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ABSTRACT: Macrocyclic peptides can interfere with challenging biomolecular targets
including protein−protein interactions. Whereas there are various approaches that facilitate
the identification of peptide-derived ligands, their evolution into higher affinity binders
remains a major hurdle. We report a virtual screen based on molecular docking that allows
the affinity maturation of macrocyclic peptides taking non-natural amino acids into
consideration. These macrocycles bear large and flexible substituents that usually
complicate the use of docking approaches. A virtual library containing more than 1400
structures was screened against the target focusing on docking poses with the core structure
resembling a known bioactive conformation. Based on this screen, a macrocyclic peptide 22
involving two non-natural amino acids was evolved showing increased target affinity and
biological activity. Predicted binding modes were verified by X-ray crystallography. The
presented workflow allows the screening of large macrocyclic peptides with diverse
modifications thereby expanding the accessible chemical space and reducing synthetic
efforts.

■ INTRODUCTION
Macrocyclic scaffolds are a common structural element among
natural products, and they are considered promising candidates
for the development of chemical probes and novel
therapeutics.1,2 This is mainly due to their ability to bind
protein surfaces even if those lack distinct binding pockets. The
presence of such pockets is often required for high affinity
binding of classic small molecules.3−5 Protein−protein
interactions (PPIs) tend to involve flat surfaces rendering
their inhibition extremely challenging. Among macrocycles,
peptide-derived structures proved to be particularly valuable
starting points for the generation of PPI inhibitors.2 Often, the
design process starts by macrocyclization of known peptide
binding epitopes,2 or by the screening of macrocyclic peptide
libraries (e.g., via phage or mRNA display)6,7 resulting in
structures that often exhibit good affinity for their target.
However, in most cases an evolution toward higher affinity
ligands is required to efficiently block PPIs and/or to
compensate for affinity losses during the optimization process
toward increased bioavailability.2 For that reason, affinity
maturation constitutes a bottleneck preventing straightforward
use of bioactive macrocyclic peptides. Ideally, the consideration

of numerous modifications including natural and non-natural
amino acids at all positions of the peptide sequence would be
desired.
Given the efforts associated with the chemical synthesis and

evaluation of large peptide libraries8 and the complexity of
biological screening platforms as well as their restriction to a
limited number and type of non-natural building blocks,6,7

computational screening approaches provide an appealing
alternative. In the case of small molecules and short peptide
ligands, virtual screening based on molecular docking has
proven particularly useful.9−13 For macrocyclic scaffolds with
relatively small substituents, benchmark studies were able to
reproduce known binding modes indicating that docking could
also be applied.14−16 However, it is not clear if these approaches
allow exhaustive virtual screening and the prediction of novel
interactions as molecular docking encounters severe difficulties
in scoring new binding modes for extended scaffolds.12,13 In
particular, the consideration of macrocycles with large and
flexible substituents, as they are often found in peptide-derived
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PPI inhibitors,2 can be expected to be extremely challenging.
For this reason, computationally more demanding methods
such as molecular dynamics simulations have been used for
protein−peptide docking,17−19 however, at the cost of a
dramatically reduced throughput.20−23 An additional challenge
in the affinity maturation of macrocyclic ligands occurs when
the starting point already shows good target affinity.10 In this
case, a precise prediction and scoring of the binding mode is of
utmost importance to allow the identification of improved
ligands.10 The availability of fast and reliable docking
approaches for modified peptide ligands would accelerate the
time-consuming optimization process and is highly desired.
Herein, we describe a computational approach based on

molecular docking that allows the affinity maturation of
macrocyclic peptide ligands. Originally derived from linear
bacterial peptide sequence 1 (ESp),24 macrocyclic peptide 2
(βss12)

24 served as a starting point. Based on the crystal
structure of 2 in complex with its target protein 14−3−3, a
virtual library of macrocycles was generated, which was
screened against the target. Subsequently, binding poses that
resemble the backbone conformation of the starting peptide in
its bound state were scored. This selection process allowed the
identification of a macrocyclic peptide with two non-natural
amino acids, which exhibits increased target affinity as well as
increased potency in cell-based assays. Most importantly,
predicted side chain binding modes were verified by X-ray
crystallography.

