
sensors

Article

Research on the Prediction of Green Plum Acidity Based on
Improved XGBoost

Yang Liu, Honghong Wang, Yeqi Fei, Ying Liu *, Luxiang Shen, Zilong Zhuang and Xiao Zhang

����������
�������

Citation: Liu, Y.; Wang, H.; Fei, Y.;

Liu, Y.; Shen, L.; Zhuang, Z.; Zhang, X.

Research on the Prediction of Green

Plum Acidity Based on Improved

XGBoost. Sensors 2021, 21, 930.

https://doi.org/10.3390/s21030930

Received: 4 January 2021

Accepted: 27 January 2021

Published: 30 January 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China;
lyang_03@njfu.edu.cn (Y.L.); hhw@njfu.edu.cn (H.W.); feiyeqi@njfu.edu.cn (Y.F.); shenluxiang@njfu.edu.cn (L.S.);
zzl0702@njfu.edu.cn (Z.Z.); zx_xhx@njfu.edu.cn (X.Z.)
* Correspondence: liuying@njfu.edu.cn

Abstract: The acidity of green plum has an important influence on the fruit’s deep processing. Tra-
ditional physical and chemical analysis methods for green plum acidity detection are destructive,
time-consuming, and unable to achieve online detection. In response, a rapid and non-destructive
detection method based on hyperspectral imaging technology was studied in this paper. Research on
prediction performance comparisons between supervised learning methods and unsupervised learn-
ing methods is currently popular. To further improve the accuracy of component prediction, a new
hyperspectral imaging system was developed, and the kernel principle component analysis—linear
discriminant analysis—extreme gradient boosting algorithm (KPCA-LDA-XGB) model was proposed
to predict the acidity of green plum. The KPCA-LDA-XGB model is a supervised learning model
combined with the extreme gradient boosting algorithm (XGBoost), kernel principal component
analysis (KPCA), and linear discriminant analysis (LDA). The experimental results proved that the
KPCA-LDA-XGB model offers good acidity predictions for green plum, with a correlation coefficient
(R) of 0.829 and a root mean squared error (RMSE) of 0.107 for the prediction set. Compared with the
basic XGBoost model, the KPCA-LDA-XGB model showed a 79.4% increase in R and a 31.2% decrease
in RMSE. The use of linear, radial basis function (RBF), and polynomial (Poly) kernel functions were
also compared and analyzed in this paper to further optimize the KPCA-LDA-XGB model.

Keywords: green plum; pH; hyperspectral; prediction; supervised learning

1. Introduction

Green plum contains a variety of natural acids, such as citric acid, which is indispens-
able for human metabolism. Green plum is a rare alkaline fruit that contains threonine and
other amino acids and flavonoids, which are extremely beneficial to the normal progress of
protein composition and metabolic functions for the human body and have obvious pre-
ventive and curative effects on widespread cardiovascular, urinary, and digestive diseases.

In actual production, the composition control of raw plums is mainly based on the
experiences of workers by controlling the picking time. Generally speaking, the plums for
producing plum essence are picked at a 70% ripe stage, while the plums for green plum
wine are picked at an 80% ripe stage. However, due to the influence of region, variety,
light, horticultural management, individual differences in the maturity of different plants,
and the different parts of the fruit, there are still large differences in the total acid content of
plums picked in the same batch. When measuring the acidity of green plums by physical
and chemical tests, the electrode potential method is often used. However, this method is
destructive, random, subjective, and has low detection efficiency, meaning that this method
cannot meet the requirements for the detection and classification of raw fruits. Therefore,
this article uses green plum as its research object to study a rapid, non-destructive detection
method for the internal acidity of green plum based on hyperspectral imaging technology.

