 
the latent (class) growth models (LCGM) [10]. Body mass 
index (BMI) is correlated with body fat, and it is valua-
ble in children and adolescents [11]. While many studies 
have explored group-based BMI trajectories from child-
hood into late adolescence–young adulthood [9, 12–20], 
only two studies [9, 16] are among European populations. 
Moreover, most of these studies have few measurement 
occasions, a factor that negatively affects the accuracy of 
trajectories [21].

Exploring the trajectories of BMI enhances identifi-
cation of their determinants and their association with 
aspects of health later on in life [3]. Identification of 
determinants allows anticipation of individuals at risk 
for high BMI trajectories, and would provide the basis on 
which effective intervention that could change these tra-
jectories are implemented. High BMI is associated with 
abnormalities in cardiometabolic risk markers such as 
blood pressure (BP), high-density lipoprotein-cholesterol 
(HDL-c), triglycerides, fasting plasma glucose (FPG), 
and adipokines and other circulating proinflammatory 
cytokines [22, 23]. Overweight-related cardiometabolic 
risks are already evident in late adolescents–young adults 
[24].

Associations between high BMI at a single point of 
measurement in childhood or adolescence and abnormal 
cardiometabolic risk markers in late adolescence–young 
adulthood are well-documented [25–41]. However, only 
a few studies have examined associations between tra-
jectories of BMI and cardiometabolic risk markers in late 
adolescence–young adulthood [9, 12, 16, 19, 20]. These 
studies observed associations between high BMI tra-
jectories and high BP [9, 12, 16, 19, 20], reduced HDL-c 
[16], elevated triglycerides [12, 16], and insulin resistance 
[12, 16]. Admittedly, only a limited number of cardio-
metabolic risk markers have been examined. Therefore, it 

would be necessary to consider a broader range of cardio-
metabolic risk markers. Importantly, it is difficult to con-
clude from the above evidence that high BMI trajectory 
confers additional risk beyond age-specific high BMI. 
Intuitively, a clear distinction between these two might 
reveal trajectory-specific cardiometabolic risk markers, 
and unravel previously unappreciated links between adi-
posity and cardiometabolic risk.

There is a sex difference in body composition beginning 
in childhood and continuing into adolescence [42], a sex 
gap in overweight increasing with age, especially in ado-
lescence [43], a significant interaction between trajecto-
ries and sex for some cardiometabolic risk markers [16], 
and sex difference in the association between BMI and 
cardiovascular outcomes in adulthood [44]. Moreover, 
prior research indicates that the relation between BMI 
and cardiometabolic risk markers in late adolescence 
may be sex-specific [45]. This evidence suggests investi-
gations into sex-differential trajectory and sex-specific 
trajectory–cardiometabolic risk markers association. In 
addition, early life factors predict cardiometabolic risk 
markers later in life [46], and late adolescents–young 
adults often defer or discount healthy lifestyles [47]. Thus, 
it would be necessary to determine whether the relation 
between trajectory and cardiometabolic risk markers are 
independent of these factors.

Using annual anthropometric measurements from 
childhood into late adolescents from a German cohort, 
this study sought to: (1) identify and describe sex-specific 
BMI trajectories using LCGM; (2) identify baseline deter-
minants of these trajectories; (3) investigate whether 
trajectory describes the relationship between BMI and 
certain cardiometabolic risk markers in late adoles-
cence–young adulthood beyond BMI at specific ages; 
and (4) given the findings of aim 3, to investigate whether 
individuals following different trajectories also have sig-
nificantly different level of cardiometabolic risk mark-
ers, that is independent of baseline determinants and late 
adolescence–young adulthood lifestyle factors.

Methods
Study design
The DOrtmund Nutritional and Anthropometric Lon-
gitudinally Designed (DONALD) study is a longitudi-
nal (open cohort) study, collecting detailed data on diet, 
growth, development, and metabolism between infancy 
and adulthood [48]. This study uses a convenient sam-
pling scheme; hence, children from high socio-economic 
families are over-represented [48]. Experienced nurses 
conducted anthropometric measurements throughout 
the follow-up period, which include annual measure-
ments of height and body weight. Informed written con-
sent was obtained from parents and from participants 
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themselves on reaching adolescence. The Ethics Com-
mittee of the University of Bonn, Germany approved the 
study.

Study participants
The current study includes participants who were sin-
gletons, full term (36 to 42  weeks) and birth weight 
of ≥ 2500 g. For the present analysis, we used anthropo-
metric measurements from age 4 to 18 years. Trajectory 
analysis requires at least three measurements [49], there-
fore we considered individuals with at least one meas-
urement in childhood (4–9.9  years), early adolescence 
(10–14.9 years), and late adolescence (15–18 years).

