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Abstract
Many central nervous system diseases currently lack effective treatment and are often associated with defects in microvascu-
lar function, including a failure to match the energy supplied by the blood to the energy used on neuronal computation, or a 
breakdown of the blood–brain barrier. Pericytes, an under-studied cell type located on capillaries, are of crucial importance 
in regulating diverse microvascular functions, such as angiogenesis, the blood–brain barrier, capillary blood flow and the 
movement of immune cells into the brain. They also form part of the “glial” scar isolating damaged parts of the CNS, and 
may have stem cell-like properties. Recent studies have suggested that pericytes play a crucial role in neurological diseases, 
and are thus a therapeutic target in disorders as diverse as stroke, traumatic brain injury, migraine, epilepsy, spinal cord 
injury, diabetes, Huntington’s disease, Alzheimer’s disease, diabetes, multiple sclerosis, glioma, radiation necrosis and amyo-
trophic lateral sclerosis. Here we report recent advances in our understanding of pericyte biology and discuss how pericytes 
could be targeted to develop novel therapeutic approaches to neurological disorders, by increasing blood flow, preserving 
blood–brain barrier function, regulating immune cell entry to the CNS, and modulating formation of blood vessels in, and 
the glial scar around, damaged regions.
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Introduction

Capillary pericytes have important roles in blood vessel for-
mation and stabilization [5, 149], blood–brain barrier (BBB) 
formation and maintenance [6, 11, 29], control of capillary 

diameter and cerebral blood flow (CBF) regulation [9, 54, 
55, 116], amyloid β clearance [124], mediation of neuroin-
flammation [67, 122, 135], glial scar formation [46], and 
in some circumstances they exhibit properties of stem cells 
[33, 98, 109]. Recent studies have revealed that pericytes 
have important roles in numerous CNS disorders including 
ischaemic stroke [36, 54, 155], epilepsy [84], spinal cord 
injury (SCI) [46, 89], diabetes [43], Huntington’s disease 
[35], Alzheimer’s disease (AD) [55, 124], multiple sclerosis 
(MS) [122], glioma [20, 53, 138, 148], radiation necrosis 
[87] and amyotrophic lateral sclerosis (ALS) [150]. In these 
disorders, pericyte malfunction often leads to BBB disrup-
tion and/or a decrease of blood flow, thus causing second-
ary neurological damage. In this review, we will initially 
introduce the biological characteristics of pericytes and then 
discuss how they act either protectively or to promote dam-
age in the progression of CNS disorders. We will focus in 
particular on the possible mechanisms and consequences 
for disease of pericyte contraction, pericyte death, abnormal 
angiogenesis, immunological derangement and scar forma-
tion, which will shed light on possible therapies for CNS 
diseases. We will first consider how pericytes are defined 
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and the heterogeneity of their properties, then review their 
main physiological functions, before describing how their 
malfunction contributes to different CNS diseases and sug-
gesting therapeutic approaches that are based on targeting 
pericytes.

Defining pericytes and their heterogeneity

Pericytes, also known as mural cells (a classification which 
also includes vascular smooth muscle cells around arteri-
oles) or Rouget cells, were first described by the German sci-
entist Ebert in 1871 and the French scientist Rouget in 1873. 
They were named as “pericytes” by Zimmermann in 1923 
[81, 166] due to their location enveloping the endothelium, 
and being embedded in the basement membrane outside 
brain vessels including capillaries, post-capillary venules 
and terminal arterioles (Figs. 1, 2) [5].

Even today, correct identification of pericytes is challeng-
ing because of their heterogeneity [5, 49, 59], an understand-
ing of which is likely to be important for understanding their 
role in disease. For example, there are more contractile peri-
cytes expressing α smooth muscle actin (αSMA) at the arte-
riole end of the capillary bed [9, 64] (out to the 4th branch-
ing order of the capillary bed), there is probably differential 

regulation of immune cell migration by pericytes at different 
locations along the capillary bed [135], and a subset of peri-
cytes can proliferate after CNS injury and contribute to the 
scar which isolates damaged tissue from surrounding healthy 
tissue [32, 46, 63]. Furthermore, pericytes need to be dis-
tinguished from a population of fibroblast-like cells that are 
present on CNS blood vessels other than capillaries [144].

Nevertheless, platelet-derived growth factor receptor β 
(PDGFRβ) [90], alanyl aminopeptidase (CD13) [82], the 
proteoglycan neuron-glial antigen 2 (NG2) [110] and desmin 
[99] are markers often used to identify pericytes (Fig. 2), 
with α smooth muscle actin being used to define a contractile 
sub-class of pericytes [100]. Other markers, such as regula-
tor of G-protein signalling protein 5 (RGS5) [18], SUR2 
(ATP-binding cassette transporter subfamily C member 9 or 
ABCC9) [17], Kir6.1 (potassium inwardly rectifying chan-
nel subfamily J member 8) [17], delta-like non-canonical 
Notch ligand 1 (DLK1) [17], T-box transcription factor 18 
(Tbx18) [50], GLAST [46] and endosialin [23], also label 
pericytes, but in addition label other cells. The expression of 
all these markers changes during growth and development, 
and may be up- or downregulated in pathological conditions 
[5]. Therefore, cell morphology, anatomical position, and the 
absence of endothelial and glial cell markers, should also 
be taken into consideration to reduce misidentification of 
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Fig. 1  Functions of CNS pericytes in health. Pericytes form a chain 
contacting endothelial cells [14], interacting physically with them via 
a peg and socket structure. Several functions of CNS pericytes are 
illustrated. (1) BBB formation and maintenance, by regulating tight 
and adherens junctions, and transcytosis across endothelial cells. (2) 
Immunoregulation by pericytes regulating the entrance and move-
ment of immune cells such as neutrophils. (3) Capillary diameter 

