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Abstract

Background: Microarrays have revolutionized breast cancer (BC) research by enabling studies of gene expression on a
transcriptome-wide scale. Recently, RNA-Sequencing (RNA-Seq) has emerged as an alternative for precise readouts of
the transcriptome. To date, no study has compared the ability of the two technologies to quantify clinically
relevant individual genes and microarray-derived gene expression signatures (GES) in a set of BC samples
encompassing the known molecular BC’s subtypes. To accomplish this, the RNA from 57 BCs representing the
four main molecular subtypes (triple negative, HER2 positive, luminal A, luminal B), was profiled with Affymetrix
HG-U133 Plus 2.0 chips and sequenced using the Illumina HiSeq 2000 platform. The correlations of three
clinically relevant BC genes, six molecular subtype classifiers, and a selection of 21 GES were evaluated.

Results: 16,097 genes common to the two platforms were retained for downstream analysis. Gene-wise comparison
of microarray and RNA-Seq data revealed that 52% had a Spearman’s correlation coefficient greater than 0.7 with highly
correlated genes displaying significantly higher expression levels. We found excellent correlation between microarray
and RNA-Seq for the estrogen receptor (ER; rs = 0.973; 95% CI: 0.971-0.975), progesterone receptor (PgR; rs = 0.95;
0.947-0.954), and human epidermal growth factor receptor 2 (HER2; rs = 0.918; 0.912-0.923), while a few discordances
between ER and PgR quantified by immunohistochemistry and RNA-Seq/microarray were observed. All the subtype
classifiers evaluated agreed well (Cohen’s kappa coefficients >0.8) and all the proliferation-based GES showed excellent
Spearman correlations between microarray and RNA-Seq (all rs >0.965). Immune-, stroma- and pathway-based GES
showed a lower correlation relative to prognostic signatures (all rs >0.6).

Conclusions: To our knowledge, this is the first study to report a systematic comparison of RNA-Seq to microarray for
the evaluation of single genes and GES clinically relevant to BC. According to our results, the vast majority of single
gene biomarkers and well-established GES can be reliably evaluated using the RNA-Seq technology.
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Background
For more than a decade, microarrays have represented
the most comprehensive approach to measuring gene
expression levels [1]. Their ability to simultaneously as-
sess thousands of transcripts, coupled with relatively
low experimentation costs and the broad availability of
analytical tools, have facilitated their wide use and led
to fundamental advances in several research fields. In
breast cancer, implementing gene expression microar-
rays has broadened our knowledge about the biology of
the disease, which has, for many years, relied on immu-
nohistochemistry (IHC) and clinical-pathologic param-
eters only. Several studies have shown that breast
cancers can be classified into at least four “intrinsic”
subtypes (basal-like, HER2 enriched, luminal A, and lu-
minal B) which can only be partially recapitulated by
IHC definitions of the three fundamental breast cancer
biomarkers: estrogen receptor (ER), progesterone re-
ceptor (PgR), and human epidermal growth factor re-
ceptor 2 (HER2) [2-5].
In current clinical practice, subtypes are defined mostly

by using an IHC surrogate [6]. Multiple expression-based
classifiers have been developed, including two versions of
the Subtype Classification Model (SCM) (SCMOD1 [7]
and SCMOD2 [8]), and the simple three-gene model
(SCMGENE [9]) developed by Sotiriou and co-workers, as
well as three variants of the Single Sample Predictor (SSP)
(SSP2003 [10], SSP2006 [11] and PAM50 [12]) developed
by Perou and co-workers, the latter having been recently
translated into a clinical assay (Prosigna™ [13]). The com-
putational implementation and comparison of these clas-
sifiers has been documented in [9]. Microarrays have also
been used to derive a series of gene expression signatures
aimed at characterizing the biology of the disease and
at helping clinicians predict relapse and response to
treatment more accurately than tools using traditional
clinico-pathological parameters [7,12,14-27]. Some of these
signatures have been endorsed by international breast
cancer guidelines, and they are being increasingly imple-
mented in standard practice [6].
In parallel, RNA sequencing (RNA-Seq) is emerging as