Variable assessment
Baseline parameters
Baseline parameters such as gestational characteristics 
and birth anthropometrics from was retrieved maternal 
gestational record. These include sex, birth weight (g) 
and length (cm), birth order (from first to fifth), mater-
nal prepregnancy BMI (MppBMI, kilograms/meters 
squared), gestational weight gain (GWG, kilograms). 
Breastfeeding duration (weeks), and family and socioeco-
nomic characteristics around birth were obtained from 
maternal interview. Family and socioeconomic charac-
teristics around birth include smoking household (non–
smoking household, smoking in household (numbers of 
smokers), maternal education (according to the German 
education system: “Abitur”/“Fachhochschulreife” (tech-
nical school/high school), “Realschulabschluss” (sec-
ondary school), and “Hauptschulabschluss” (primary 
school), maternal employment (full-time and part-time, 
(early) retiree, unemployed, housewife, vocational trainee 
(including students), temporary leave, and maternal 
leave).

Dietary intake and lifestyle factors in late adolescence–young 
adulthood (18–39 years)
Three-day weighed dietary records assessed dietary 
intake. We calculated individual means of daily nutri-
ent intake from these records, using our continuously 
updated in-house food composition database. In addi-
tion, participants reported alcohol consumption (drinker 
or non-drinker) and smoking status (non-smokers or 
smokers-daily, once a week, several times in a week, 
seldom).

Cardiometabolic risk markers in late adolescence–young 
adulthood
Participants underwent a medical examination that 
included measurement of systolic blood pressure (SBP) 
and diastolic blood pressure (DBP), and obtaining a fast-
ing blood sampling [50]. We retrieved, processed, and 

measured more cardiometabolic risk markers from fast-
ing blood samples of participants who fulfilled the inclu-
sion in the trajectory analysis. Serum cholesterol (total, 
LDL-C and HDL-C) were measured at the Paediatric 
Clinic Dortmund with the Advia 1650-Chemistry System 
analyser (Siemens Healthcare Diagnostics, Eschborn, 
Germany). We measured fasting plasma glucose (FPG) 
on a Roche/Hitachi Cobas c 311 analyzer (Basel, Switzer-
land). Triglycerides and high-sensitivity C-reactive pro-
tein (CRP) with the Roche/Hitachi Cobas c311 analyser 
(Roche diagnostics, Mannheim, Germany), interleukin 
(IL)-6 with the Human IL-6 Quantikine HS ELISA (R&D 
Systems, Wiesbaden, Germany), IL-18 with the Human 
IL‐18 ELISA (Medical and Biological Laboratories, 
Nagoya, Japan), adiponectin with the Human Total Adi-
ponectin/Acrp30 Quantikine ELISA kit (R&D Systems), 
chemerin with the Human Chemerin ELISA (BioVendor, 
Brno, Czech Republic), and leptin with leptin Quantikine 
ELISA (R&D System) as described [51, 52]. We consid-
ered SBP, DBP, triglyceride, HDL-c, FPG, CRP, IL‐6, 
IL‐18, adiponectin, chemerin, and leptin for the current 
study.

Statistical analysis
Basic characteristics
Continuous and categorical variables are presented as 
median and interquartile range (IQR), and as counts (n) 
and percentages (%), respectively. Comparisons between 
sexes were performed using the Wilcoxon-Mann–Whit-
ney test (continuous variables) and Chi square test (cat-
egorical variables).

Trajectory model building
BMI was calculated from body weight and height in 
each age year. We considered the latest measurement in 
an age year when multiple measurements existed. For 
trajectories, it is recommended that standard deviation 
scores (SDS) are modelled since the variance of weight 
increases rapidly with age in the first two decades of life 
[19]. Therefore, we calculated the BMI SDS with the LMS 
method based on age- and sex-specific median (M), coef-
ficient of variation (S), and measure of skewness (L) val-
ues of the national German reference [53].

For each sex, we modelled trajectories of BMI SDS 
using a version of the LCGM that ensures that trajectory 
variation lies at the between-group level [54]. The proce-
dure also assumes that attrition and group assignment 
are independent [55], and it automatically incorporates 
missing data under a missing at random assumption [56]. 
We performed the LCGM with the Statistical Analytical 
Software (SAS) function ‘proc traj’ [57]. We conducted 
sensitivity analysis to investigate whether participants 
who had complete BMI measurements differ from those 
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who had one or more missing with respect to baseline 
determinants.

Without any a priori hypothesis, we investigated the 
possible number of trajectories and their shapes. We 
considered four shapes: cubic degree, quadratic degree, 
linear, and constant polynomials. We began with a sin-
gle model consisting of one group with a cubic, and then 
increased the number of groups until the number of tra-
jectories that best fit the data was identified using the 
 logeBayes factor (≈ 2(∆Bayesian information criterion)) 
of six and above, all trajectories sizes greater than 5%, and 
average trajectory posterior probability (APP) greater 
than 0.70 [56]. After identifying the number of trajecto-
ries, we proceeded to identify their shape. Starting with 
the first trajectory, we reduced the polynomial orders 
until the highest order term for all trajectories resulted 
in P ≤ 0.05. This resulted in a final trajectory model. This 
final trajectory model was eventually used to describe 
our data. Posterior trajectory membership probabilities 
were calculated based on model parameter estimates 
and the participant’s trajectory membership assignment 
was based their highest posterior trajectory probability. 
The trajectories were labelled according to World Health 
Organisation SDS cut-offs [58].