With the increasing research into spectral imaging technology in the field of agricul-
tural and forestry product detection [1,2], detection objects and detection indicators are
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becoming increasingly more diversified [3,4]. For research on the internal quality detection
of forest fruits, near-infrared spectroscopy, hyperspectral images [5], and multispectral
images have been used in recent years to detect internal physical characteristics (e.g., hard-
ness and sugar content) and engage in qualitative and quantitative analyses of chemical
characteristics (e.g., acidity and volatile base nitrogen) [6]. Near-infrared spectroscopy
technology is very widely used and can quickly and non-destructively predict the internal
quality parameters of the fruit [7]. Wei [8] analyzed spectral data under a wavelength of
400~1000 nm to achieve the discrimination of persimmon maturity. The accuracy achieved
using the linear model was 95.3%. Based on a combination of near-infrared spectroscopy
technology and chemometric analysis methods, Ciccoritti [9] used partial least square
regression (PLSR) [10,11] to predict the soluble solid content, dry matter, and titratable
acidity of kiwifruit. The model determination coefficient R2 values were 0.993, 0.983,
and 0.933, respectively, and the model’s root mean square errors (RMSEs) were 0.40, 0.33,
and 6.65, respectively, meaning that the prediction performance of the proposed model was
good. However, the original spectral data of the tested sample have high dimensionality.
When the original data are simultaneously input to the model for training, the complexity
of the model will increase, and the efficiency of the model will decrease. At the same time,
the high-dimensional information contained in the original spectrum may have a linear
correlation between different dimensions, and redundant information may exist. When the
full spectrum is used for modeling, the model’s prediction accuracy will decrease, and over-
fitting will occur. Therefore, the feature band should be extracted before establishing a
prediction model. Huang [12] proposed a method for detecting the pH of tomato based
on the wavelength ratio and near-infrared spectroscopy. By using visible/short-wave
near-infrared spectroscopy to establish a partial least squares (PLS) model that can evaluate
tomato pH, the results showed that the PLS model offers good prediction ability, with a
predicted correlation coefficient of 0.796. Shen [13] proposed a model combining sparse
autoencoder (SAE) and partial least square regression (PLSR) (SAE-PLSR) to predict the
soluble solid content of green plum. The correlation coefficient and the root mean square
error of the prediction set were 0.9254 and 0.6827, respectively, which indicates excellent
prediction performance.

With the development of machine learning technology, increasingly more machine
learning models are being applied to spectral data processing. As a new research trend
in machine learning, ensemble learning [14] integrates the results of multiple learning
methods to improve the generalization ability and prediction accuracy of the original
method. Research using estimation models represented by random forest (RF) [15] is also
increasing. Li [16] used random forests to predict the sugar content of different types of
fruits (e.g., apples and pears) and compared the prediction effects of PLS. The predicted
R2 increased from 0.731 of PLS to 0.888, and the root mean squared error in prediction
set (RMSEP) reduced from 1.148 to 0.334. The results showed that random forest had
obvious advantages in predicting the sugar content of various fruits. However, the use of
gradient boosting algorithms such as gradient-boosted regression tree (GBRT) and XGBoost
(extreme Gradient Boosting) has been rarely reported.

This study took the acidity of green plum as the research object. The purpose of the
study is to predict the acidity of green plum through spectroscopy technology and machine
learning algorithms, solve the current problem of relying on traditional destructive methods
to detect the acidity of green plum, and realize the non-destructive detection of the acidity
of green plum. To ensure the authenticity and reliability of hyperspectral data, a new
hyperspectral imaging system based on the hyperspectral camera was developed. Using
machine learning, the novel kernel principle component analysis—linear discriminant
analysis—extreme gradient boosting algorithm (KPCA-LDA-XGB) model structure was
proposed. In our KPCA-LDA-XGB model, the extreme gradient boosting algorithm in
supervised learning was improved, and kernel principal component analysis (KPCA)
and linear discriminant analysis (LDA) were used to extract the characteristics of the
characteristic spectral curve of green plum and reduce the data dimension. XGBoost was
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also integrated to predict the green plum’s pH. The pH prediction performance of the
proposed model was compared with that of the KPCA-XGB model, LDA-XGB model,
and the improved kernel function model. The prediction results of the different models
were visualized to reflect the pH predictions for each green plum, which could be conducive
to the selection of high-quality green plum.