the technology of reference for thorough characterization
of the human transcriptome and as a superior alternative
to microarrays to define gene expression levels [28-31].
RNA-Seq is overcoming some of the drawbacks of micro-
arrays [28-32]. For instance, the dependence of microar-
rays on hybridization of transcripts to pre-determined
probes restricts analysis to genes for which genomic se-
quence information is available first-hand and to se-
quences that are distant enough so that probes do not
cross-hybridize. Moreover, high levels of background
noise arising from non-specific hybridization and probe sat-
uration affect the quantification of transcripts expressed at
low and high levels, respectively, limiting the dynamic
range of the technology. Although the RNA-Seq technology
efficiently address these issues, the current lack of standards
for analyzing these new data, coupled with the relatively
high cost of the RNA-Seq experiments, could deter investi-
gators from implementing the technology in their activity.
Several studies have been carried out to compare the

performance of RNA-Seq and microarrays, including
exon arrays, in defining levels of gene expression
[33-42]. The vast majority of them have focused on es-
tablishing the reliability of RNA-Seq in differential gene
expression (DGE) analyses between two or more sam-
ples and/or conditions of interest. Despite the fact that
they have generally reported good correlation between
the two technologies, most of these studies have relied
on relatively few samples or exclusively on non-human
samples. Moreover, they have never attempted to assess
the performance of RNA-Seq in defining clinically rele-
vant biomarkers developed using microarrays. Given
the promise of microarray-based gene signatures [43]
and the significant advantages of the new RNA-Seq
technology in providing more accurate and reliable
gene expression measurements, there is a dire need to
investigate the transition of breast cancer gene signa-
tures from microarray to RNA-Seq.
The main aim of the current study is to compare the

agreement between two of the most widely used micro-
array and RNA-Seq platforms, Affymetrix and Illumina
HiSeq respectively, in estimating (1) the expression of
single genes which are clinically relevant to breast can-
cer and (2) breast cancer subtype classifiers and gene ex-
pression signatures that have been developed over the
years with microarrays. The comparison uses a dataset
obtained from well characterized breast cancer patients
representing the four main breast cancer subtypes: triple
negative, HER2 positive, luminal A, and luminal B.

Methods
Sample selection and characterization
Fresh-frozen tumor material was obtained from 57 breast
cancer patients who were treated at Institut Jules Bordet
(Brussels, Belgium) between 2007 and 2011 and whose
samples were stored at the institute’s biorepository. The
samples represented the four main known breast cancer
subtypes (by IHC) and their tumor cell content evaluated
on a hematoxylin-eosin (H&E) slide by a board-certified
breast cancer pathologist was greater than or equal to
30%. Of the 57 patients, 17 had triple negative breast can-
cer (TN: ER, PgR, and HER2 negative), 14 HER2 positive
(any ER and PgR, HER2 positive), 16 luminal A (ER,
HER2 negative, histological grade 1), and 10 luminal B
(ER, HER2 negative, histological grade 3). The use of the
tumor material is consistent with the informed consent
signed by the patients and was granted approval by Insti-
tut Jules Bordet’s ethics committee (approval number:



Fumagalli et al. BMC Genomics 2014, 15:1008 Page 3 of 12
http://www.biomedcentral.com/1471-2164/15/1008
CE1967), and is in accordance with the applicable laws
and regulations in Belgium.

RNA extraction
RNA was extracted using TRIzol® (Life Technologies,
Carlsbad, California) following the manufacturer’s instruc-
tions. Concentration was measured using the NanoDrop
1000 (Thermo Scientific, Waltham, Massachusetts), and
integrity (RIN: RNA Integrity Number) was assessed using
an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa
Clara, California). All the samples yielded enough material
for downstream experiments, and had a RIN equal to or
greater than 6.5. RNA obtained from the same extraction
procedure was profiled on microarrays and sequenced on
the Illumina HiSeq 2000.