■ RESULTS
Virtual Peptide Library. Aiming for a computational

approach that allows the handling of large and flexible
structures, we choose macrocyclic peptide 2 as model
system.24,25 This peptide binds 14−3−3 proteins which form
a family of closely related adaptor proteins that regulates a wide
range of cellular processes via numerous PPIs. Peptide 2
involves an 11-mer irregularly structured peptide sequence
(dark gray, Figure 1), which is constrained by a hydrophobic

side chain-to-side chain cross-link in analogy to so-called
hydrocarbon-stapled peptides.26,27 It was originally derived
from the natural peptide epitope 1.24 Macrocycle 2 binds to the
amphipathic groove of 14−3−3, which recognizes certain
phosphorylated proteins and some nonphosphorylated peptide
epitopes. Among the synthetic 14−3−3 binders, macrocyclic
peptide 2 is the highest affinity ligand (Kd ≈ 0.1 μM).24,28−34

Its relatively high affinity, molecular weight (M = 1280 g

mol−1) and flexibility render peptide 2 a challenging starting
point for any in silico affinity optimization. The crystal structure
of 2 (PDB ID 4n84)24 in complex with isoform zeta of 14−3−3
(14−3−3ζ) served as starting point for our work. All following
calculations and biophysical as well as biological experiments
were performed with 14−3−3ζ.
Initially, the contribution of all side chains of peptide 2 to

14−3−3ζ binding was assessed employing an alanine scan
(Figure S1). This revealed three hotspot residues (L426, D427,
and L428, Figure 1) at which alanine substitution results in
dramatically reduced affinity (>10-fold, Figure S1). Preceding
tests reveal that even minor changes at a hotspot position result
in severe affinity reduction (Figure S2). We concluded that
variation of these residues is unlikely to result in derivatives
with increased binding affinity and focused on the remaining six
amino acids (Figure 1). A virtual amino acid library was
assembled (Table S2) containing all proteinogenic amino acids
(except for glycine and proline) and 223 nonproteinogenic
ones. These amino acids were selected based on two criteria:
(i) commercial availability of suitably protected analogs
allowing a direct use in solid-phase peptide synthesis (SPPS)
and (ii) coverage of a diverse chemical space preventing the
accumulation of closely related derivatives (Figure S3).
Incorporation of all amino acids into the six positions of
interest results in a virtual library of 1446 peptides.

Molecular Docking of Virtual Library. Given the
successful utilization of molecular docking and scoring
approaches for the virtual screening of small molecules and
the achievements with respect to small peptide ligands,9,12,35,36

we decided to peruse this strategy. Macrocycle 2 bears large and
flexible substituents, features that affect the validity of docking
poses and scoring. To reduce the number of invalid docking
poses, we considered the implementation of a checkpoint after
library docking that would allow focusing on the most relevant
docking poses for subsequent scoring. Knowing the importance
of the three hotspot residues for binding, we reasoned that high
affinity binders will most likely adopt a conformation that
positions those residues in analogy to 14−3−3-bound 2. For
that reason, pose filtering was applied, ensuring that only
docking poses were considered for which the central hotspot
amino acids (426−428) resemble the conformation of peptide
2 in its bound state (allowed RMSD ≤ 2.0 Å). These
considerations resulted in the following workflow in which the
crystal structure of peptide 2 in complex with 14−3−3ζ (PDB
ID 4n84) served as starting point (for details see Supporting
Information). First, the coordinates of 2 were extracted, and
each of the six selected residues was iteratively substituted by
each member of the virtual amino acid library (241 building
blocks). This resulted in a database of 1446 macrocyclic
peptides each of them bearing a single residue variation
compared to 2. Second, docking parameters were adjusted to
ensure that the conformation of 2 bound to 14−3−3 is
reproduced upon docking. These parameters were then used to
dock each peptide into the amphipathic groove of 14−3−3ζ
using AutoDock Vina35 to sample the conformational space.
Thereafter, above-mentioned pose filtering was applied
followed by a final rescoring step. For rescoring of docking
poses of small peptides, it was shown to be beneficial to
consider a combination of knowledge-based and empirical
scoring functions since they provide complementary hit
lists.12,37 In this respect, Astex Statistical Potential38 (ASP,
knowledge-based) and ChemScore39 (empirical) have been
described to be suitable for the scoring of peptide

