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Current gene panels account for nearly all homologous
recombination repair-associated multiple-case breast cancer
families
Thibaut S. Matis1,2,3, Nadia Zayed1,2, Bouchra Labraki4, Manon de Ladurantaye5, Théophane A. Matis6, José Camacho Valenzuela 1,2,
Nancy Hamel2, Adrienne Atayan1, Barbara Rivera 7,8,9, Yuval Tabach 10, Patricia N. Tonin1,2,11, Alexandre Orthwein7,8,
Anne-Marie Mes-Masson5,12, Zaki El Haffaf4, William D. Foulkes 1,2,7,8✉ and Paz Polak 13✉

It was hypothesized that variants in underexplored homologous recombination repair (HR) genes could explain unsolved multiple-
case breast cancer (BC) families. We investigated HR deficiency (HRD)-associated mutational signatures and second hits in tumor
DNA from familial BC cases. No candidates genes were associated with HRD in 38 probands previously tested negative with gene
panels. We conclude it is unlikely that unknown HRD-associated genes explain a large fraction of unsolved familial BC.

npj Breast Cancer           (2021) 7:109 ; https://doi.org/10.1038/s41523-021-00315-8

Many multiple-case BC families remain unexplained by a
pathogenic variant, despite routine clinical testing of an increasing
number of recognized BC susceptibility genes (BCSGs). These
cases pose a major clinical challenge for disease management of
patients and cancer prevention.
To identify germline pathogenic variants (GPVs) in patients,

Next-Generation Sequencing (NGS) of blood-derived DNA is used,
often through pan-cancer panels containing up to 25 genes. The
three major BCSGs – BRCA1, BRCA2, and PALB2 – are involved in
homology-directed DNA repair (HR). Several other, less well-
studied genes, also involved in DNA repair and all variably
associated with increased risk for hereditary breast and ovarian
cancer (HBOC), are also included on some panels. As PARP
inhibitors have been approved for treating cancers with HR
defects, it is important to identify all possible HR pathway genes
reliably implicated in BC susceptibility. To this end, many clinical
BC susceptibility genes (BCSGs) testing panels include putative BC-
related HR pathway genes, but their candidacy remains unproven.
This can lead to inappropriate use of expensive therapies.
We and others showed that tumor sequencing is a powerful

tool to find genes or variants that cause HRD breast cancer. In BC
cases due to known BCSGs, the inherited pathogenic variant
confers genetic susceptibility, but tumorigenesis is usually driven
by a somatic inactivating “second-hit” event resulting in loss of
gene function, often via loss of heterozygosity (LOH) through
deletion of the wild-type allele. In this tumor suppressor model of
BCSG function, as a nascent tumor cell loses the ability to repair
DNA, lesions accumulate, including in genes favoring tumor
progression1. Tumor genomes of patients with BRCA1/2 inactiva-
tion were found to be enriched in copy number losses and
rearrangements. This observation led to the development of an
HRD index based on these somatic genomic abnormalities that

can be used to detect HRD implicated tumors rather than on the
specific mutational spectrum at the nucleotide level of the altered
the DNA sequence2–5. In addition, in tumors with anomalies in HR
repair, single base-pair changes have been shown to accumulate
in the tumor genome, giving rise to what is referred to as
mutational signatures. We showed that using sequencing of
paired tumor and normal tissues we can detect these HRD-
associated mutational signatures as well as second hits6,7. COSMIC
tumor mutational signature 3 (Sig 3) has been associated with
homologous repair deficiency (HRD)8. Monoallelic inactivation of
BRCA1/2 does not give rise to Sig 3, whereas Sig 3 is seen in
tumors with biallelically inactivated BRCA1/2.
The mutational signature analysis helped to define the role of