Microarray experiments
100 ng of total RNA was profiled at the Institut Jules
Bordet using the Affymetrix® HG-U133 Plus 2.0 Arrays
(Affymetrix, Santa Clara, California), following the manu-
facturer’s instructions. Briefly, the RNA was first reverse-
transcribed into double-stranded cDNA. This cDNA was
transcribed in vitro. After purification of the aRNA, 12.5 μg
were fragmented and labeled prior to hybridization to the
chips. Quality control (QC) for each chip was performed
following the recommendations posted on [44]. Following
QC, the probe level intensities were background ad-
justed and quantile normalized using the Frozen Robust
Multiarray Analysis (fRMA) method [45] as implemented
in the R/Bioconductor package fmra [46]. Probeset level
annotations were obtained from R/Bioconductor package
jetset [47] and complemented with BioMart [48]; when
multiple probesets mapped to the same Entrez Gene ID,
the probeset with the highest jetset score was selected.
The raw Affymetrix CEL files are available from the
NCBI’s Gene Expression Omnibus under accession num-
ber GSE43358.
The data can be accessed through this link: http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
token=trmzbecoaqyugtc&acc=GSE43358.

RNA-Seq sample preparation and sequencing
Transcriptome sequencing was performed at DNAVision
(Gosselies, Belgium). Transcriptome libraries were con-
structed using the Illumina ® TruSeq™ RNA Sample
Preparation Kit for paired-end reads sequencing on the
HiSeq 2000 (Illumina, San Diego, California) following
the manufacturer’s instructions. Briefly, starting from
1 μg of total RNA, the poly-A containing mRNA mole-
cules were purified using poly-T oligo-attached magnetic
beads. Following purification, the mRNA was fragmen-
ted into small pieces using divalent cations under ele-
vated temperature. The cleaved RNA fragments were
copied into first strand cDNA using reverse transcriptase
and random primers. This was followed by second strand
cDNA synthesis using DNA Polymerase I and RNase H
and purification using the AMPure XP beads (Agencourt
BioSciences Corporation, Beverly, Massachusetts). The
cDNA fragments were end repaired with the addition of
a single ‘A’ base and the ligation of adapters. The prod-
ucts were purified using the AMPure XP beads and
enriched with PCR (15 cycles) to create the final cDNA
library followed by purification using the AMPure XP
beads. Library quality control and quantification were
performed using the Agilent Bioanalyser 2100 and qRT-
PCR. The libraries were then pooled (4 libraries/pool).
Clusters were generated in a cBot Cluster Generation
System using the Paired-End Cluster Generation Kit v2-
HS and sequenced on the Illumina® HiSeq 2000 plat-
form with a 2x50 base-pairs paired-end mode. Base calls
were made using the Illumina CASAVA 1.5 pipeline. Se-
quence data has been deposited at the European
Genome-phenome Archive (EGA), which is hosted by
the EBI and the CRG [49], under study’s accession num-
ber EGAS00001000495 and dataset’s accession number
EGAD00001000626.
Assessment of RNA-Seq data quality
The following statistics were computed to verify the
quality of the RNA-Seq data (Additional file 1: Table S1).
The total number of paired reads, the average Phred qual-
ity scores, and the average GC content were calculated on
the quality trimmed FASTQ files with FastQC [50]. The
percentage of “proper pairs”, defined as mapped paired
reads with an insert size ranging from 60 to 160 bp, was
calculated with BamTools [51]. The percentage of aligned
duplicate read pairs was calculated with Picard tools
MarkDuplicates [52].
RNA-Seq analysis
After trimming the poor quality bases, the reads were
mapped to the human reference genome hg19 with
TopHat2 (version 2.0.0) [53], and gene expression was
quantified with Cufflinks (version 2.0.0) [53]. The anno-
tation file (GTF file) used for both alignment and gene
quantification was downloaded from Ensembl (on 26
July, 2012). To match the log scale of gene expression
measurements from the microarray data, the FPKM
(Fragments Per Kilobase of transcript per Million
mapped reads) values computed by Cufflinks were log-
transformed using the following formula:

X’ ¼ log2 Xþ1ð Þ

where X represents the FPKM value computed by
Cufflinks, and X’ is the log-transformed expression value.