Figure 1. Sequence of linear peptide 1 and crystal structure of cyclic
peptide 2 (dark gray) bound to 14−3−3ζ (light gray, PDB ID 4n84).
Cross-link and hotspot residues (L426, D427, and L428) are shown
explicitly. Peptide sequence of 2 and chemical structure of cross-link
are shown (Residues are numbered in accordance to PDB ID 4n84).
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conformations12 and were thus selected for rescoring.40 For
each peptide, the remaining poses (after pose filtering) were
rescored, and only the highest scoring one was considered for
the final ranking. For each of the six amino acid positions, the
top five ranking peptides per scoring function were visually
inspected (in total 60 complexes) to select one peptide per
scoring function (#ChemScore, ◊ASP) and position for
experimental validation (in total 12 peptides 10−21, Figure 2
and Figure S4).

Experimental Affinities and Structural Validation.
Fluorescently labeled versions of all 12 peptides were
synthesized applying standard protocols for SPPS and macro-
cycle formation.24,41 Affinities toward 14−3−3ζ (aa 1−230)
were determined using a fluorescence polarization (FP) assay.
As reference, the dissociation constant (Kd) of 2 was
determined (Kd = 103 nM). Among the 12 peptides (Figure
2), seven show relatively low affinities for 14−3−3ζ (Kd > 1
μM, white) with four of them still being in the low micromolar
range (6−13 μM). Five peptides exhibit affinities in the
submicromolar range (Kd < 1 μM, light and dark red) rendering
them better binders than the wildtype epitope 1. Most

strikingly, among those five peptides, there are two that show
lower Kd values than starting point 2. In one case, leucine at
position 423 (L423) is substituted by L-(1-adamantyl)glycine
(lada, peptide 14, Kd = 59 nM), while in the other one, serine at
position 430 (S430) is substituted by L-γ-carboxyglutamic acid
(l2ce, peptide 21, Kd = 99 nM). Whereas the non-natural
amino acid l2ce in 21 carries a malonic acid side chain
predicted to engage a positively charged cavity on 14−3−3ζ
(Figure S5), lada in 14 bears a bulky and hydrophobic
adamantyl moiety presumably interacting with a hydrophobic
patch of 14−3−3ζ (Figure S6).
Having identified two variations with increased affinity, we

explored the consequences of incorporating both non-natural
amino acids simultaneously into the sequence resulting in
peptide 22 (AdCe). For a fluorescently labeled version of 22,
14−3−3 affinity was determined using FP. Notably, both
variations appear to act additively, resulting in further increased
affinity (Kd = 38 ± 3 nM, Figure S7), which is a 2.7-fold
increase compared to starting peptide 2 (103 ± 9 nM). To
obtain molecular details of the 22−14−3−3ζ interaction and to
evaluate the accuracy of our predicted binding modes, we
aimed for a crystal structure of the corresponding complex.
Cocrystallization of 22 and 14−3−3ζ (aa 1−230) provided
crystals of space group P212121 and allowed the determination
of a crystal structure with 2.3 Å resolution (PDB ID 5jm4,
Table S3). Each asymmetric unit contains two 14−3−3ζ
proteins, with each harboring one molecule of 22 in its
hydrophobic groove (Figure S8). The corresponding 2Fo−Fc
density map (Figures S9) allows the identification of the entire
peptide except for the side chain of N-terminal amino acid
Q420, which is not resolved. Superimposition of 22 (red) and 2
(gray) in complex with 14−3−3ζ (Figure 3a) reveals good
structural overlay (RMSD backbone: 0.67 Å) verifying
analogous binding modes. Most importantly, comparison of
the 22 crystal structure with docking predictions for lada at
position 423 (Figure 3b) and l2ce at position 430 (Figure 3c)
show excellent superimposition. As predicted, the adamantyl
moiety of lada engages a hydrophobic patch of the 14−3−3ζ
groove, and the malonate side chain of l2ce interacts with two
arginines of 14−3−3ζ (Figure S10) that are not addressed by 2.
This accuracy of the molecular docking is remarkable,
considering that the C-terminal part of the peptide backbone
is relatively flexible. Interestingly, lada at position 423 originates
from the ChemScore (#) hit list, while l2ce at position 430 was
suggested after ASP (◊) rescoring (Figure 2). This underlines
the usefulness of considering knowledge-based as well as
empirical scoring functions for rescoring.