(arrows) and hence CBF are regulated by α smooth muscle actin-
expressing circumferential processes of pericytes on at least the first 
four branching order vessels of the capillary bed. (4) Angiogenesis 
and vessel stabilization are mediated by pericytes during the develop-
ment and repair of the vasculature. (5) Pericytes can proliferate after 
conditions like ischaemia, and may also be able to differentiate into 
other cell types
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pericytes. In particular, a standard anatomical criterion for 
defining pericytes on capillaries is that they have spatially 
isolated nuclei, with processes running along the capillary 
that separate them from the next pericyte soma along the 
vessel. This distinguishes them unambiguously from vas-
cular smooth muscle cells (vSMCs), which abut each other 
when forming the smooth muscle around arterioles. Ignoring 
this fundamental distinction has led to a recent misidenti-
fication [64] of contractile pericytes, which express αSMA 
and extend processes wrapping around capillaries, as being 
vSMCs (see discussion in Ref. [9]).

The use of genetic mouse models such as NG2-dsRed 
[126], NG2-EYFP [160], RGS5-GFP [109], NG2-eGFP 
[64] and NG2/PDGFRβ-tdTomato [59] mice, which label 

(at least some classes of) pericytes and their progeny, has 
paved the way for studying the fate of pericytes in physi-
ology and pathology using intravital imaging. Addition-
ally, the development of NG2- and PDGFRβ-driven Cre 
expression (constitutive or inducible) which can be crossed 
with specific floxed mice lines to delete genes of interest, 
may aid the field in gaining a deeper understanding of the 
role of pericytes in physiological and pathological set-
tings [25]. Some pericyte-deficient mice, such as  Pdgfbret/

ret mice in which the PDGF-B retention motif is depleted 
to disrupt its binding to heparan sulphate proteoglycans 
[91] and Pdgfrβ+/− or Pdgf hypomorph mice, which have 
a 20–50% reduction of pericytes [6, 11, 29], have also 
been created to study the effect of pericyte degeneration 

Fig. 2  Morphology of, and 
common labelling methods for, 
pericytes. a Human cortical per-
icytes, in healthy tissue removed 
to allow glioma removal. 
Isolectin  B4 tagged with a green 
dye is used to label the base-
ment membrane, which extends 
along capillaries and around 
pericytes. Pericytes can be seen 
on straight parts of the capillary 
and at junctions [white and yel-
low arrow-heads, respectively, 
here and in c]. b Human cortical 
pericyte as in a, labelled for  IB4 
(green) and the pericyte marker 
PDGFRβ. c Cortical capillaries 
labelled for  IB4 (green) in an 
NG2-DsRed mouse in which 
pericytes are red. d Larger 
views of the top left pericyte 
show circumferential DsRed-
labelled processes (arrows) that 
will adjust capillary diameter 
when they contract
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on neurovascular function. However, the use of some 
mouse lines requires care. For example, along with being 
expressed in pericytes, NG2 is also expressed in oligo-
dendrocyte progenitor cells and PDGFRβ is reported to be 
expressed in some neurons, so understanding the effects 
of Cre driven by the promoters for these proteins requires 
control experiments to be sure that the effects seen are 
mediated by pericytes.

It has recently been reported that a subset of pericytes 
specifically take up the fluorescent Nissl dye NeuroTrace 
500/525 so that they can be distinguished from other brain 
cells, which may also open a window for studying pericyte 
behaviour in physical and pathological states [28]. Why 
this label preferentially enters pericytes is unclear, and 
it is still uncertain whether this dye labels all pericytes 
or just the non-contractile pericytes in the middle of the 
capillary bed.

Transcriptome studies of pericyte 
heterogeneity

Ultimately we can hope that transcriptome and proteome 
studies will define precisely the mRNA and protein expres-
sion of pericytes at different positions along the capillary 
bed, and how they change in disease. However, for “-omics” 
studies, it is essential to have a marker for the cells to be 
studied (to isolate and sort the cells), and choosing one 
particular marker to define pericytes may well lead to the 
exclusion of certain subclasses of the cells. Indeed, studies 
to date have given very different results when characterising 
pericyte mRNA expression.

For example, comparison of five different mural cell 
(pericyte plus vascular smooth muscle cell) transcriptomes 
by the Betsholtz group [62] revealed a “surprisingly limited 
overlap” of the main genes expressed, with the five studies 
reporting only three “core” transcripts in common. Two of 
these transcripts were related to actomyosin contraction, yet 
a subsequent study by the same group [144] reported that 
pericytes express almost no α smooth muscle actin. This 
is very surprising, since pericytes are visibly observed to 
contract and relax in videos provided by several studies 
[54, 116], and α smooth muscle actin has been observed 
in immunohistochemical studies of pericytes by numer-
ous groups [2, 9, 10, 64, 156] (even in mid-capillary bed 
pericytes when actin depolymerisation is inhibited [2]). At 
present it is unclear whether these discrepancies reflect dif-
ferences in the method of selecting pericytes for transcrip-
tome analysis, a rapid down-regulation of αSMA expression 
during processing for the transcriptomic analysis, or media-
tion of contraction by a previously unappreciated process 
(perhaps involving γ actin [49]).

Normal functions of pericytes underlying 
their role in CNS disease

Below we will describe recent data showing how peri-
cytes contribute to CNS disorders. To understand their 
role in disease, it is essential to understand the normal 
functions of pericytes and how they may vary between 
pericytes at different locations on the capillary bed. Here, 
therefore, we will review the main functions of pericytes, 
before describing how deficits in these pericyte functions 
contribute to neuronal damage in disease.