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=trmzbecoaqyugtc&acc=GSE43358
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Gene expression signatures
Our study focused on the following gene expression
signatures: (1) six prognostic signatures (GENE70 [14],
GENE21 [15], Genomic Grade Index (GGI [16]), Risk
of Relapse-Score (ROR-S [12]), ENDOPREDICT [17],
and CIN70 [18]); (2) two immune signatures (STAT1-
MODULE [7] and IRMODULE [19]); (3) three stroma-
related signatures (PLAUMODULE [7], DCN [20], and
STROMACD10 [21]); and (4) ten pathway related sig-
natures (PIK3CA-GS [22], PTEN loss [23], IGF1 [24],
AKT/mTOR [25], MAPK [26], SRC, RAS, MYC, E2F3,
and beta-catenin [27]). We also evaluated six subtype
classifiers: SCMOD1 [7], SCMOD2 [8], SCMGENE [9],
SSP2003 [10], SSP2006 [11], and PAM50 [12]. In addition
to these multivariate subtyping models, we evaluated the
three individual breast cancer clinically relevant genes: ER,
PgR, and HER2.
We used the original signature algorithms for GENE70,

GENE21, GGI, ROR-S, ENDOPREDICT, CIN70, STAT1-
MODULE, PLAUMODULE, DCN and STROMACD10
as implemented in the Bioconductor package genefu [54].
For the remaining gene expression signatures, we com-
puted the signature scores following the approach used in
Ignatiadis et al. [55]. The scores were computed from the
list of genes in their respective signatures (as listed in
GeneSigDB [56]) as the weighted average using the follow-
ing formula:

s ¼

X

i⊂n

wixi
X

i⊂n

wij j

where s is the signature score, n is the number of genes
in the signature of interest, xi is the expression of the
gene, and the gene-specific weight wi ∈ {−1,1} is the
sign of the coefficient defined in the original publica-
tion. Only genes that could be mapped to EntrezGene
IDs were used. Finally, each signature score was
rescaled so that the 2.5% and 97.5% quantiles were
equal to +1 and −1 respectively.

Data analysis
The pair-wise correlation between Affymetrix microar-
rays and Illumina RNA-Seq gene expression data and
gene expression signatures scores was assessed using
Spearman’s rank-based correlation. For the three single
gene biomarkers (ER, PgR and HER2), the correlation
between microarray or RNA-Seq with IHC was esti-
mated to identify which technology provided better
concordance with IHC. Cohen’s kappa coefficient was used
to compare the subtype classifications from microarray or
RNA-Seq data. To statistically compare the Spearman cor-
relation and Cohen’s kappa coefficients of different gene
signatures, we used a two-sided Wilcoxon rank sum test
with 100 bootstrap replicates of the 57 patients to deter-
mine the p-value. The resulting p-values, reporting the sig-
nificance of the correlation difference between each pair of
gene expression signatures, were corrected for multiple
testing using Bonferroni’s method.
To compare the correlation of gene expression over

the whole transcriptome between each pair of data type
from a given sample, we used Spearman’s rank-based
correlation, the null distribution of which was estab-
lished as the range of coefficients observed from all pos-
sible combinations of the 57 pairs excluding self-self
pairs. This is efficiently computed from the cross correl-
ation matrix minus the diagonal elements. The analyses
performed in this study are fully reproducible and com-
ply with proposed guidelines in terms of availability of
the code and data [57]. The R scripts developed for the
analysis are available upon request.

Data availability
The raw Affymetrix CEL files are available from the
NCBI’s Gene Expression Omnibus under accession
number GSE43358. The data can be accessed through
this link: http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
token=trmzbecoaqyugtc&acc=GSE43358.
Sequence data has been deposited at the European

Genome-phenome Archive (EGA), which is hosted by
the EBI and the CRG [49], under study’s accession num-
ber EGAS00001000495 and dataset’s accession number
EGAD00001000626.