various HR genes directly from case-only data by association with
Sig 3 levels. We showed that inactivation of RAD51C, RAD51D,
PALB2, and BARD1 are all associated with elevated Sig 3 levels,
indicating that GPVs in these genes lead to BRCA-like/HRD cancers.
In contrast, GPVs in other established and candidate BCSG genes
such as ATM, ATR, BRIP1, MRE11, NBN, and RAD50 do not lead to
BRCA-like tumors6. Moreover, we developed a framework to
reclassify germline BRCA1/2 variants of unknown significance
(VUS) as benign or pathogenic variants in the context of HRD in
tumors6. A variant was classified as a pathogenic or disease-
causing variant if the tumor that harbored it showed a second hit
and Sig 3. This approach had 100% sensitivity and 98.5 %
specificity in classifying 142 known benign and pathogenic
missense mutations in BRCA1/2. Thus, Sig 3 levels can be used
to identify new HR genes and new pathogenic variants in genes
that lead to BRCA-like tumors.
In this study, we designed a pipeline encompassing variant

calling and detection of second events involving somatic variants,
combined with mutational signature analysis for HRD detection.
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The pipeline was optimized for archival formalin-fixed paraffin-
embedded (FFPE) tumor tissues. We studied 38 unsolved BC
patients with either early-onset BC or a strong family history of BC
with no identified GPVs in known BCSGs (Supplementary Table 1).
We tested the hypothesis that their tumors are linked to HRD due
to alterations in genes that have not yet been definitively found
associated with heritable risk to BC (Fig. 1).
To identify possible genetic causes that underly BC in our cases,

we compiled a list of candidate genes implicated in HR which are
not on current genetic testing panels (see methods). We analyzed
whole-exome sequencing data (WES) of tumor/normal pairs to
look for potentially pathogenic rare variants and to search for
evidence of a second hit in the tumor based on a tumor
suppressor gene model as well as for evidence of an HRD
signature6 (Fig. 1).
Three identified variants were considered as pathogenic by

ClinVar: two variants were in the FANCA and GJB2 genes, but
neither showed a second hit. The third was a nonsense variant in
LIG4 that showed LOH in the tumor. We observed LOH of the WT
allele for 18 additional germline variants. We found five VUSs and
three variants with Conflicting Interpretation of pathogenicity
(CIOP) in APC, ATM, BRCA2, CHEK2, FLCN, and RAD51D; and the
remaining variants were not classified in ClinVar (Fig. 2,
Supplementary Fig. 1). No second somatic LOF alteration was
found in combination with a germline candidate variant. All
variants are summarized in Tables 1, 2.
To identify patients with HRD-related tumors, we used two HRD

classifiers tools. SigMA is tailored for WES tumor data and is used
to identify Sig 3 (Fig. 2, Supplementary Fig. 2). We also used
ScarHRD, which is based on evaluating genomics scars due to HRD
in tumor DNA and has been recently adapted for use with WES
data. We identified 7 HRD tumors based on SigMA, and 12 based
on ScarHRD (Supplementary Fig. 3). All 7 cases exhibiting an HRD
signature by SigMA analysis were those also classified as having

genomic scars consistent with HR defects by ScarHRD. Given that
WES is not ideally suited to detect large genomic events, we
considered the 7 tumors (18%) that were called positive by both
tools for further analysis (Fig. 2). This percentage is within the
range of detection reported by other HRD studies7,9–11. The only
HRD tumor with a germline BCSG candidate variant was from a BC
patient with the missense variant RAD51D p.S207L (case C10758).
Using copy number analysis, we were able to identify duplication
of the germline missense variant along with a trans allele loss,
resulting in copy neutral LOH (CN-LOH) event at the gene locus as
the second hit. We found a somatic deletion at a donor splice-site
in RAD51C associated with duplication-LOH in another tumor with
HRD (case JGH1), without germline events (Fig. 2). No other HRD
tumor was found to be associated with our candidate genes either
somatically or in the germline.
Variants in known BC drivers12 were found in 84% of tumors