Blood vessel formation

Pericytes play a key role in the generation of new blood 
vessels. A complex web of bidirectional signalling path-
ways mediating interactions between endothelial cells and 
pericytes is essential for forming new blood vessels and 
stabilising existing ones (clinical disorders resulting from 
defects in the operation of these pathways are discussed 
below). Briefly (for reviews see [134, 139]), endothelial 
cells release PDGF-BB which binds to PDGFRβ on peri-
cytes, enhancing their proliferation and recruiting them 
to the endothelial tube. An association of pericytes with 
capillaries is essential for a capillary to be stable [90], and 
in the brain it is also a prerequisite for a properly func-
tioning blood–brain barrier (see below). Signalling medi-
ated by pericyte-derived angiopoietin-1 (Ang-1) binding 
to Tie-2 tyrosine kinase receptors mainly on endothelial 
cells (but also on pericytes [141]) promotes vessel forma-
tion by increasing endothelial cell proliferation, migration 
and survival [1], while a related ligand, Ang-2 (expressed 
in developing blood vessels), inhibits the effects of Ang-
1. TGF-β1, which is produced by endothelial cells and 
pericytes, induces the formation of pericytes and inhibits 
endothelial cell proliferation [5, 13], while in hypoxic con-
ditions VEGF is produced and induces proliferation and 
migration of pericytes [68, 159]. Together, these pathways, 
with additional signalling via Notch-3 [146] and NG2, lead 
to the formation of a fairly regularly spaced array of capil-
laries (with pericytes located at intervals along them) that 
deliver adequate oxygen and glucose to the CNS tissue. 
Interestingly, the ratio of pericytes to endothelial cells is 
somewhat higher in CNS tissue than in most other vascular 
beds and varies between CNS locations [5, 38], presum-
ably reflecting some quantitative difference in the strength 
of signalling by all these pathways that results in an ade-
quate number of pericytes to maintain an adequate vessel 
density, blood flow and BBB function. Table 1 summarizes 
the functions and disorders in which these signalling path-
ways are involved.
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Constriction and dilation of capillaries

Calcium-dependent contraction of pericyte processes that 
run around capillaries (Fig. 2d) evokes capillary constric-
tion. This occurs both in response to pericyte depolarization 
produced by a microelectrode (which is presumed to open 
voltage-gated  Ca2+ channels in the pericytes, as will a rise of 
 [K+]o in pathology), and when a rise in  [Ca2+]i is evoked by 
a range of neurotransmitters and other vasoactive molecules 
including noradrenaline, ACh, ATP, angiotensin II, endothe-
lin-1 and lactate [54, 72, 73, 83, 89, 116, 142, 151, 153]. A 
claim that these constrictions are mediated by vSMCs [64] 
has been explained to reflect an erroneous definition of peri-
cytes [9]: any contractile cell on vessel walls with circum-
ferential processes was defined in Ref. [64] to be a vSMC, 
ignoring the conventional (nearly 100 year old) definition of 
spatially isolated mural cells (even those with circumferen-
tial processes) as being pericytes [81, 166]. Noradrenaline 
release from locus coeruleus neurons confers a contractile 
tone to pericytes. This allows pericyte relaxation, capillary 
dilation and an increase in capillary blood flow [15, 54, 
79] when neuronal activity releases dilating factors such as 
glutamate (which evokes ATP release from neurons, thus 
raising astrocyte  [Ca2+]i and generating prostaglandin  E2 
release), adenosine or lactate, or when NO is released from 
endothelial cells [27, 42, 54, 116, 152, 153]. When neurons 

are active, pericytes relax and increase the diameter of capil-
laries faster than vSMCs relax to dilate penetrating arterioles 
[54, 79]. Since most of the vascular resistance within the 
brain parenchyma is located in capillaries [47], and the mag-
nitude of the dilation that pericytes produce of capillaries is 
similar to that which occurs in penetrating arterioles when 
neurons are active [54], it follows that pericyte-mediated 
capillary dilation contributes significantly to the increase 
of blood flow that is triggered by neuronal activity [15, 54, 
79]. Interestingly, even mid-capillary bed pericytes (which 
mainly lack circumferential processes that could contract to 
provide tone) may regulate blood flow by adjusting capillary 
diameter, perhaps by altering growth of the endothelial tube 
[14] or by relaxing and decreasing vessel wall stiffness when 
neurons are active to allow easier passive dilation [121].

Blood–brain barrier maintenance

The BBB is conferred by tight junctions between endothe-
lial cells, and low rates of transcellular vesicular transport 
(transcytosis) across CNS endothelial cells. Transgenic 
experiments in which the level of PDGFRβ is reduced, 
thus reducing the number of pericytes present by up to 
50%, have revealed that the presence of pericytes is essen-
tial to maintain the BBB [6, 11, 29]. Pericytes achieve 
this by: (1) increasing endothelial expression of Ang1 and 

Table 1  Molecules mediating pericyte–endothelial cell interactions and their associated disorders

Signalling Function Dysfunction Reference

PDGF-BB/PDGFR Mesenchymal cell differentiation, mural 
cell proliferation, recruitment, migration, 
endothelial cell–pericyte attachment

Fahr’s disease (idiopathic basal ganglia cal-
cification, with loss of function mutations 
in PDGFB and PDGFRB)

Ageing and AD (plasma PDGF-BB levels 
and CSF soluble PDGFRβ levels rise)

Amyotrophic lateral sclerosis
Diabetes (PDGF-BB level is elevated, 

hyperglycaemia causes the downstream 
PDGFRβ signal transduction cascade to 
induce pericyte apoptosis)