Results
Gene-wise comparison of expression levels using
Affymetrix microarray and Illumina RNA-Seq platforms
A subset of 16,097 genes were defined as common to
the two platforms and retained for downstream analysis.
Gene identifiers did not perfectly overlap due to differ-
ences in the annotation systems: jetset matched the
Affymetrix probesets to the NCBI RefSeq human cDNA
database, while the RNA-Seq analysis pipeline used
Ensembl gene annotations (see Methods for more de-
tail). When comparing the expression levels of the genes
retained after selection of the best Affymetrix probeset,
we found that although the scale of expression values
differs due to different technology and normalization
procedures, their rank is well conserved with 52%, 34%,
and 11% of these genes having Spearman’s rank-based
correlation greater than 0.7, 0.8, and 0.9, respectively
(Figure 1A). The Spearman correlation coefficient for
each evaluated gene is reported in Additional file 1:
Table S2.
We observed that genes with the highest correlation

coefficients for the comparison of microarray and RNA-
Seq were significantly more expressed. Similarly, the

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=trmzbecoaqyugtc&acc=GSE43358
http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=trmzbecoaqyugtc&acc=GSE43358
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Figure 1 Gene expression correlation between Affymetrix microarray and Illumina RNA-Seq platforms. A: Expression correlation of the
16,097 genes measured both on Affymetrix microarray and Illumina RNA-Seq platforms after selecting the best Affymetrix probeset using jetset.
B: and C: Box plots showing median level of gene expression for both Affymetrix and RNA-Seq for the genes with low (<0.7) and high (≥0.7)
correlation. Genes highly correlated between the two platforms showed higher levels of expression than those with low correlation.
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genes that were positively correlated were significantly
more expressed than genes that were negatively correlated
(two-sided Wilcoxon rank sum test p-value <1x10−16;
Additional file 2: Figure S1). This result holds true when
considering a high cutoff of correlation rs ≥0.7 (two-sided
Wilcoxon rank sum test p-value <1x10−16; Figure 1B
and 1C). This phenomenon could be explained by the
potentially higher variance of genes expressed at low
levels [58] or by the fact that microarrays have a limited
dynamic range compared to RNA-Seq [28-32].
In order to investigate this phenomenon more

deeply, we computed the correlation for genes with
cumulative increasing expression (Additional file 3:
Figure S2). By starting with genes expressed at low
levels and increasing gene expression levels by incre-
ments of 1%, we observed a steep rise in the median
correlation coefficient; in contrast, the magnitude of
the decrease moving away from genes expressed at
high levels was much lower. These results suggest that,
despite the potential saturation of microarrays for
highly expressed genes, the correlation between the
two technologies remains high; however, we observed
a high-level of inconsistency for genes expressed at
low levels, either originating from microarray or RNA-
seq technology, or both.
We acknowledge from past experience with gene ex-

pression microarrays that, when comparing the whole
transcriptome, two unrelated samples may have a cor-
relation coefficient that is as high as two arrays per-
formed on the same sample, raising questions about the
significance of an asymptotic p-value in that particular
setting. In our dataset, the correlation of gene expres-
sion profiles for the whole transcriptome measured by
microarray and RNA-Seq was statistically significant for
all except three patients (Additional file 4: Figure S3).

Definition of ER, PgR, and HER2 status according to IHC,
microarray, and RNA-Seq
Among the genes retained for analysis, we focused our
attention on three that are clinically relevant for breast
cancer: ER, PgR, and HER2. Measuring them precisely is
of utmost importance to clinical practice as these are
presently the only validated breast cancer predictive bio-
markers available, and they are routinely used to make
decisions about patient treatment [6,59].
When comparing the expression levels of these three

genes as defined by microarray and RNA-Seq, we found
excellent Spearman correlation coefficients: 0.973 for ER
[95% CI: 0.971-0.975]; 0.95 for PgR [95% CI: 0.947-0.954];
and 0.918 for HER2 [95% CI: 0.912-0.923] (Figure 2).
We then went a step further and compared the gene ex-

pression levels defined by either RNA-Seq or Affymetrix
with IHC, which is currently considered to be the method-
ology of reference for the definition of these markers,
together with FISH for HER2 [60,61]. Overall, a good cor-
relation was found between the technologies (rs >0.69),
and only a few discordances were observed (Additional
file 5: Figure S4).