(Fig. 2, Supplementary Fig. 4). Of these, TP53, GATA3, and CBFB
were considered as a driver (see methods). Three patients
harbored a PIK3CA hotspot mutation. We also detected somatic
alterations in three BC genes (PTEN, PALB2, and CDH1) in 4 other
patients. Copy number profiles were similar to observations from
previous BC cohort studies12,13.
Our pipeline worked well in calling variants in archival FFPE

tumors, which are more accessible than fresh tumor material.
Except for the RAD51D variant, which has a conflicting interpreta-
tion of pathogenicity (https://www.ncbi.nlm.nih.gov/clinvar/
variation/142102/), we did not find supporting evidence to
reclassify any ClinVar-described variants found in our HRD tumors
as pathogenic. The fact that we were able to independently
identify p.S207L RAD51D variant as a candidate pathogenic variant
using our pipeline demonstrates the robustness of the genomic
tools used in this study to reassess VUS. Although we sequenced a
highly selected population of BC patients from multiple-case BC
families, we did not find any other plausible GPVs in genes beyond
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Fig. 1 Study workflow. (1) all eligible women were selected based on their personal and family history of cancer (red and pink women) and
(2) received prior clinical screening. (3) unsolved cases were selected for WES through normal/tumor pair samples from blood lymphocytes
and FFPE tissues. (4) sequencing data were analyzed through a germline candidate variant detection algorithm focused on homology-
directed repair candidates following a classical BCSG model. (5) tumor landscapes were evaluated through a variant calling pipeline designed
to minimize artifacts and a second-hit detection strategy based on the biological mechanism (i.e. defects in the hr pathway). (6) candidate
BCSGs were re-evaluated in the context of a patient harboring a germline variant with an HRD tumor and second hit.
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those currently included in the clinical gene testing panels, which
is in line with recent studies14. We focused on HRD as a causal
mechanism in BC, but our approach could be of use to identify
germline drivers in other tumor types with mutational signatures
that are associated with defects in DNA repair pathways, such as
mismatch repair, hyper-mutated tumors, and base excision repair.
There are a number of caveats to our study. Our inability to

detect potentially pathogenic variants in recently confirmed
BCSGs (e.g. RAD51C and BARD110,15) as well in largely unexplored
HR genes could be due to the small sample size of our study. As
WES is not ideally suited to identify large structural rearrange-
ments associated with HR defects we could have missed tumor
harboring anomalies due to HRD. Also, it is possible that
undiscovered BCSGs do not operate via the HR pathway, and in
this case our HRD-based framework will not detect variants in
these genes. Finally, we cannot exclude the possibility that
variants were missed for technical reasons given the age of some
of the FFPE material, as one-quarter of our cases were diagnosed
more than 10 years prior to analysis, which likely affected the
quality of DNA for analysis. This limitation would not be as
relevant for somatic testing of freshly processed tissues in a
clinical context. Importantly, our study focused on WES data, so
we could not assess other molecular mechanisms affecting gene

function as potential contributors, such as complex structural
variations9 or somatic methylation events16.
Nones et al.17 took a similar approach using fresh frozen tumors

and were able to show that all but one causally unexplained BCs
with HRD were due to inactivation of BRCA1, BRCA2, or PALB2.
Taken together with the results we present here, we can conclude
that the tail of missing heritability due to HRD genes must be long
and thin. It also means that existing gene testing panels are
sufficient to identify carriers of clinically important BC genes using
a normal/tumor pair sequencing-based approach. We must
therefore look elsewhere to find the missing inherited suscept-
ibility present in these families.

METHODS
Samples selection
This study called “Genome-wide approaches in hereditary cancer families”,
study number A08-M61-09B, was created in 2011 and approved by the
McGill University Research Ethics Board. Participants to this study were
consented at two Montreal sites. Some participants were consented
directly into the scientific study at McGill University and its affiliated
hospitals. Others were recruited from a Montreal-based biobank entitled
“Banque d'échantillons biologiques et de données (cliniques et biologi-
ques) associées à des fins de recherche sur les cancers métastatiques du