Baseline determinants of trajectories
By fitting multinomial logistic regression using SAS 
function ‘proc logistic’ and taking the largest trajectory 
as the reference group, we regressed BMI SDS trajec-
tory on birth weight and length (continuous), MppBMI 
(continuous), GWG (continuous), breastfeeding dura-
tion (continuous). Other variables were dichotomised: 
birth order: into firstborn child (yes or no), maternal 
education (high = technical school/high school and 
low = secondary school/primary school), maternal 
employment (employed = full-time and part-time, and 
not employed = others), and smoking household (yes or 
no). We estimated the odds ratio (OR), the odds of each 
determinant in other trajectory groups as compared to 
the reference group, with a model comprising all these 
determinants (multivariable adjusted).

Handling of missing baseline determinants
Baseline determinants were birth weight and length, 
MppBMI, GWG, breastfeeding duration, birth order, 
maternal education, maternal employment, and smok-
ing household. All variables except birth weight and 
length had missing values (range: four to 63% in males, 
and two to 53% in females). There were 58 and 56 miss-
ing data patterns in males and females, respectively. 
These patterns did not show any specific/obvious struc-
ture and were therefore considered arbitrary. Using 
SAS function ‘proc mi’, we created a single imputed 

dataset in one burn in iterations with the fully condi-
tional method, linear regression for continuous vari-
ables (MppBMI, GWG, and breastfeeding duration), 
logistic regression for ordinal categorical variables 
(birth order and smoking household), and discriminant 
function for nominal categorical variables (maternal 
education and maternal employment).

Relevance of BMI SDS trajectory for cardiometabolic risk 
markers
An unbiased random forest regression (RFR) algorithm 
based on conditional inference trees using the tree 
building R function ‘cforest’ and the variable impor-
tance calculating R function ‘varimpAUC’ were used 
to build models for estimating the importance of BMI 
SDS trajectory relative to age-specific BMI SDS for 
each sex. We used all the 15 BMI SDS, along with BMI 
SDS as independent variables for each cardiometabolic 
risk marker and a pro-inflammatory score. The pro-
inflammatory score was calculated as the average of 
internally standardized (z-) scores of CRP, IL-6, IL-18, 
chemerin, adiponectin, and leptin (CRP z-score + IL-6 
z-score + IL-18 z-score + chemerin z-score + adiponec-
tin z-score × (−1) + leptin z-score)/n, where n is the 
number of available proinflammatory marker per indi-
vidual). We used 500 decision trees and four independ-
ent variables at each split in the RFR. We computed 
importance scores of all independent variables as the 
average of the area under the curve values. Due to the 
expected correlations between these independent vari-
ables, we estimated conditional importance scores. 
These analyses included participants with available car-
diometabolic risk markers (triglycerides: 185 males and 
184 females; HDL-c: 190 males and 185 females; SBP 
and DBP: 239 males and 228 females; FPG: 193 males 
and 188 females; CRP: 159 males and 154 females; 
IL-6: 154 males and 152 females; IL-18:156 males and 
154 females; adiponectiin: 157 males and 153 females; 
chemerin: 159 males and 154 females, leptin: 158 males 
and 149 females; pro-inflammatory score: 154 males 
and 152 females). Despite RFR being non-parametric, 
it is advisable to adjust for non-normality and non-con-
stant variation through transformation [59]. Thus, we 
transformed each cardiometabolic risk marker with the 
optimal exponent obtained from Box-Cox transforma-
tion using the SAS function ‘proc transreg’ in models 
without independent variables. We performed sensitiv-
ity analysis to investigate whether participants with no 
cardiometabolic risk marker, those with one to 10 car-
diometabolic risk markers, and those with all 11 cardio-
metabolic risk markers differ with respect to baseline 
characteristics.
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The association between BMI SDS trajectory 
and cardiometabolic risk markers
We investigated the association between BMI SDS trajec-
tory and cardiometabolic risk markers by fitting general-
ized linear models using the SAS function ‘proc glimmix’, 
under a Gaussian distribution and associated link being 
the previously derived Box-Cox exponent. We adjusted 
for unequal variances across trajectories. The overall 
effect of trajectory as well as linear trend was assessed. 
Finally, we performed pairwise comparisons between 
trajectories, and adjusted the 95% confidence interval 
(CI) of their mean differences for multiple comparisons 
with the Tukey–Kramer method. We considered P ≤ 0.05 
as significant. Covariates to be included in the models 
were baseline variables that are determinants of trajec-
tories and that are also associated with cardiometabolic 
risk markers, as well as their product term with trajec-
tories, if P ≤ 0.05. In addition, we investigated whether 
total energy intake, alcohol consumption, and smoking 
status in late adolescence–young adulthood mediate any 
observed difference between trajectories.

Results
Basic characteristics
The basic characteristics of the participants, 354 males 
and 335 females included in the present analysis are 
shown in Table  1. At birth, females were lighter and 
shorter than males. Females more frequently had moth-
ers who were employed than males. There were no sex 
differences with respect to other baseline characteris-
tics. In late adolescence–young adulthood, daily energy 
intake, SBP, DBP, and FPG were higher in males than 
females, while the converse was the case for HDL-c, CRP, 
adiponectin, chemerin, and leptin.