Correlation between technologies for the definition of
breast cancer subtype classifiers
Two different gene expression approaches have been
developed to prospectively classify breast cancers into
molecular subtypes: Subtype Classification Models
(SCMs) [7-9] and Single Sample Predictors (SSPs)
[10-12], which include PAM50. In the current dataset,
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our subtype classifier SCMOD2 [8] showed the highest
correlation between microarray and RNA-Seq technolo-
gies (κ = 0.975; Figure 3A, Additional file 1: Table S3),
which was significantly higher than the other classifiers
(100 bootstrap replicates, corrected p-value <0.001;
Additional file 1: Table S4). Of note, although the kappa
coefficients for SCMGENE [9] and PAM50 [12] were very
similar (κ = 0.903 vs. 0.902 for SCMGENE and PAM50,
Figure 3 Correlation values for the evaluated subtype classifiers and
subtype classifiers (orange: SCMs; purple: SSPs). B: Spearman correlation va
pathway (purple) signature scores as computed using Affymetrix microarra
respectively), SCMGENE was more concordant than
PAM50 in our study (corrected p-value = 0.001, Additional
file 1: Table S4).

Correlation between technologies: gene prognostic
signatures
Using microarray technology, several prognostic gene
expression signatures have been developed in the
gene expression signatures. A: Cohen’s Kappa coefficients for
lues for prognostic (orange), immune (green), stroma (blue) and
y and Illumina RNA-Seq platforms.
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attempt to help clinicians to identify which breast can-
cers are at high or low risk of recurrence [43]. Among
these, MammaPrint® (here referred to as GENE70) [14],
OncotypeDx® (here referred to as GENE21) [15], GGI
[16], ENDOPREDICT [17] and ROR-S [12] have been
widely investigated and applied in the clinical setting.
When comparing the values of these signatures on a con-
tinuum as defined by either microarray or RNA-Seq, an
excellent Spearman correlation was found: 0.97 [95% CI
0.968-0.972] for GENE70; 0.965 [95% CI 0.962-0.967] for
GENE21; 0.985 [95% CI 0.984-0.986] for GGI; 0.979 [95%
CI 0.977,0.981] for ENDOPREDICT; and 0.965 (95% CI
0.962,0.967) for ROR-S (Figure 4).

Correlation between technologies: immune, stroma and
pathway related gene expression signatures
After a first wave of prognostic signatures, which es-
sentially captured tumor proliferation signals, a new
generation of “biological” signatures were developed
that focused on determining the prognostic and/or
predictive role of host-tumor immune interplay, tumor
microenvironment and pathway activation signaling.
Figure 4 Risk prediction scores of the commercially available prognost
of the commercially available prognostic signatures. Each dot is colored acco
orange for concordant intermediate risk, green for concordant high-risk a
risk predictions into risk classifications are represented in dashed red line
the plots.
We evaluated the correlation between microarray and
RNA-Seq platforms in measuring the following: 1) two
immune signatures (STAT1MODULE [7], IRMODULE
[19]); 2) three stroma signatures (PLAUMODULE [7],
DCN [20], STROMACD10 [21]); and 3) ten pathway sig-
natures (PIK3CA-GS [22], PTEN loss [23], IGF1 [24],
AKT/mTOR [25], MAPK [26], SRC, RAS, MYC, E2F3,
beta-catenin [27]).
As shown in Figure 3B, the Spearman correlation coef-

ficients were better overall for the prognostic signatures
than the biological ones (corrected p-value <0.001). This
was particularly the case for the pathway signatures.