Fig. 2 Co-mutation plot of germline and somatic landscape after HRD detection. The HRD status evaluated by SigMA (that estimates the
presence of Signature 3) is shown in the second row from the top, and columns with HRD based on SigMA are highlighted in vertical green
columns. ScarHRD, shown in row 3, calculates the HRD index and cases with HRD determined by this method that has scores great than 41 are
represented by red bars. The germline and somatic mutation status of candidate genes across patients are shown for four classes of genes
(rows 4–7). BCDG: Breast Cancer Driver Gene; CN-LOH: copy neutral LOH; Dup-LOH: Duplication with LOH; Del-LOH: hemizygous deletion
with LOH.
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sein et de l’ovaire” previously created in 2000 and approved by the CHUM
Institutional Review Board, approval number BD 04.002. We identified over
70 candidate families eligible for this study. All had early-onset BC or a
strong family history of breast cancer (median Manchester score 24, range
10-59). None carried a BRCA1/2 or PALB2 pathogenic or likely pathogenic
variant on clinical genetic testing. We reviewed approximately 130
pathology blocks to retrieve available BC tumor material that would be
suitable for analysis. Blood samples were only obtained from patients
where tumor material was successfully retrieved and processed. Of 59 FFPE
tumors with extracted DNA, 20 samples failed sequencing due either to
poor quality or insufficient quantity of DNA. WES was thus performed on
39 normal/tumor pairs of women with BC diagnosed between 1995 and
2017, but we removed one because of unresolved contamination issues.
The interval between diagnosis and sequencing ranged from a few months
to 22 years (median 3 years).

Normal/tumor WES sequencing
Genomic DNA was extracted from the patient’s peripheral blood
lymphocytes and tumor using published commercial protocols and kits
optimized in our lab (Maxwell RSC Buffy Coat DNA/Tissue DNA kits,
Promega). Library preparation, exome capture, and sequencing were
conducted over a period of 2 years, as material was obtained, reflecting
repeat assays for DNA samples that failed. A Panel of Normals (PoN)
comprised of 47 normal tissue samples, all sequenced using the same
protocol as we applied to tumor tissues, was used to assist in removing
recurrent technical artifacts due to formalin fixation. Genomic DNA libraries
were generated using one of the following: Nextera Rapid Capture Exome
Target (Illumina, San Diego, California), Sure Select Human All Exon V6, or
Sure Select Human All Exon V7 (Agilent). DNA samples were then
sequenced using Illumina sequencers and appropriate protocols available
at the time of sequencing: Illumina HiSeq 2000 as 100 bp paired-end reads,
Illumina HiSeq 2500 as 125 bp paired-end reads, and Illumina HiSeq 4000
as 100 bp paired-end reads (Illumina, San Diego, California).

Germline variant calling and filtering
Exome sequencing data analysis was performed using the pipeline we
developed for this project. Briefly, BWA (v. 0.5.9) and the Genome Analysis
Toolkit (GATK)18 were used to align the sequenced reads to the reference
genome (UCSC hg19) and to perform local realignment of reads around
small insertions and deletions (indels). PCR duplicate reads were marked
using Picard (https://github.com/broadinstitute/picard). The coverage of
consensus coding sequence (CCDS) bases was calculated by GATK,
resulting in a mean coverage of 141.3X (ranging from 26.9X to 250.6X)
and 97.3% of CCDS bases were covered by at least 10 reads. Germline
variants were called individually for each sample using HaplotypeCaller
from GATK and annotated by wAnnovar19. From the generated list of
germline variants, variants were filtered out if they fulfilled any one of the
following quality criteria: (i) genomic position of variant covered by <5
reads; (ii) <2 reads support the alternative variant; (iii); allelic fraction
between < 0.35 or >0.5; (iv) and mapping quality < 30. We then focused on
four categories of genes (n = 864): 20 BCSG frequently used in clinical
testing, and previously tested in our HBC cases; 594 “Candidate HR genes”
list (C-HRGs) purported to have co-evolved20 or known to interact in HR
(unpublished data from Dr. Alexander Orthwein); 103 known DNA repair
genes; and 147 other known Cancer Susceptibility Genes (CSGs)21

(Supplementary Table 2). Only variants having an allele frequency <0.01
based on allele frequencies in GnomAD22 and 1000 Genomes project23

were retained for further investigation.