Table  2 shows BMI development over the follow-up. 
As expected, BMI increases with age. The highest preva-
lence of overweight (including obesity) was about 10% in 
males (age 17) and 8% (age four) in females, and obesity 
alone was about 4% in males (age 18) and 3% (age four) in 
females. Notably, the BMI SDS shows that females gener-
ally had lower BMI SDS than males, particularly at ages 5, 
6, 9, 10, 11, 17, and 18. These indicate an obvious sex dif-
ferences and the need for sex-specific trajectories.

Table 1 Basic characteristics of the study participants, 354 males and 335 females

a  Median (interquartile range) and b n(%), n = count,  % = percentage, BMI body mass index. P-values of the difference between sexes were obtained from Wilcoxon-
Mann–Whitney test for continuous variables, and Chi square test for categorical variables

n (males, females) Male Female P value

Baseline (prenatal, birth, and early life) parameters

 Birth weight,  ga 354, 335 3590 (610) 3380 (560) < 0.01

 Birth length,  cma 354, 335 52 (3) 51 (3) < 0.01

 Maternal prepregnancy BMI, kg/m2a 319, 304 23.2 (4.6) 22.7 (4.4) 0.13

 Maternal gestational weight gain,  kga 341, 327 13 (5) 12 (5) 0.81

 First-born  childb 290, 274 161 (56) 159 (58) 0.45

 Breastfeeding duration,  weeksa 288, 277 26 (29) 28 (31) 0.36

 Maternal education,  highb 131, 160 119 (91) 143 (89) 0.36

 Maternal empolyment,  employedb 130, 159 27 (21) 59 (37) < 0.01

 Smoking  householdb 211, 204 51 (24) 52 (25) 0.36

Dietary intake and lifestyle in late adolescence-young adulthood (18–39 years)

 Daily total energy intake, kcal/daya 225, 217 2417.9 (584.3) 1816 (449) < 0.01

 Alcohol  drinkersb 233, 221 164 (70) 160 (72) 0.64

 Smokersb 223, 221 40 (18) 34 (15) 0.47

Cardiometabolic risk markers in late adolescence-young adulthood (18–39 years)

 Serum triglycerides, mg/dLa 185, 184 79 (50) 88 (49) 0.14

 Serum HDL cholesterol, mg/dLa 190, 185 50 (15) 65 (18) < 0.01

 Systolic blood pressure,  mmHga 239, 228 118 (16) 110 (15) < 0.01

 Diastolic blood pressure,  mmHga 239, 228 74 (12) 70 (12) < 0.01

 Fasting plasma glucose, mg/dLa 193, 188 94 (11) 90 (9) < 0.01

 C-reactive protein, mg/dLa 159, 154 0.1 (0.1) 0.2 (0.3) < 0.01

 Interleukin-6, pg/mLa 154, 152 0.7 (0.6) 0.7 (0.6) 0.72

 Interleukin-18, pg/mLa 156, 154 255.1 (101.8) 245.6 (96.7) 0.29

 Adiponectin, ng/mLa 157, 153 6030.3 (5198.3) 8711.2 (5539.9) < 0.01

 Chemerin, ng/mLa 159, 154 140.9 (35.6) 166 (41.9) < 0.01

 Leptin, pg/mLa 158, 149 2335.4 (3441.2) 12666.5 (9517.4) < 0.01
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BMI SDS trajectory model development
There was a median of 14 (range: 5–15) BMI measure-
ments. There were 67 and 68 missing BMI SDS patterns 
in males and females, respectively. These patterns have 
no specific/obvious structure and we therefore consid-
ered them arbitrary. Thus, parameter estimates of the 
trajectory models were unlikely to be biased. Sensitivity 
analysis also showed that participants who had complete 
BMI measurements were not different from those who 
had one or more missing measurement with respect to 
baseline determinants (Additional file 1: Table S1).

Based on the logeBayes factors, APP, and trajectory 
sizes, a four-trajectory group and a three-trajectory 

group was the most optimal for males and females, 
respectively. Figure  1 (left: males and right: females) 
shows the graph of the predicted BMI SDS for each tra-
jectory group across the 15  years of analysis. In males, 
the first trajectory (red) consistently remained below 
other trajectories. The trajectory was S-shaped, with BMI 
SDS increasing from age 4 to 6, decreasing from age 6 to 
15, and increasing from age 16 to 18. This group com-
prised 19% of the males. The second trajectory (green) 
comprised the largest (33%) proportion of males had rel-
atively constant BMI SDS throughout the time of analy-
sis, and the third trajectory (blue) accounting for 32% was 
U-shaped, with peaks at ages 4 and 18 years. These three 

Table 2 Development of body mass index and body mass index standard deviation scores over the follow-up according 
to sex

BMI body mass index, IQR interquartile range, SDS standard deviation scores, n = count,  % = percentage. *BMI > 90th and **BMI > 97th age- and sex-specific 
percentile, according to the national German reference [53]. P-values of the difference between sexes were obtained from Wilcoxon-Mann–Whitney test