Inhibition of PPI. Knowing that 22 exhibits higher affinity
for 14−3−3ζ than 2 (2.7-fold) and wild-type epitope 1 (20-
fold), we were interested if this results in more efficient
competition with PPIs and increased bioactivity. For that
purpose, the competition with phosphorylated binding partners
of 14−3−3 was considered. Superimposition of 22 (red) and
representative phosphorylated peptides (blue) in complex with
14−3−3 shows substantial overlap (Figure 4a), suggesting
competitive binding. To test this hypothesis, we performed FP
competition experiments employing a Raf-derived phosphory-
lated peptide ligand (Figure S12) of 14−3−3ζ as tracer and
nonlabeled peptide 1, 2, or 22 as competitor. These
measurements (Figure 3b) clearly show efficient competition
of 22 (red) with the phosphorylated peptide (half maximal
inhibitory concentration: IC50 = 0.8 μM). In line with their

Figure 2. Chemical structure of 2 with varied residues highlighted in
gray. Selected 12 variations are shown (two per position: one obtained
from ChemScore (#) and the other one from ASP (◊) hit list).
Experimentally determined dissociation constants (Kd) for corre-
sponding peptides 10−21 with 14−3−3ζ are given (for details see
Figure S7). Variations are color coded in accordance to their affinity
for 14−3−3ζ (Kd rages: dark red, <0.1 μM; light red, 0.1−1 μM;
white, >1 μM).
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lower affinity, 2 (dark gray, IC50 = 1.2 μM) and 1 (light gray,
IC50 = 3.3 μM) exhibit reduced competition.
Finally, it was tested if improved target affinity also results in

enhanced activity in cell-based assays. Since fluorescence
microscopy indicates very low cellular uptake of these peptides
(Figure S13), we aimed at the inhibition of an extracellular 14−
3−3ζ PPI. It is known that 14−3−3 proteins bind to the
extracellular domain of transmembrane receptor aminopepti-
dase N (APN).42,43 This interaction presumably occurs
between phosphorylated epitopes on APN and the amphipathic
groove of 14−3−3 proteins.33,44 It is known that APN−14−3−
3 complex formation induces an intracellular signaling cascade,
triggering the expression of a subset of matrix metal-
loproteinases (MMPs),42,43 and that the inhibition of
extracellular 14−3−3 can reduce MMP transcription levels.33

MMPs are important factors in the modulation of the
extracellular matrix, and their upregulation is associated with
pathological processes such as rheumatoid arthritis or cancer
metastasis.45−47 For that reason, MMP inhibition is considered
an attractive therapeutic approach. To investigate the potency
of 22 in MMP inhibition, we used U87 glioblastoma cells
showing robust upregulation of MMP1 mRNA levels (Rq =
11.7, Figure 4c) upon treatment with 14−3−3ζ (c = 200 nM).
After incubation with a nonlabeled version of 22 (c = 20 μM),
14−3−3ζ-dependent increase of MMP1 mRNA was drastically
reduced (8.6-fold reduction, relative to untreated cells)
restoring the levels of nonstimulated cells. Concentration-
dependent treatments provide an IC50 value of 8.6 μM for 22
(Figure S14), which exceeds the potency of any synthetic
competitive inhibitor reported so far.24,28−34 Compared to 22

(8.6-fold reduction), the nonlabeled versions of 1 and 2 show
significantly reduced inhibition of MMP1 transcription (1.6-
and 3.0-fold reduction, respectively).