Signature enrichment in highly expressed genes and
correlation between technologies
Since higher correlation coefficients were found for genes
expressed at higher levels, we investigated whether enrich-
ment in genes with higher expression in the above subtype
classifiers and gene expression signatures could have af-
fected their correlation when defined with the two tech-
nologies. We found that 81% (22/27) and 74% (20/27) of
the signatures were significantly enriched with highly
ic signatures. Scatterplots reporting the continuous risk prediction scores
rding to the corresponding risk classification: blue for concordant low-risk,
nd red for discordance. The cutoff used to discretize the continuous
s. Spearman correlation coefficient and p-value are provided below
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expressed genes for Affymetrix microarray and Illu-
mina RNA-seq platforms, respectively (p-value <0.05;
Additional file 6: Figure S5 and Additional file 7:
Figure S6). However such enrichment did not imply
significantly higher correlation between the two platforms,
suggesting that the proportion of highly expressed genes
is not solely responsible for the highest correlations ob-
served in our study.

Discussion
The use of molecular tools in clinical practice is on the
rise. In breast cancer, international guidelines endorse
the implementation of microarray-derived gene signa-
tures to support clinicians in the treatment decision-
making process [6]. In addition, the upcoming results
of two genome-forward clinical trials, namely the MIND-
ACT and the TailorX trials [62,63], involving thousands of
patients, will provide the highest level of evidence to date
about whether basing clinical decisions on microarray-
derived prognostic gene signatures influences the outcome
of breast cancer patients. The parallel rise of RNA-Seq as
an accurate and reliable alternative to microarrays for
transcriptome characterization and gene expression quan-
tification is puzzling for investigators, who must decide
which technology best fulfills their clinical needs. Hence,
it is imperative to determine the reliability of transitioning
from microarray to sequencing platforms in the clinical
setting. To our knowledge, our is the first report inves-
tigating the correlation between the expression level of
single clinically relevant genes and gene expression sig-
natures obtained with the most commonly used micro-
array and RNA-Seq platforms, Affymetrix and Illumina
respectively, in a selected dataset of breast cancer patients.
When focusing on the genes in common between the

two platforms, our analysis showed that the expression
of more than half of them had a Spearman correlation of
0.7. This was the case simply by selecting the most spe-
cific Affymetrix probeset and correlating it to gene log2
transformed FPKM obtained at sequencing, without any
further computation. In studies exploring the correlation
of the two technologies in defining genes differentially
expressed among samples and/or conditions, the correl-
ation values of fold change ratios were reported to range
from 0.55 to 0.85 [33-42]. Of note, these values are simi-
lar to or higher than the correlation observed across dif-
ferent microarray platforms [64]. In these same studies,
RNA-Seq seemed to be more reliable than microarray in
identifying differential gene expression: in several re-
ports, a large proportion of genes identified as differen-
tially expressed by RNA-Seq but not by microarray were
in fact confirmed by qPCR [33,34,65]. RNA-Seq also
seems more suitable than microarrays to quantify abso-
lute gene expression levels when compared with mass
spectrometry measurements [35].
As reported by other investigators [28,35,65], we found
that the correlation of genes was higher when their ex-
pression levels were higher. The reliance of microarrays
on the presence of primers and probes limits their ability
to measure extreme gene expressions; according to our
data, the limitation seems to be more relevant in the low
expression range. On the contrary, the nature of sequen-
cing technologies allows the unbiased investigation of
gene expression when enough depth is assured.
In our study, RNA-Seq showed high correlation with