Somatic variant calling and filtering
Somatic variants were called individually through normal/tumor paired
caller using Mutect224 for SNV and indel. The PoN was used as well as
germline population resources according to GATK’s best practice. Variants
were filtered out if they (i) displayed strand bias, to remove artifacts caused
by the formalin fixation process; (ii) were germline in origin; (iii) were due
to technical artifacts revealed by comparison to PoN, and (iv) had a depth
< 10 reads. Variants were next annotated with VEP25.

Somatic Copy Number Analysis and LOH detection
With GATK CNA, read coverage counts across the target were collected. We
created a separate copy number variation (CNV) PoN to reduce read
coverage data noise to obtain denoising copy ratios against the PoN. ThenTa
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we collected counts of reference versus alternate alleles for allelic
imbalance. We used GISTIC26 to assess recurrent focal amplifications and
deletions in tumors. We used FACETS27 and Sequenza28 to infer the integer
copy number of each pair of alleles as well as LOH. Hemizygous deletions
were defined as the loss of one allele in the tumor. Homozygous deletions
were defined as the loss of both alleles in the tumor. Amplification was
defined as a copy number status ≥ 6 per tumor for ERBB2, MYC, and
ZNF703.

Variant visualization
The Integrative Genomics Viewer29 was used for the manual examination
and visualization of all germline candidate variants, and somatic events.

Somatic cancer driver gene identification
A combination of several tools was used to infer drivers of oncogenesis
based on statistical methods through q-score to identify genes that were
mutated more often than expected by chance: MutSigCV30, Oncodri-
veFML31, MutPanning32, and FishHook33. Genes that were found mutated
more than once with a q-score < 0.05 were considered as cancer
driver genes.

Mutational signature and homologous recombination repair
deficiency detection
Different tools were used to assess the mutational signature from normal-
tumor paired WES VCF data: MutationalPatterns34, Maftools35, Decon-
structSig36 for tumor signature clustering and the mutational signature
contribution in each tumor. Different approaches were used: a de novo
mutational signature extraction using a non-negative matrix factorization
(NMF) and a COSMIC signature similarity using cosine similarity. We used
SigMA37 to detect the mutational signature associated with HR defect
designed for WES. We also used ScarHRD38 to detect HRD genomic scars—
genomic abnormalities characteristic of HRD, which is based on the sum of
LOH score, Large Scale Transition (LST) score, and Telomeric Allelic
Imbalance (TAI) score. A score of ≥ 42 classifies tumors as HRD (see
Supplementary Fig. 3).

Candidate variant selection algorithm
A list of candidate pathogenic variants was generated using our variant
detection algorithm (Supplementary Fig. 5). ClinVar annotations were used
to classify variants already reported, and when no ClinVar data was available,
we used the ACMG criteria. Variants classified as likely benign or benign by
ClinVar were filtered out. The master list of variants was comprised of
truncating, missense, or splice-site alterations found in gene candidates.
For non BSCG, missense and splice-site variants predicted to be

deleterious by at least 4 of 8 bioinformatic prediction tools (SIFT,
PolyPhen2, MutationTaster, FATHM, Provean, MetaSVM, MetaLR, and
CADD) were considered for further analysis. For known BSCG genes, we
considered all variants regardless of scores as these can be evaluated by
expertise. Truncating variants were classified separately. The candidate list
was comprised of 231 variants: 7 missense VUSs or variants with conflicting
interpretations of pathogenicity in known BCSGs, 46 truncating variants,
and 178 predicted pathogenic variants in C-HRGs, DNA repair genes, and in
CSGs. From this list of candidate genes, we searched for evidence of allelic
imbalance at each gene locus in the tumor using statistical tests (Chi-
squared test) and filtered out variants where the p-value was >0.05 and
confirmed with FACET results that there was a deletion of one haplotype
(see above). We also looked for somatic second-hit point mutations. Our
final list of candidate variants was comprised of genes that showed
evidence of a possible second mutational hit in the tumor.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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