■ DISCUSSION AND CONCLUSIONS
In conclusion, we report a fast molecular docking approach that
allows the affinity maturation of medium-sized modified
peptides considering natural and non-natural amino acid
variations. The combination of virtual library screening and
peptide-adapted molecular docking resulted in a short hit list
enriched with 14−3−3ζ binders allowing to lower experimental
validation efforts dramatically. We utilized a fast molecular
docking approach by focusing only on generated binding poses
that locate the three hot spot residues at their original positions.
As a result, the bound conformation of the core structure is
preserved while keeping the termini of the peptide flexible. For
the first time, virtual screening of a large macrocyclic peptide
library was successfully applied while omitting the use of time-
consuming computational approaches. Notably, the 12 single
residue variations (selected from a database of 1446 peptides)
contain five hits with submicromolar affinities, which can be
useful in the future to improve, e.g., physicochemical properties.
The combination of the two highest affinity variations, a
hydrophobic and a hydrophilic non-natural amino acid, allowed
the design of a peptide with ca. 3-fold increased affinity for 14−
3−3ζ. Most importantly, predicted binding modes of these
novel side chains were verified by X-ray crystallography
underlining the validity of the docking results. The finally
evolved macrocyclic PPI inhibitor shows increased potency in

Figure 3. (a) Overlay of crystal structures of 2 (gray, PDB ID 4n84)
and 22 (red, PDB ID 5jm4) when bound to 14−3−3ζ (light gray
surface representation). Peptide backbones are shown as ribbons.
Varied side chains (423 and 430), hotspot residue L428, and cross-link
are shown explicitly. (b,c) Superimposition of 22 crystal structure (red,
PDB ID 5jm4) with predicted structure (orange, pose with highest
score) of lada- and l2ce-modified peptide, respectively. Amino acid of
interest and backbone of neighboring amino acids are shown explicitly.

Figure 4. (a) Superimposition of 22 (red, PDB ID 5jm4) and selected
phosphorylated peptides (blue, PDB IDs iqja, 1ywt, 2bn5, 2btp, 2c74,
2npm, 2v7d, 3e6y, and 3nkx) bound to 14−3−3. Peptide backbones
are shown as ribbons and important side chains explicitly. (b) FP
competition using labeled Raf-peptide as tracer (10 nM with 2 μM
14−3−3) and nonlabeled versions of 1, 2, and 22 (including their IC50
values). (c) Inhibition of MMP1 transcription in a cell-based assay
after pathway activation with 14−3−3ζ (c = 200 nM). Cells were
treated for 24 h in the absence and presence of 1, 2, or 22 (20 μM).
Expression levels of mRNA were measured by quantitative real time
PCR (for details, see Supporting Information).

Journal of Medicinal Chemistry Article

DOI: 10.1021/acs.jmedchem.7b01221
J. Med. Chem. 2017, 60, 8982−8988

8985

http://dx.doi.org/10.1021/acs.jmedchem.7b01221


PPI inhibition and in a cell-based assay. Our computational
workflow allows the use of very large databases of non-natural
amino acids, e.g., created by in silico methods. Taking into
account the broad chemical space accessible with such libraries,
it is an appealing strategy for the development of novel peptide-
based inhibitors.