[16, 43, 74, 95, 101, 125, 150]

TGFβ/TGFβR2 Mural cell proliferation, migration, differen-
tiation and survival; promotes expression 
of contractile and extracellular matrix 
(ECM) proteins; cooperates with Notch 
signalling to promote N-cadherin expres-
sion

Intraventricular haemorrhage
Cerebral cavernous malformation
Ischaemic stroke

[51, 88, 92, 128, 140, 145]

Ang/Tie2 Maintains the balance of vessel maturation 
and stability

Diabetes
Ischaemic stroke
Cerebral cavernous malformation

[26, 162]

Notch Pericyte survival and expression of 
N-cadherin

Cerebral cavernous malformation
Intraventricular haemorrhage
Glioblastoma
CADASIL (Notch3 mutations)

[44, 69, 80, 106, 128, 146]

VEGF-A/VEGFR2 Promotes cell survival, angiogenesis and 
vascular permeability

Ischaemic stroke
Traumatic brain injury
Glioblastoma

[34, 45, 68, 76, 105, 159]
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decreasing expression of Ang2, which leads to a suppres-
sion of vascular permeability [6]; (2) promoting expression 
of the major facilitator superfamily domain containing 2a 
(Mfsd2a) transporter protein in endothelial cells, which in 
turn suppresses vesicle-mediated transcytosis across the 
endothelial layer [6, 12, 22, 29]; and (3) maintaining tight 
junction protein expression in older animals [11]. Loss 
of pericyte-induced BBB function leads to influx into the 
brain parenchyma of molecules with a molecular weight 
up to 500 kDa, including serum proteins (such as thrombin 
and fibrinogen) and perhaps other toxic molecules (such 
as glutamate and ATP) that cause neuronal and vascular 
damage and lead to microglial activation [11]. Pericyte-
deficient mice have reduced cerebral blood flow resulting 
in neurovascular uncoupling, reduced oxygen supply to 
brain and metabolic stress [79].

Regulation of immune cell entry

In pathology, immune cells enter the brain. This process 
is regulated by pericytes. Transgenic deletion of pericytes 
leads to an upregulation of leukocyte adhesion molecules 
and plasmalemma vesicle-associated protein (PLVAP) in 
endothelial cells [29]. PLVAP regulates leukocyte migra-
tion both in blood vessels and lymphatic vessels [52, 118]. 
In muscle it has been shown that leukocytes cross the ven-
ule endothelial cell layer and then migrate along pericyte 
processes before exiting into the tissue at gaps between 
pericytes [117], while work in the placenta has shown 
that, having entered the tissue, they are then attracted to 
capillary pericytes by release of the chemoattractant mac-
rophage migration–inhibitory factor (MIF) [135]. Loss of 
pericytes leads to leukocytes entering the brain, and may 
modulate the inflammatory response [29, 122].

Proliferation and migration in response to injury

CNS injury evokes a recruitment of immune cells to the 
injury site, but also astrogliosis which leads to the forma-
tion of a so-called ‘glial scar’ around the injury site, form-
ing a barrier between the injured and the non-injured tis-
sue which may reduce further neuronal loss, at the possible 
expense of hindering the regeneration of axons through 
the lesion [3, 147, 165]. Some cells within the glial scar 
express NG2, which may contribute to the hindrance of 
axon regrowth [96]. Although some of these cells are oli-
godendrocyte precursor cells, a significant fraction of cells 
within the glial scar are apparently derived by proliferation 
and migration of a subset of NG2-expressing pericytes that 
express the glutamate transporter GLAST [32, 46, 63].

Role in CNS disorders

Given the important roles of pericytes in normal CNS 
function described above, it is unsurprising that they play 
a major role in disease. In general, such contributions 
include alterations in vasculogenesis, capillary diameter, 
BBB function, immune cell entry and glial scar forma-
tion (Fig. 3). In this section, we will review the evidence 
for these actions in a series of neurological diseases, 
before considering what drug treatments might be used 
to target pericytes therapeutically. We deal first with dis-
orders involving energetic challenge and cell depolariza-
tion (stroke, the spreading depression occurring in trau-
matic brain injury and migraine, epilepsy and spinal cord 
injury), then a situation of energy-oversupply (diabetes), 
before discussing protein malfunction diseases (Hunting-
ton’s and Alzheimer’s), and finally diseases that cannot 
easily be grouped with others including multiple sclerosis, 
glioma, radiation necrosis and amyotrophic lateral scle-
rosis. In general, the evidence cited comes from animal 
models of disease, but where possible we describe human 
patient or post-mortem data.

Stroke

During ischaemia, for example caused by block of an 
upstream artery, pericytes constrict capillaries both 
in vitro and in vivo [54, 116, see also 64 but note that this 
paper mis-named pericytes as smooth muscle cells)]. This 
is presumably because the fall of ATP levels in pericytes 
leads to less  Ca2+ extrusion and a rise of  [Ca2+]i—a pro-
cess facilitated by the large rise of  [K+]o and concomitant 
depolarization of all cells that occurs during the anoxic 
depolarization which occurs after a few minutes of ischae-
mia [57]. In profound ischaemia (“chemical ischaemia”, 
which prevents synthesis of ATP from either glycolysis or 
oxidative phosphorylation), this constriction occurs over 
15–30 min [54], and a similar pericyte-mediated constric-
tion of coronary capillaries occurs within 45 min when the 
heart experiences ischaemia in vivo [103]. In the brain this 
constriction, which will reduce blood flow, is followed by 
the pericytes dying [36, 54]. This death is thus expected to 
occur with the pericytes in rigor, constricting the capillar-
ies [54], suggesting that, even after the upstream artery is 
unblocked by administration of tissue plasminogen activa-
tor or use of a stent retriever, a long-lasting decrease of 
blood flow will occur (until the dead pericytes are removed 
by microglia). In animal experiments, this so-called no-
reflow phenomenon leads to blood flow being reduced 
by ~ 45% when the upstream artery is unblocked [61], 
which presumably contributes to continuing generation 
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of neuronal damage. In addition to the loss of blood flow, 
neuronal damage will also be promoted by any loss of 
blood–brain barrier function [6, 11, 29] which results from 
pericyte death.