microarrays when measuring clinically relevant genes in
breast cancer (i.e., ER, PgR, and HER2). Nevertheless, des-
pite an overall good correlation, both technologies showed
a few discordances when compared to IHC. Similar results
have already been reported when comparing microarray
with IHC [66,67]. These discordances might be partly at-
tributed to the fact that IHC measures the expression of
ER, PgR, and HER2 at the protein level, while both Affy-
metrix and RNA-Seq measure the expression levels of the
corresponding mRNAs. Although mRNA and protein ex-
pression levels are not fully independent, one cannot ex-
clude that post-transcriptional regulation might affect
their correlation. Another factor that could account for
these discordances is tumor heterogeneity. The expression
levels of the three markers can in fact vary across different
areas of the tumor. While the RNA profiled on microarray
and sequenced on the Illumina platform was obtained
from the same tumor area, the slides used for IHC stain-
ing were cut from a distinct area of the tumor lesion. The
best way to capture the activity level of these receptors
and their downstream pathways remains largely unclear.
It is possible that the determination of ER, PgR, and HER2
status at the mRNA level could provide clinicians with a
more reproducible, quantitative, and informative assess-
ment of these markers [68,69]. For the time being, how-
ever, not enough evidence is available to recommend
mRNA-based measurements for clinical practice.
Because of the clinical relevance of breast cancer sub-

types, much attention has been paid to the performance
of microarray-derived subtype classifiers. Some con-
cerns have been raised about their reliability though. It
has been shown that although every SSP can consist-
ently identify molecular subtypes with different levels
of survival, they do not reliably assign the same patients
to the same molecular subtype [70]. Variation in gene
expression data and classification algorithms could in-
fluence how samples are classified into each subtype. In
our study, the best correlation between microarray and
RNA-Seq was obtained for SCMOD2 [8], one of the
subtype classifiers developed by our group. Similar cor-
relation coefficients were obtained for PAM50 [12] and
SCMGENE [9], with the latter showing slightly higher
concordance. This result suggests the higher robustness
of SCMGENE to small perturbations, which concurs
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with our recent robustness study [9]. However, it is un-
likely that Prosigna™, the recent clinical assay imple-
menting PAM50 using the NanoString® platform, would
suffer the same limitation since its analytical validity
has been thoroughly assessed [13].
Given the increasing implementation of microarray-

derived gene signatures in clinical practice, it is vital to
determine if RNA-Seq could reliably be used to define
them. When considering 21 of the most relevant signa-
tures developed in recent years [7,12,14-27], we found
that the correlation values for microarray and RNA-Seq
for signature determination ranged from moderate to
very strong. Correlation values were higher for prognos-
tic signatures than biological signatures, independently
from their enrichment in highly expressed genes. This
suggests that proliferation, which drives prognostic sig-
natures, is more robust and reproducible than signals
coming from other biological processes and that com-
plex signatures developed on microarrays might be less
stable.
Conclusions
In our study, we have demonstrated that RNA-Seq can
reliably be used to evaluate both the expression of clin-
ically relevant single genes and well established gene
expression signatures originally defined with microarray
technology. Considering the advantages that RNA-Seq
offers over microarray, such as its ability to explore lar-
ger sets of genes, it is envisaged that its application to
wider datasets could even provide information relevant
for de-novo classification of breast cancer or for the de-
velopment of new prognostic and predictive signatures.
With the cost of RNA-Seq experiments decreasing con-
tinuously and with well-established analytical tools in-
creasingly available [71-75], RNA-Seq is becoming an
accessible tool that is superseding microarray in the re-
search setting. We foresee that, with the aid of initia-
tives such as the SEquencing Quality Control (SEQC)
consortium (the third phase of the FDA-led MAQC
project) [76] and studies such as ours confirming its re-
liability, RNA-Seq will eventually also supersede micro-
arrays in the clinical setting.
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Additional file 5: Figure S4. Spearman correlation for the quantification
of three clinically relevant genes (ER, PgR, and HER2) as defined by IHC vs
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Additional file 6: Figure S5. Bar plots representing the proportion of
genes present in all signatures combined (3,663 unique genes in 27
signatures) with respect to their quantiles of expression for Affymetrix
microarray (blue) and Illumina RNA-seq (red) platforms. The p-value
reports the significance of the enrichment of signature genes with
increasing quantiles of expression (Spearman’s rank-based correlation).

Additional file 7: Figure S6. Bar plots representing, for each signature
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respect to their quantiles of expression for Affymetrix microarray (blue)
and Illumina RNA-seq (red) platforms. The p-value reports the
significance of the enrichment of signature genes with increasing
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