2. Experiments
2.1. Green Plum Samples

The green plum samples for the test were selected from Dali, Yunnan Province, China.
In order to reflect the differences between samples, we purchased in small batches every
week and delivered them by express on the day of picking. Due to the collision between
the green plums during transportation and the defects of the green plums, the remaining
366 green plums were taken as examples after removing the green plums that had large
areas of bad spots, rot, or were extremely small. The green plum samples were stored
in a laboratory refrigerator and kept fresh at 4 ◦C to ensure refrigeration at a constant
temperature. The samples for each test were randomly selected and placed in advance at
room temperature. When the temperature of plums was the same as room temperature,
spectral data collection and physical and chemical tests were performed using the plum
samples.

2.2. Equipment

In order to obtain the hyperspectral data of green plums, a new green plum hyper-
spectral imaging system was developed, which was mainly composed of a hyperspectral
camera (GaiaField-V10E-AZ4 camera, Sichuan Dualix Spectral Image Technology Co., Ltd.,
Chengdu, China), a light source, a conveyor belt, and a computer, as shown in Figure 1a.
The parameters of the Gaiafield-V10E-AZ4 hyperspectral camera are shown in Table 1.
The function of the conveyor belt in the system was to smoothly transport the green plum
through the field of view of the camera. The conveyor belt was powered by a servo mo-
tor. Combined with the control of the computer, the speed of the conveyor belt could be
matched with the camera’s shooting speed, so that the obtained data could be closer to
reality. The interior of the dome was evenly coated with Teflon, which could diffuse the
light emitted by the halogen light source for many times, so that the sample inside the dome
was uniformly illuminated, as shown in Figure 1b. The light source system composed of the
dome and the halogen lamp could meet the needs of the spectral range, and at the same time
provide uniform and stable illumination to the sample, which was beneficial to eliminate
the test errors caused by different illuminance conditions. The pH was measured using a
pH meter (PHS-3E, Shanghai INESA Scientific Instrument Co., Ltd., China). The pH meter
was ready for measurement after following the detailed calibration procedure described in
the manual of the pH meter with pH buffers (pH = 4.00, pH = 6.86, Shanghai LICHEN-BX
Instrument Technology Co., Ltd., China).
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Table 1. Parameters of Gaiafield-V10E-AZ4 hyperspectral camera.

Specifications Parameters

Spectral range 400–1000 nm

Spectral resolution 2.8 nm

Data output 16 bits

Data interface USB3.0/CameraLink

2.3. Hyperspectral Data Acquisition

Before each test, it was necessary to warm up the green plum hyperspectral imaging
system and set the parameters of the system to the best. The tested green plum samples
were placed on the conveyor belt for data collection when the system environment was
stable. At the same time, the dark field spectral image of the system (AD) and spectral image
of the standard reflectance calibration board with 99% reflectance (AW) were collected,
and the reflectance calibration of the green plum spectral image was used to eliminate the
unevenness of the light source and the dark noise of the camera. The calibration image A0
is defined as:

A0 =
A− AD

AW − AD
× 100% (1)

where A is the green plum spectral raw data to be corrected.

2.4. Green Plum pH Testing

The measurement of green plum acidity required squeezing out enough green plum
juice. There was not much green plum juice that could be squeezed out from fresh green
plums, so it was necessary to squeeze the green plum juice out of the green plum as soon
as the spectrum data were collected to avoid the influence of subsequent physical and
chemical tests of acidity due to the evaporation of water. The pH meter was cleaned with
distilled water. The electrode was then inserted into the sample to test and record the pH
value of each sample for subsequent data processing.

In total, 366 green plum samples were selected and sorted according to their pH
values, and each of 4 samples in sequence are taken as a group. Within each group, random
sampling was conducted at a ratio of 3:1 to obtain 274 calibration set samples, which were
used to train the model and adjust model parameters, then 92 prediction set samples were
used to evaluate the predictive ability of the model. Table 2 shows the pH distributions for
the green plum.