Follow-up 
age (years)

n (males, females) BMI, kg/m2, median (IQR) % Overweight* 
(males, females)

% Obesity** 
(males, females)

BMI SDS, median (IQR) P-value

Males Females Males Females

4 137, 120 15.59 (1.58) 15.25 (1.70) 7.3, 8.3 1.5, 2.5 − 0.05 (1.32) − 0.20 (1.33) 0.23

5 286, 267 15.52 (1.41) 15.21 (1.65) 6.6, 5.2 0.7, 0 0.08 (1.00) − 0.15(1.21) 0.04

6 300, 287 15.48 (1.50) 15.29 (1.85) 6.3, 7.3 2.3, 0.7 0.00 (0.99) − 0.13 (1.27) 0.04

7 311, 303 15.66 (1.75) 15.41 (2.07) 5.5, 7.9 1.9, 1.0 − 0.06 (1.03) − 0.21 (1.24) 0.19

8 330, 313 15.91 (2.15) 15.78 (2.43) 5.8, 7.0 1.8, 1.0 − 0.13 (1.08) − 0.20 (1.26) 0.13

9 350, 323 16.48 (2.51) 16.22 (2.60) 6.3, 5.0 0.6, 0.3 − 0.09 (1.10) − 0.21 (1.21) 0.04

10 350, 323 17.12 (2.95) 16.61 (3.18) 6.0, 4.3 0.3, 0.3 − 0.07 (1.14) − 0.28 (1.31) 0.01

11 345, 326 17.66 (3.30) 17.13 (3.46) 7.0, 3.4 0.6, 0 − 0.12 (1.17) − 0.32 (1.29) 0.02

12 343, 323 18.36 (3.77) 18.1 (3.89) 6.1, 3.4 1.7, 0 − 0.14 (1.27) − 0.23 (1.35) 0.15

13 340, 323 19.16 (3.78) 18.77 (3.76) 5.8, 4.6 1.5, 0 − 0.13 (1.27) − 0.26 (1.29) 0.40

14 337, 316 19.76 (3.84) 19.64 (3.80) 6.2, 5.4 1.5, 0.3 − 0.17 (1.24) − 0.21 (1.31) 0.39

15 335, 315 20.34 (4.25) 20.31 (3.74) 8.7, 5.1 1.2, 0 − 0.18 (1.40) − 0.20 (1.29) 0.50

16 314, 289 21.07 (3.84) 20.89 (3.55) 9.6, 5.5 2.5, 0.3 − 0.10 (1.24) − 0.16 (1.23) 0.14

17 287, 265 21.78 (4.37) 21.19 (3.66) 10.1, 4.9 2.4, 1.1 0.03 (1.38) − 0.17 (1.27) 0.01

18 265, 256 22.21 (4.00) 21.47 (3.83) 9.1, 7.0 3.8, 1.2 0.13 (1.25) − 0.10 (1.33) < 0.01

Fig. 1 Developmental trajectories of body mass index standard deviation scores, and its upper and lower confidence intervals among males (left) 
and females (right) followed from ages 4 to 18. BMI SDS body mass index standard deviation scores
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trajectories were within the normal weight BMI SDS 
range (> − 2 to < + 1). Therefore, we named them ‘low-
normal weight’, ‘mid-normal weight’, and ‘high-normal 
weight’ trajectories, respectively. The fourth trajectory 
(black) that accounted for 16% of the males had a BMI 
SDS starting at overweight BMI SDS of 1.00, and BMI 
continues to increase throughout follow-up. This group 
was named as the ‘overweight’ trajectory.

In females, the first trajectory (red) accounting for 28% 
was U-shaped, with peaks at ages 4 and 18  years. The 
second (green) which is composed of the largest (47%) 
proportion of females had a relatively constant BMI SDS 
throughout follow-up. The third (black) accounting for 
25% of the population had S-shaped trajectory, with BMI 
SDS increasing from age 4 to 8, decreasing from age 8 to 
14, and increasing from age 15 to 18. All three trajecto-
ries were within the normal weight range, and we named 
them ‘low-normal weight’, ‘mid-normal weight’, and 
‘high-normal weight’ trajectories, respectively.

All trajectories were distinct without overlap at any 
point. Their parameter estimates, associated standard 
errors and P-values are presented in Additional file  2: 
Table S2.

Baseline determinants of BMI SDS trajectory
As shown in Fig. 2 (left: males and right: females), sons 
of mothers with a high BMI were more likely to follow 
the ‘high-normal weight’ (adjusted OR = 1.14; 95% CI 
1.05–1.24) and ‘overweight’ (adjusted OR = 1.22; 95% 
CI 1.10–1.36) trajectories as compared to those whose 

mothers had a lower BMI. Similarly, daughters of moth-
ers with a high BMI were more likely to follow the ‘high-
normal weight’ trajectory (adjusted OR = 1.10; 95% 
CI 1.02–1.18). Compared to females who followed the 
‘mid-normal weight’ trajectory, females who followed 
the ‘high-normal weight’ trajectory were more likely to 
be first-born (adjusted OR = 2.00; 95% CI 1.10–3.63) and 
their mothers were more likely to be employed (adjusted 
OR = 2.10; 95% CI 1.17–3.77).