These data suggest that better restoration of cerebral 
blood f low and maintenance of BBB function after 
ischaemia might be achieved by the development of 

therapies targeted at preventing capillary constriction by 
pericytes, and preventing pericyte death. Below, we will 
consider strategies to achieve this. In the longer term after 
ischaemia, as described below for spinal cord injury, peri-
cytes also proliferate and migrate to contribute to the scar 
that forms around damaged tissue [36].

Fig. 3  Pericyte responses to 
brain injury. Injury can: (1) 
induce pericyte (green) medi-
ated constriction of capillaries; 
(2) evoke pericyte-mediated 
regulation of immune func-
tion by recruitment of immune 
cells (leukocytes, blue) to the 
brain parenchyma, phagocytosis 
(of green circles) and release 
of factors (blue open circles) 
that modulate microglial and 
macrophage function; and (3) 
cause loss of BBB function 
with detachment of pericytes 
from capillaries and apoptosis, 
and vessel leakage. Later after 
injury, pericytes proliferate and 
migrate to contribute to the scar 
around the damaged area, and 
promote blood vessel formation 
to re-supply the damaged area 
with nutrients
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Spreading depression

Cortical spreading depression (SD) is a wave of profound 
neuronal depolarization triggered either by brain trauma, 
epilepsy (discussed below) or during migraine attacks. After 
traumatic brain injury in human patients, the occurrence of 
SD waves correlates with long-term brain damage [58], 
probably at least in part due to the reduction of blood flow 
that occurs. SD is associated with a rise of  [K+]o to ~ 25 mM, 
and a prolonged decrease of cerebral blood flow that is gen-
erated by release of the vasoconstricting arachidonic acid 
derivative 20-HETE [37]. Although the involvement of peri-
cytes in the reduction of blood flow remains to be shown, 
pericyte-mediated capillary constriction by 20-HETE may 
occur in these conditions, since 20-HETE is known to con-
strict pericytes [54], and much of the adjustable vascular 
resistance within the brain parenchyma is located in capil-
laries [47].

Epilepsy

In animal models of epilepsy, it has recently been shown that 
focal capillary constrictions occur in close spatial associa-
tion (< 3 μm) with NG2-expressing mural cells (pericytes 
in this case), and that these constrictions are surrounded by 
regions of neuronal damage [84]. Although the stimulus for 
the constriction was not studied, a rise of  [K+]o during the 
seizure might lead to pericyte depolarization and activation 
of voltage-gated calcium channels, evoking  Ca2+ entry and 
pericyte myofilament contraction. Alternatively, the seizure-
evoked  [K+]o rise could evoke local release of noradrenaline 
from locus coeruleus axon terminals, or the seizure-associ-
ated rise of  [Ca2+]i might evoke the release of arachidonic 
acid from astrocytes and generation of vasoconstrictive 
20-HETE [8], as occurs in spreading depression [37]. In 
addition, status epilepticus is associated with increased 
turnover of pericytes, associated with vessel leakage and a 
decreased responsivity to glutamate and endothelin [4, 93].

Spinal cord injury

Spinal cord injury (SCI) often leads to a crushing of blood 
vessels, generating ischaemia, which may result in peri-
cytes constricting capillaries and dying, as described above. 
Recently, however, another pericyte-mediated constriction 
mechanism that decreases spinal blood flow, and produces 
hypoxia below the lesion, has been revealed [89]. Below the 
lesion, pericyte 5-HT1 and α2 adrenergic receptors become 
activated, evoking capillary constriction, despite the fact that 
the lesion often leads to a loss of descending monoaminer-
gic neurons. Activation of these receptors results from the 
production of trace amines (e.g., tryptamine and tyramine) 
by pericytes that ectopically express the enzyme aromatic 

l-amino acid decarboxylase (AADC), which synthesizes 
trace amines from dietary amino acids such as tryptophan 
[48]. The resulting contraction of pericytes locally constricts 
capillaries, thus reducing blood flow and causing a chronic 
state of hypoxia in the spinal cord below the injured site for 
months in a rat model of SCI. Blocking these amine recep-
tors or AADC was found to restore blood flow and return 
the tissue oxygen level to normal below the lesion [89], and 
this improved the motor function and locomotion. Remark-
ably, inspiring a higher than normal oxygen concentration 
also raised the oxygen level below the lesion for a prolonged 
period (~ 20 min), perhaps by increasing neuronal activity 
and thus evoking the release of vasodilating factors that 
increased blood flow [89].

Suppression of trace amine generation or blocking the 
downstream pericyte constriction therefore seem to be prom-
ising approaches for partial restoration of function after SCI. 
The long-lasting effect of raising the local oxygen level by 
transiently breathing hyperoxic air also suggests the pres-
ence of a positive feedback loop, whereby an increase of 
local blood flow produces a further increase of flow, which 
might potentiate the effect of therapeutic interventions.