■ EXPERIMENTAL SECTION
General. For detailed information about experimental procedures,

see the Supporting Information. Peptide synthesis was performed on
solid support following standard Fmoc-based protocols with macro-
cyclization and double-bond reduction following previously published
procedures.41 Peptide purity was determined by RP-HPLC via peak
integration at λ = 210 nm. All peptides exhibit a purity ≥95%.
Expression and purification of 14−3−3ζ (aa 1−230) was performed
according to established protocols.24

Structure and Library Preparation for Docking. Coordinates
from protein−ligand complex were retrieved from PDB entry 4n84.
Water molecules and ions were removed. AutoDock-Tools (ADT)
1.5.6 was used to add polar hydrogens and charges.48 For peptides,
rotatable bonds were assigned (all substituents including the two
peptide sequences were kept flexible except for amide bonds). Two-
dimensional structures of the 18 natural (Gly and Pro are excluded)
and 223 nonproteinogenic amino acids were manually created using
ChemDraw 14.0 and subsequently converted to 3D structures in
protonation states under neutral condition using Maestro 9.3.5.49 The
peptide library was created using in-house Python scripts by replacing
single amino acids of 2 with each amino acid in the amino acid library.
Docking Engine, Scoring Function, and Docking Experi-

ments. AutoDock Vina 1.1.2 was used as a docking engine.35 The
center of the grid box was set to 10/13/10, and the box size was set to
30 Å in each dimension. Docking parameters were chosen as follows:
exhaustiveness = 12, weight_gauss1 = 0.7, weight_repulsion = 0.5,
weight_hydrophobic = −0.15, weight_hydrogen = −0.6. (other
parameters default). During pose filtering, all poses were excluded in
which the functional groups of residues L426, D427, and L428 exhibit
an rmsd > 2 Å when compared to analog residues in 2 bound to 14−
3−3 (PDB ID 4n84). For rescoring, the remaining poses were scored
with ChemScore39 and the Astex statistical potential (ASP),38

respectively, using the simplex minimization option as implemented
in Gold 5.2.2.4.40 For each peptide, only the highest scoring pose was
considered for the final ranking. The top five ranking peptides per
scoring function and position were visually inspected (in total 60
complexes) to select one peptide per scoring function and position for
experimental validation (in total 12 peptides). For selected peptides
and their predicted binding modes, see Supplementary Figure S4.
Fluorescence Polarization Assays. A 0.1 mM solution of the

corresponding FITC-labeled peptide in DMSO was diluted with FP
buffer (10 mM HEPES, 150 mM NaCl, 0.1% Tween-20, pH 7.4) to 40
nM. 14−3−3ζ (aa 1−230) was diluted with FP buffer in a 2.5-fold
dilution series (80 μM−0.5 nM) in a 384-well plate. To 15 μL of the
protein solution, 5 μL of the 40 nM peptide stock was added (final
peptide concentration, 10 nM; final protein concentrations, 60 μM−
0.4 nM). After 1 h, fluorescence polarization was measured (λ(ex) =
485 nm; λ(em) = 525 nm). The dissociation constant (Kd) was
determined from the binding curve with GraphPad from Prism. For
competition experiments, N-terminally acetylated peptides were
diluted 1:1 in a 384-well plate (10 μL, 100 μM−1 nM). 10 μL of a
mixture (1:1) of 14−3−3ζ (aa 1−230) and TAMRA-labeled cRaf
peptide was added (final concentrations: acetylated peptides = 50
μM−0.5 nM; 14−3−3ζ (aa 1−230) = 800 nM; TAMRA-labeled cRaf
peptide = 100 nM). After 1 h, fluorescence polarization was measured
(λ(ex) = 530 nm; λ(em) = 585 nm). The half maximal inhibitory
concentration (IC50) was determined from the binding curve with
GraphPad from Prism.
X-ray Crystallography and Structure Determination. 14−3−

3ζ (aa 1−230) was prepared in 50 mM HEPES (pH 7.5), 100 mM
NaCl, and 2 mM MgCl2. For complexation, 22 was dissolved in
DMSO (11 mM) and mixed with the protein in a molar ratio of 1:2

(protein/peptide). The complex was incubated overnight at 4 °C
(final protein concentration: 22 mg/mL) and set up for crystallization
using NeXtal Screens (Qiagen). Crystals grew within 4 weeks in the
following condition: 1.36 M sodium citrate and 15% (v/v) glycerol
and showed a diffraction to 2.34 Å. After molecular replacement, the
space group was determined to be P212121. Data was collected using
PXII beamline for protein crystallography at the Paul Scherrer Institute
Swiss Light Source (SLS). Crystallographic analysis was performed
using the XDS software package. Molecular replacement was carried
out with the CCP4 package, and model building was performed with
COOT (Supplementary Table 3). Crystal structure was deposited in
the Protein Data Bank (PDB: 5jm4).