Relevance of BMI SDS trajectory for cardiometabolic risk 
markers
The relevance (importance) of BMI predictors of each 
cardiometabolic risk marker are presented as heat maps 
in Fig.  3 (left: males and right: females). After condi-
tioning on all age-specific BMI SDS, BMI trajectory was 
strongly associated with HDL-c and IL-18 in males and 
with DBP and IL-6 in females. In males, BMI SDS at age 
four was strongly associated with FPG, age five with CRP, 
age seven with triglycerides, age 14 with leptin, age 17 
with leptin, SBP and pro-inflammatory score, and age18 
with DBP, IL-6, adiponectin, and chemerin. In females, 
BMI SDS at age four was strongly associated with tri-
glyceride and IL-18, age five with HDL-c, age 10 with 
chemerin, age 11 with CRP, age 13 with SBP, age 16 with 
FPG, age 17 with adiponectin, and age18 with leptin and 
pro-inflammatory score.

Sensitivity analysis showed that males without cardio-
metabolic risk markers were breastfed longer, had the 
lowest proportion of mothers with higher education, and 

Fig. 2 Forest plot of the adjusted odds ratios of the baseline determinants of body mass index standard deviation scores trajectories among males 
(left) and females (right). The odds ratio plot showing the point estimate of the odds ratio, and surrounding confidence intervals and a reference 
line at 1 (tests of significance). The reference group is ‘mid-normal weight’ trajectory. OR  odds ratio, CI confidence interval, BMI body mass index. 
OR per 100 g increase in birth weight, per 1 cm increase in birth length, per 1 kg/m2 increase in maternal prepregnancy BMI, per 1 kg increase in 
gestational weight gain, and per 1 month increase in breastfeeding duration
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the highest proportion of employed mothers. In addition, 
females without cardiometabolic risk markers were heav-
ier and taller (Additional file 3: Table S3).

The association between BMI SDS trajectory 
and cardiometabolic risk markers
In males, trajectory had no significant overall asso-
ciation with HDL-c (P = 0.43) but with IL-18 (P = 0.04) 
whereas in females it was neither associated with DBP 
(P = 0.27) nor with IL-6 (P = 0.11). Moreover, no linear 
trend was observed for the four cardiometabolic risk 
markers (HDL-c:  Ptrend = 0.38, IL-18:  Ptrend = 0.12, DBP: 
 Ptrend = 0.19, and IL-6:  Ptrend = 0.15).

There was no significant difference between all pairs 
of trajectories for HDL-c (Fig. 4, upper left) as well as 
for DBP and IL-6 (Fig. 4, upper right and bottom right). 
However, the mean IL-18 in the ‘overweight’ trajectory 
was significantly higher than that in the ‘low-normal 

weight’ trajectory (Fig.  4, bottom left), (mean differ-
ence = 2.85 × 10−3 pg/mL (0.14 × 10−3–5.55 × 10−3) 
transformed scale; 81.31  pg/mL (33.62–196.24) origi-
nal scale. The baseline determinants of trajectories: 
MppBMI, maternal employment, and first-born status 
were not associated with any of the four cardiometa-
bolic risk markers. Their product terms with trajec-
tory were also not significant. Therefore, adjustment 
for these covariates was deemed unnecessary. Fur-
thermore, total energy intake and smoking was neither 
associated with trajectory nor with IL-18, however, 
alcohol consumption was associated with BMI trajec-
tory, but not with IL-18. Thus, the difference between 
IL-18 in ‘overweight’ and ‘low-normal weight’ trajec-
tories is unlikely to be explained by baseline factors or 
dietary intake and lifestyle factors in late adolescence–
young adulthood.

Fig. 3 Heat maps showing the area under the curve-based conditional importance scores determined by random forest for males (left) and 
females (right) for BMI SDS trajectory relative to BMI SDS at specific ages for cardiometabolic risk markers in late adolescence–young adulthood. 
The colour order of magnitude of the importance scores is from yellow→orange→red (highest values are in red and lowest values are in yellow). 
BMI SDS body mass index standard deviation scores. Analysis performed on transformed cardiometabolic risk markers. Transformation (exponents) 
were: In males, triglycerides, IL-6 and leptin were transformed by natural logarithm; HDL-c by square root; pro-inflammatory score by cube root; 
adiponectin by fourth root; SDP, CRP, and chemerin by inverse of fourth root; DBP and FPG by cube of fourth root; and IL-18 by inverse of the cube 
of fourth root. In females, triglycerides, CRP, adiponectin, and leptin were transformed by natural logarithm; HDL-c and chemerin by square root, 
pro-inflammatory score by cube root; DBP by cube of square root; and SBP, FPG, IL-6, IL-18 by inverse of fourth root
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Fig. 4 Diffograms showing pairwise comparisons of body mass index standard deviation score trajectories for high-density lipoprotein cholesterol 
and interleukin-18 in males (left), and for diastolic blood pressure and interleukin-6 in females (right) in late adolescence–young adulthood. The 
dashed diagonal upward sloping reference line depicts equality. The horizontal and vertical lines emanating from the axes indicate the location of 
the means of the four BMI trajectory groups. There are four vertical and four horizontal reference lines, and six pairwise comparisons of the means 
in males. There are three vertical and three horizontal reference lines, and three pairwise comparisons of the means in females. Each solid circle at 
the point of intersection of the horizontal and vertical lines shows the location of mean of two BMI trajectories and the associated diagonal line 
segment represents the Tukey–Kramer adjusted 95% confidence interval for the difference between the means. A confidence interval that intersect 
(red colour) the dashed diagonal line indicates that those two means are not statistically different and significant (blue colour) if otherwise. Mean 
displayed on the diffogram are on the exponents of cardiometabolic risk markers. Exponents: square root for HDL-c, inverse of the cube of fourth 
root for IL-18, cube of square root for DBP, and inverse of fourth root for IL-6