A further aspect of pericyte function after spinal cord 
injury is that a subset of pericytes (possibly pericytes with 
properties different from those releasing the trace amines) 
migrates to form the fibrotic core of the glial scar around the 
spinal lesion [46]. There is controversy over the functional 
consequences of the pericyte contribution to the scar, with 
one study claiming it is needed for revascularisation of the 
damaged area [63] and another claiming that it reduces axon 
regrowth through the lesion [32].

Diabetes

Pericyte loss from retinal capillaries is an early symptom of 
diabetic retinopathy. The high blood glucose concentration 
occurring in diabetes activates a pathway, involving protein 
kinase C δ (PKC-δ) and MAP kinase, which induces a tyros-
ine phosphatase (SHP-1) to dephosphorylate PDGFRβ and 
thus inhibit endothelial PDGF-BB signalling to pericytes 
via this receptor [43]. This leads to pericyte apoptosis, and 
a decrease in the number of pericytes on capillaries [13, 19]. 
 P2X7 receptor activation [137], and increased secretion of 
Ang2 from endothelial cells acting via the α3β1 integrin-p53 
pathway [56, 114], can also contribute to pericyte apopto-
sis in diabetes. The loss of capillary pericytes causes loss 
of blood–retina barrier function. This can be reversed by 
applying β adrenergic agonists, which may act via Akt [158]. 
Pericyte loss also leads to microaneurysms [143], which can 
leak and cause local oedema. Diabetes may similarly induce 
pericyte loss from brain capillaries [131, 133], although this 
has been less studied. Pericyte-targeted therapy may thus be 
useful to protect the retina and brain in diabetes.
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Huntington’s disease

Huntington’s disease (HD) is caused by a mutation (a tri-
nucleotide repeat) in the first exon of the huntingtin gene, 
which results in a loss of medium spiny neurons in the stria-
tum. HD in humans is also associated with a loss of BBB 
function, resulting from a decrease in tight junction expres-
sion and an increase in endothelial transcytosis, which may 
reflect a decrease in PDGFRβ expression in pericytes [35]. 
There is an increase of vessel density, possibly due to more 
VEGF release from reactive astrocytes, and pericyte density 
may increase early in the disease but decrease later on [65, 
112]. The pericyte changes early in the disease precede neu-
ronal loss [112], and may therefore contribute to that loss.

Alzheimer’s disease

In Alzheimer’s disease (AD), amyloid β accumulates around 
the walls of arterioles and capillaries, a condition termed 
cerebral amyloid angiopathy (CAA). Capillaries in the 
brains of AD patients also show an abnormal focally con-
stricted morphology [60, 77] with some resemblance to that 
produced by pericyte contraction [54, 116]. This presumably 
contributes to the decrease of cerebral blood flow seen in 
human AD, which is one of the first changes to occur and 
which can be greater than 40% [7, 66]. This CBF reduc-
tion may also, in part, reflect a decrease of the coupling 
between neuronal activity and blood flow [102], which is 
partly mediated by pericytes [54, 78, 94]. In human AD and 
its mouse models, a loss of pericytes from the capillary wall 
coincides with a loss of blood–brain barrier function [124, 
130], consistent with the role of pericytes in maintaining 
the BBB that was discussed above. Loss of pericytes also 
appears to promote amyloid β accumulation, tau pathology 
and early neuronal loss [124]. These changes suggest that 
therapies aimed at maintenance of normal pericyte function 
in AD may, by preventing the decrease of CBF and loss of 
BBB function, serve to preserve neuronal function longer.

Multiple sclerosis

In multiple sclerosis (MS), peripheral lymphocytes are 
believed to enter the CNS (a process which may be regu-
lated by pericytes: [29, 52, 117, 118, 135]) and damage 
myelin and neurons, although there may also be a hypoxic 
component to the disease [30] which could theoretically 
induce pericyte loss as in brain ischaemia. Indeed, a loss 
of BBB function associated with pericyte degeneration is 
an early feature of human MS [24]. In transgenic mice with 
low pericyte numbers [31], differentiation of oligodendro-
cyte precursor cells is slowed during remyelination after a 
demyelinating insult. Based on culture experiments, this 
was suggested to reflect laminin 2 derived from pericytes 

promoting differentiation (and pericytes may also secrete 
other pro-regenerative molecules [41]), however, interpreta-
tion is complicated by the loss of BBB function that occurs 
in vivo when pericyte number is decreased.

Glioma

Growing tumours require a supply of energy and carbon skel-
etons and thus need to become vascularised. In the hypoxic 
tumour environment, vascular endothelial growth factor 
(VEGF) is released by the hypoxia and acts on endothelial 
cells to promote angiogenesis; consequently antibody (beva-
cizumab) to VEGF has been used clinically to try to sup-
press blood vessel formation, but patients become resistant 
to this treatment. Another signalling mechanism that may be 
worthy of therapeutic attention is the PDGF-BB—PDGFRβ 
pathway since, to become vascularised, glioma cells express 
PDGF-BB to attract pericytes to newly formed vessels [53, 
138, 148]. Some of the pericytes mediating this function 
may differentiate from tumour stem cells [20]. In addition, 
PDGFRβ signalling promotes expression of IL-33 by peri-
cytes, which recruits tumour-associated macrophages that 
promote tumour metastasis [154]. Therapeutically target-
ing pericytes to prevent angiogenesis and IL-33 production 
might thus be used to restrict tumour growth.

Radiation necrosis

Treatment of tumours with radiation, within or outside the 
brain, is associated with a loss of pericytes and endothelial 
cells from the capillaries nearby [87, 127], causing, in the 
case of the human brain, a leaky BBB and neuronal damage.