Cell Permeability Assay. HeLa cells were grown as a monolayer
in 10 cm tissue culture dishes and cultured in DMEM supplemented
with 10% fetal calf serum, and nonessential amino acids (at 37 °C in
an atmosphere of 5% CO2). For experiments, cells were removed from
flasks by treatment with trypsin-EDTA, and 5000 cells were plated in
each well of a 96-well microplate and cultured for 24 h. Then, peptides
were added at a final concentration of 20 μM with 1% DMSO to the
medium and incubated for 4 h. Cells were washed three times with
PBS, fixed with 4% paraformaldehyde, and washed another three times
with PBS. For nuclear staining, a 3 μM 4′,6-diamidino-2-phenylindole
(DAPI) solution in PBS was prepared and left on the cells for at least 5
min. After additional washing steps, the cells were left in PBS, and the
distribution of FITC-labeled peptides was analyzed via fluorescence
microscopy using a 20× air objective (Axiovert 40 CFL, Zeiss).

Quantitative Real Time PCR Analysis. U87 glioblastoma cells
were cultivated in DMEM (+10% FCS) at 37 °C at 5% CO2. Cells
were plated for 24 h, and medium was changed (DMEM + 1% FCS).
After another 24 h, cells were treated with 200 nM 14−3−3ζ, the
corresponding peptides in DMEM + 1% FCS and 0.5% DMSO.
Untreated and 14−3−3ζ-treated controls were cultivated under the
same conditions with 0.5% DMSO. After 24 h of incubation, total
RNA was isolated (Quick-RNA MicroPrep Kit, Zymo Research) and
reverse transcribed into cDNA (Quanti Tect Reverse Transcription
Kit, Qiagen). Next, cDNA was used for quantitative real time PCR
(SensiMix SYBR Low-ROX Kit, Bioline) in the Applied Biosystems
7500 Fast Real Time PCR machine (Thermo Fisher Scientific). For
relative quantitation, 2−ΔΔCT method was used with the reference gene
GAPDH.
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■ ABBREVIATIONS USED
ACN, acetonitrile; ADT, AutoDock-Tools; APN, amino-
peptidase N, CD13; ASP, Astex Statistical Potential; cRAF,
RAF proto-oncogene serine/threonine-protein kinase; DAP,
4′,6-diamidino-2-phenylindole; DIPEA, N,N-diisopropylethyl-
amine; DMEM, Dulbecco’s modified Eagle’s medium; EDT,
1,2-ethanedithiol; FCS, fetal calf serum; FITC, fluorescein
isothiocyanate; FP, fluorescence polarization; GAPDH, glycer-
aldehyde-3-phosphate dehydrogenase; HEPES, 4-(2-hydrox-
yethyl)-1-piperazineethanesulfonic acid; IPTG, isopropyl-β-D-1-
thiogalactopyranoside; Kd, dissociation constant (M); MMP,
matrix metalloproteinase; NTA, nickelnitrilotriacetic acid;
PEG2, 8-amino-3,6-dioxaoctanoyl; PPI, protein−protein inter-
a c t i o n ; P y B o p , ( b e n z o t r i a z o l - 1 - y l o x y ) -
tripyrrolidinophosphonium hexafluorophosphate; SASA, sol-
vent accessible surface area; SEC, size exclusion chromatog-
raphy; SLS, swiss light source; SPPS, solid phase peptide
synthesis; TAMRA, 5-carboxytetramethylrhodamine; TCEP,
tris(2-carboxyethyl)phosphine; TEV, tobacco etch virus
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