Page 10 of 14Oluwagbemigun et al. Cardiovasc Diabetol            (2019) 18:9 

Discussion
Using annual BMI measurements from childhood into 
late adolescence (ages 4 to18) in a German cohort, we 
identified four distinct BMI SDS trajectories in males–
three in which BMI SDS remains within a normal weight 
range (84%), and one ‘overweight’ trajectory (16%), and 
in females–three trajectories, all within normal weight 
range. The normal weight trajectories were named ‘low-
normal weight’, ‘mid-normal weight’, and ‘high-normal 
weight’ based on the intensity of BMI SDS. The MppBMI 
was a determinant of the ‘overweight’ trajectory in males, 
and a common determinant of ‘high-normal weight’ tra-
jectory in both sexes. Additionally, employed mother 
and first-born status were determinants of ‘high-normal’ 
trajectories only in females. Furthermore, BMI SDS tra-
jectory was highly associated with HDL-c and IL-18 in 
males, and DBP and IL-6 in females. Importantly, circu-
lating levels of IL-18 were elevated in males who followed 
the ‘overweight’ trajectory when compared to males who 
followed the ‘low-normal weight’ trajectory.

BMI SDS trajectory model development
Our findings of sex-specific trajectories, both in terms 
of numbers and shapes is consistent with reports of sex 
differences in BMI at specific periods in childhood and 
adolescence [60], and particularly in the trajectories of 
BMI [15, 20]. Thus, our study extends the previous lit-
erature on male–female differences. Possible explana-
tions for this finding include differences in sex hormones 
[42], and differential exposure and vulnerability to obe-
sogenic environments in males and females [60]. The fact 
that our trajectories do not overlap is in accordance with 
a recent analysis showing that adiposity status in Ger-
man adolescents was already set in early childhood [7], 
and that children and adolescents with increasing weight 
gain usually continue on this path [4–8]. Therefore, it is 
crucial that individuals who are overweight in childhood 
and are persistently gaining weight like those captured by 
our ‘overweight’ trajectory should be monitored, as these 
individuals are prone to develop obesity later on. The 
present study also extends the results from other studies 
using LCGM [9, 11, 12, 15, 17, 19, 20], which have shown 
the existence of three to four adiposity trajectories from 
childhood into late adolescence.

Baseline determinants of BMI SDS trajectory
Our study demonstrated that MppBMI is a crucial deter-
minant of high BMI trajectories being a common deter-
minant in both sexes. There is compelling evidence that 
high MppBMI is associated with high adiposity tra-
jectories [9, 12, 15, 16, 61]. Genetic factors, early pro-
gramming, and obesogenic environment are possible 

explanations [60]. Indeed, this somewhat modifiable 
early-life risk factor warrants attention. It is imperative to 
advise women, particularly those who intend to become 
pregnant of the need to have and maintain a normal BMI.

In addition, we observed employed mothers and first-
born status to increase the risk of females following the 
‘high-normal’ trajectory. These factors have not been pre-
viously linked to BMI trajectory. This maternal employ-
ment patterning of BMI trajectory in females is in line 
with evidence of greater parental influence on increased 
adiposity in females [60], and socioeconomic differences 
in adiposity in developed countries that is more obvi-
ous among females than males [62]. This finding is also 
consistent with a positive association between maternal 
employment and offspring adiposity at specific phase 
of life among well-educated populations [63, 64]. The 
interrelationship of maternal employment, higher family 
income, and children access to healthier lifestyles seems 
obvious at first glance. However, maternal employment 
also implies that an important role model in a child’s 
adoption of healthy behaviours is available for a lesser 
amount of time and that childcare is shifted to other car-
ing parent, informal caregivers or formal providers. In 
agreement with our finding, others have reported associ-
ation between first‐born status and overweight in women 
[65]. The underlying mechanisms for this finding is still 
unknown, however in utero triggering events have been 
speculated [65].