Amyotrophic lateral sclerosis

In human ALS, pericyte loss occurs from spinal cord capil-
laries, and the magnitude of the loss is correlated with break-
down of the blood–spinal cord barrier and accumulation of 
blood proteins in the parenchyma [150]. This suggests that 
prevention of pericyte loss might help to ameliorate the pro-
gression of ALS.

Targeting pericytes to ameliorate brain 
disorders

Common themes recur in the roles of pericytes in the disor-
ders considered above. In disease, pericytes can:

1. constrict capillaries and reduce cerebral blood flow (epi-
lepsy, stroke, spinal cord injury, and possibly spreading 
depression and Alzheimer’s disease);
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2. cause a loss of BBB function by dying or decreasing 
PDGFRβ expression (stroke, epilepsy, Huntington’s dis-
ease, Alzheimer’s disease, diabetes, multiple sclerosis, 
radiation necrosis, ALS);

3. migrate to a damaged area to isolate it but may thereby 
prevent neuronal regeneration through the damage site 
(spinal cord injury, stroke);

4. be involved in angiogenesis in any insult that involves 
blood vessel loss or tissue growth (spinal cord injury, 
traumatic brain injury, stroke, glioma); and

5. probably regulate immune cell entry in the majority of 
disorders (stroke, spinal cord injury, epilepsy, Alzhei-
mer’s disease, multiple sclerosis).

How can the negative aspects of pericyte function in dis-
ease be targeted therapeutically, while promoting the ben-
eficial functions?

Targeting drugs to CNS pericytes

Two generic issues of developing therapies for CNS pericyte 
malfunction are: (1) how to get the drug across the BBB, and 
(2) how to make it act specifically on pericytes.

In some diseases, the BBB will already be defective at 
sites where pericytes are malfunctioning, perhaps providing 
an automatic specificity in the brain region where peripher-
ally administered drug action will occur. Alternatively, new 
methods for achieving penetration of the BBB may be used, 
such as encapsulating drugs in liposomes or other types of 
nano-carriers [40, 42, 164].

Some proteins that may be attractive therapeutic targets 
may happen to be expressed only on pericytes or their inter-
acting endothelial cells (such as Tie2: [161]), while others 
may be also expressed on other cell types (such as PDGFRβ 
[161]). For the less selectively expressed targets, it will be 
necessary to devise drugs that, in addition to recognising 
their therapeutic target, also bind to another molecule that 
is selectively expressed on pericytes (or interacting cells).

Preventing pericyte‑mediated constriction 
of capillaries and pericyte death

Since pericyte-mediated constriction and the pericyte death 
which occurs in ischaemia are both mediated by  Ca2+ entry 
[54, 116], a potential therapeutic approach would be to apply 
blockers of pericyte voltage-gated  Ca2+ channels as early as 
possible after an ischaemic event, for example, when remov-
ing an arterial thrombus with a stent retriever or with tissue 
plasminogen activator. Indeed, voltage-gated  Ca2+ channel 
blockers slow ischaemia-evoked capillary constriction in 
brain slices [104], and also reduce pericyte death evoked 
by ATP [136] or ischaemia (R. Nortley, F. O’Farrell and D. 
Attwell, unpublished). Consistent with this, an unpublished 

study  by A. Neuhaus, Y. Couch, B. Sutherland and A. 
Buchan has found that administering nimodipine at the end 
of a period of middle cerebral artery occlusion in rats leads 
to improved blood flow after the simulated stroke and a 
better behavioural outcome. Similarly, administering nano-
carrier-attached adenosine (which may decrease calcium 
channel activity) maintains capillary dilation after ischaemia 
and improves behavioural outcome [42]. These approaches 
may also be beneficial in migraine [75], and after traumatic 
brain injury or subarachnoid haemorrhage, when pericyte 
constriction of some capillaries can induce heterogeneity of 
the transit time for blood flow through the capillaries which 
decreases oxygen supply to the tissue [107, 108].

The rise of  [Ca2+]i that evokes pericyte constriction of 
capillaries might be significantly potentiated by pericyte 
depolarization generated by  Ca2+-activated chloride chan-
nels [151], as in smooth muscle [119]. Block of these chan-
nels would offer another possible target for reducing capil-
lary constriction in pathology.

The constriction of pericytes that occurs below spinal 
cord injuries and leads to local hypoxia, may be relieved by 
blocking the AADC enzyme that produces trace amines that 
constrict the pericytes, or blocking the receptors that these 
amines act on [89]. It is likely that, in other disorders (e.g., 
spreading depression, epilepsy and Alzheimer’s disease), 
signalling pathways upstream of pericyte  Ca2+, or operat-
ing in parallel with pericyte  Ca2+ (such as oxidative stress in 
ischaemia, which promotes occlusion of vessels by pericytes 
[156]), will be found that can be blocked to relieve pericyte-
mediated capillary constriction.

Prevention of loss of BBB function

BBB function may be maintained by preventing pericyte 
death, either as described above for conditions involving a 
rise of pericyte  [Ca2+]i, or by targeting specific death-induc-
ing pathways in other disorders, such as PKC-δ in diabetes 
[43]. In conditions more mild than those involving pericyte 
death, BBB function can be improved by promoting inter-
actions between pericytes and endothelial cells, to preserve 
the activity of Mfsd2a and suppression of transcytosis that 
are essential for normal BBB function [12, 22]. This can be 
achieved by increasing PDGF-BB signalling from endothe-
lial cells to PDGFRβ receptors on pericytes (mirroring the 
loss of BBB function which occurs when PDGFRβ signal-
ling is reduced transgenically [6, 11, 29]), by increasing 
TGFβ signalling to increase pericyte number, or by mod-
ulating Ang2 and Tie2 function [56, 113–115]. Intracer-
ebroventricular administration of exogenous PDGF-BB has 
entered human clinical trials and appears to be well-tolerated 
and safe [115]. Thus, in a cell culture model, BBB function 
is better maintained in hypoxia when PDGF-BB or TGFβ 
is administered [132]; in status epilepticus, intravenous 
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administration of PDGF-BB reduces blood vessel leakage 
and normalises blood flow [4]; and in an animal model of 
Parkinson’s disease, PDGF-BB may restore neurovascular 
function by rescuing PDGFRβ signalling [111].