The relevance of BMI SDS trajectory for cardiometabolic 
risk markers
BMI trajectory was strongly associated with HDL-c and 
IL-18 in males, and DBP and IL-6 in females. This shows 
that BMI trajectory confers additional cardiometabolic 
risk beyond age-specific BMI. Interestingly, BMI trajec-
tory was associated with cytokine levels in both sexes. 
This suggests a strong impact of BMI trajectory on this 
group of proinflammatory markers. Further, the sex-
specific trajectory–cardiometabolic risk marker associa-
tion is noteworthy. This suggests that sexual dimorphism 
associated with some long-term health consequences 
is related to events during childhood and adolescence. 
Although a sex-specific trajectory–cardiometabolic risk 
markers association has not been previously reported, 
sex disparity in cross-sectional relation between BMI and 
BP [27, 38], BMI and HDL-c [37, 45], BMI and IL-6 [33, 
34], and BMI and IL-18 [33] in adolescents and young 
adults is documented.

The link between BMI trajectory and IL-18, and the 
fact the ‘overweight’ and ‘low-normal weight’ trajectories 
in males were distinguishable is intriguing, considering 
the low prevalence of overweight among our study popu-
lation when compared to the general German population 
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[66]. IL-18 may represent a cardiometabolic signature 
of ‘overweight’ trajectory in young adults. To the best of 
our knowledge, differences in late adolescence–young 
adulthood IL-18 with respect to BMI trajectories from 
childhood into late adolescence have not been reported. 
Nonetheless, there is evidence of a cross-sectional rela-
tionship between BMI and late adolescence–young 
adulthood IL-18 [27, 32]. This suggests that our finding 
is unlikely to be spurious. Therefore, IL-18 might be a 
useful marker of long-term overweight. In fact, it could 
be clinically relevant considering the substantial differ-
ence between the overweight and ‘low-normal weight’ 
trajectories. Early identification and intervention for late 
adolescents–young adults who are overweight and with a 
history of persistent weight gain is imperative. IL-18 is a 
unique proinflammatory cytokine, a member of the IL-1 
family of cytokines that is produced by the adipocytes 
[67], and other cell types such as macrophages, endothe-
lial cells, vascular smooth muscle cells, dendritic cells and 
Kupffer cells [68]. Human studies have consistently dem-
onstrated that higher levels of IL-18 is an independent 
risk factor for incident type 2 diabetes mellitus [68, 69], 
and cardiovascular events [68, 70–73]. This indicates that 
elevated IL-18 may put these young males following the 
‘overweight’ trajectory at risk of future cardiometabolic 
diseases.

The current study cannot corroborate previous find-
ings of lower levels of HDL-c in individuals following 
the ‘higher BMI growth’ as compared to those follow-
ing the ‘average BMI growth’ [16], and females in the 
‘upward percentile crossing’ group having higher DBP 
than other groups [12]. These divergent findings could 
be attributable to differences in statistical approaches 
for estimating trajectories, differences in modelled BMI 
metrics, absence of a comparable ‘upward percentile 
crossing’ group among our females, and our study may 
be underpowered to detect minor between-trajectory 
differences in HDL-c and DBP. Furthermore, circulating 
retinol-binding protein-4 [74, 75] and plasminogen acti-
vator inhibitor-1 [76] correlate with BMI and some car-
diometabolic risk markers in children and adolescents, 
and measures of HDL-c function as compared to HDL-c 
levels provide a better assessment of cardiovascular risk 
[77]. Therefore, these adipokines and measures of HDL-c 
function should be considered in future studies.

The strengths of this study are that we objectively 
measured weight and weight at all ages; as such, we can 
exclude misreporting. Moreover, the annual measure-
ments over this relatively long period of follow-up sug-
gests that the yielded trajectories are accurate. Our time 
sequence of trajectory and cardiometabolic risk mark-
ers also confirms cause-and-effect relationships of BMI 
trajectory and IL-18. However, we acknowledge several 

study limitations. First, our participants are mainly Cau-
casians (Germans), residing in Dortmund and surround-
ing regions, and most are children of well-educated 
women, thus our findings are of limited generalizability. 
We investigated all determinants at once around birth; 
however, family and socioeconomic characteristics might 
change over the life course. Participants who were not 
included in the analyses for the cardiometabolic risk 
markers may have had different associations between 
BMI trajectories and IL-18. However, the fact that the 
baseline factors that differentiate these groups were not 
associated with trajectories suggest these findings are 
unlikely to be biased. Importantly, other unmeasured fac-
tors such as the gut microbiota may have influenced the 
present findings. Finally, cardiometabolic risk markers 
were collected once at the end of the follow-up. Assess-
ment of cardiometabolic risk markers at few time-points 
that coincides with BMI measurements and identifying 
latent clusters of individuals with joint evolvement of 
BMI and these markers might provide a deeper under-
standing of association between developmental trajecto-
ries of BMI and cardiometabolic risk markers.

Conclusion
In a group of individuals with low prevalence of over-
weight, we observed distinct sex-specific trajectories of 
BMI, MppBMI as a common determinant of high BMI 
trajectories and IL-18 distinguished between males who 
followed the ‘overweight’ and ‘low-normal’ trajectories. 
Women maintaining normal pregravid weight might pre-
vent their children following an ‘overweight’ trajectory. 
IL-18 may represent a cardiometabolic signature of ‘over-
weight’ trajectory in young adults. Given the increasing 
prevalence of overweight among German young adults, 
there is a need for confirmation of these findings in other 
cohorts with a larger study sample.
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