Despite its toxic reputation, thalidomide, an immunomod-
ulating agent that is applied in cancer and rheumatic disease 
[39], can induce pericyte proliferation, recruit pericytes to 
capillaries, and thus induce vessel maturation, mainly by 
increasing PDGF-BB expression in endothelial cells [86]. 
An increased density of pericytes on capillaries would be 
expected to promote the integrity of the BBB and indeed, 
in an animal model of AD, administering thalidomide 
decreases BBB leakiness [123]. Thalidomide has been suc-
cessfully used to treat hereditary haemorrhagic telangiecta-
sia in humans [86], and has been patented for use to prevent 
loss of BBB function after radiation therapy [85]. A benefi-
cial effect of thalidomide on pericyte survival has also been 
confirmed in sunitinib-induced cardiotoxicity (caused by a 
decrease of PDGFRβ signalling) [21] and radiation-induced 
kidney injury [127].

Another therapeutic approach to maintaining BBB func-
tion is to apply the inhibitor of phosphodiesterase type 3, 
cilostazol, or the prostacyclin analogue iloprost which acti-
vates Gs-coupled IP receptors, both of which are expected 
to raise the level of cyclic AMP in pericytes. These agents 
have been shown to reduce the detachment of pericytes and 
astrocyte endfeet from endothelial cells in stroke-prone rats 
[105], to preserve BBB function in white matter subjected 
to demyelination with lysophosphatidylcholine [97], and (in 
a cell culture model of the BBB) to preserve BBB function 
in the face of oxygen–glucose deprivation by upregulating 
tight junctions between endothelial cells [140], apparently 
by inhibiting TGFβ signalling. This suggests further thera-
peutic approaches could be targeted to TGFβ signalling.

The importance of PDGFRβ signalling for maintaining 
pericyte number and BBB function has been exploited to 
provide a biomarker for AD progression. Loss of pericytes 
and degradation of BBB function has been shown to cor-
relate with human cognitive decline and the appearance of 
soluble PDGFRβ in the cerebrospinal fluid [95]. In the long 
term, it will highly desirable to develop similar assays for 
other aspects of pericyte function, including TGFβ and Ang-
Tie signalling, and ideally to extend such an approach to 
allow simple blood tests to be used to assess CNS pericyte 
function.

Control of immune cell entry in pathology

Numerous neurological conditions are associated with 
recruitment of immune cells from the blood to the brain. 
Whether modulating this entry by targeting pericyte func-
tions (such as MIF release [135]) could provide beneficial 
therapies will depend on whether the net effect of immune 

cell recruitment is damaging or positive (e.g., releasing anti-
inflammatory factors that suppress deleterious microglial 
actions [129]).

Controlling pericyte migration into the glial scar

At present, little is known about the factors stimulating peri-
cytes to proliferate and move to damaged areas to contribute 
to the glial scar. However, blocking proliferation can lessen 
the pericyte contribution to the scar, which may promote 
axon regrowth [32] or alternatively hinder revascularisa-
tion [63]. Periostin expressed by pericytes is a key mole-
cule involved in regulating pericyte movement into the scar 
[157], and genetic or pharmacological inhibition of its func-
tion decreases pericyte proliferation and scar formation, and 
improves long-term outcome after spinal cord injury [157].

Regulating glioma growth

Pericytes contribute to tumour growth both by promoting 
angiogenesis and by releasing IL-33 to promote metastasis 
(see above). Both of these actions are driven by PDGF-BB—
PDGFRβ signalling, implying that tumour growth may be 
limited by agents blocking this signalling, such as imatinib 
and sunitinib (although these drugs also block other tyrosine 
kinases) [120].

Pericytes may also be a useful target in facilitating access 
of drugs to tumours, by disrupting the blood–tumour barrier, 
while leaving the blood–brain barrier less affected. By inhib-
iting the tyrosine kinase BMX found in stem cell-derived 
pericytes [20] with ibrutinib, it has recently been shown 
[163] that chemotherapy agents can have better access to 
the brain tumours.

Pericytes as stem cells

A growing body of evidence indicates that pericytes can 
become multipotential stem cells [33]. Pericytes have been 
suggested to acquire the ability to differentiate into neuronal, 
microglial and vascular lineage cells after brain pathology, 
in conditions such as ischaemic diseases and hypoxia [70, 
71, 98, 109]. Thus, reprogramming of pericytes might be 
employed to promote neurogenesis and vasculogenesis at 
sites of brain injury. However, all these studies employed 
ex vivo culture of pericytes to reprogramme their fate, and 
the idea of pericytes or vascular smooth muscle becoming 
stem cells has been challenged by a study [50] showing that 
they do not intrinsically exhibit differentiation potential 
in vivo during ageing or in pathology.
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Conclusions

Despite being relatively neglected components of the CNS, 
the data reviewed in this article demonstrate that pericytes, 
located at the interface between CNS cells and the blood 
supply coming from the periphery, play numerous crucial 
roles in the healthy CNS. As a result, they offer many oppor-
tunities for therapeutic intervention in a broad range of neu-
rological disorders. We predict the widespread development 
of pericyte-targeted therapies in the next 10 years.
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