Table 2. Acidity distributions of green plum.

Sample Set n Max Min Mean SD

Calibration set 274 2.74 2.03 2.26 0.1399
Prediction set 92 2.71 2.04 2.27 0.1327

Note: SD means standard deviation.

2.5. Image Processing

A hyperspectral imaging system was used to collect the green plum images. The pseu-
docolor images were synthesized from the RGB spectrum. Figure 2 shows the pseudocolor
images of the part of the samples. The ENVI5.3 software was used to calculate the average
spectral reflectance of each band. The preprocessing, modeling, and analysis of green plum
spectral data were realized by using JetBrains PyCharm 2019 software. All the codes were
written in Python, using the deep learning framework Tensorflow to define the network
calculation graph. Figure 3 shows the original spectral reflectance curves of all the green
plum samples. The software, hardware, and compilation environment configuration of this
experiment is shown in Table 3.
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Figure 3. Original spectral reflectance curves of the plum samples.

Table 3. Software and hardware environment configuration.

Name Parameter

System Windows 10 × 64
CPU Inter I9 9900K@3.60 GHz
GPU Nvidia GeForce RTX 2080 Ti(11G)

Environment configuration PyCharm + Tensorflow 2.1.0 + Python 3.7.7
Cuda 10.0 + cudnn 7.6.5 + XGBoost 1.1.1

RAM 64 GB

3. Model Establishment
3.1. XGBoost

The basic idea of ensemble learning is to combine multiple models rather than using
a single model to solve a problem. Ensemble learning uses several different models as
base classifiers and then combines those models to obtain better performance than using
only one specific method. Due to the diversity of methods and the mutual restraint of
errors, ensemble learning results provide better accuracy and robustness. Because of their
advantages in improving models and their accuracy, ensemble learning algorithms have
become an important research direction in the field of machine learning.

Bagging and Boosting are the most classic ensemble learning methods. The purpose
of integrating base classifiers is to reduce overfitting and improve accuracy. The extreme
gradient boosting algorithm (XGBoost) is a supervised gradient boosting-based ensemble
learning algorithm proposed by Chen [17]. The goal of this algorithm is to create a K
regression tree to obtain the predicted value of the tree group as close to the true value
as possible and achieve the greatest generalization ability. The XGBoost algorithm is a
kind of lifting algorithm that generates multiple weak learners through residual fitting.
The generated weak classifiers are accumulated to obtain a strong learner [18,19]. XGBoost
expands the loss function to the second order Taylor in the optimization process and
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introduces the second derivative information to make the model converge faster during the
training process. In addition, XGBoost also adds a regularization term to the loss function
to suppress model complexity and prevent overfitting. The specific derivation process
of the XGBoost algorithm is as follows. Set D = {(xi, yi)} as a data set of n numbers
of samples, where there are d numbers of features for each sample. xi represents the
label of sample i. As a base model, we used a classification and regression tree (CART).
The ensemble model of XGBoost uses an addition expression composed of K numbers of
base models to predict the final result:

ŷi =
K

∑
k=1

fk(xi) (2)

where k is the number of the tree and fk(·) is the expression of tree k.
The loss function can reflect the deviation of the model. In order to improve the

generalization ability of the model, the model complexity was added to the optimization
goal as a regularization term. The regularization term and the loss function of the model
comprise the objective function of the XGBoost algorithm as follows: Obj(k) =

n
∑

i=1
l
[
yi, ŷ(k−1)

i + ft(xi)
]
+ ∑

k
Ω( fk)

Ω( f ) = γT + 1
2 λ‖w‖2

(3)

where ŷ(k−1)
i is the sum of the output values of the previous (k− 1) trees; yi is the real

value; ŷi is the predicted value; fk(xi) is the output result of tree k; l is a differentiable
convex loss function; Ω(·) is the penalty term; γ and λ are the regularization parameters of
leaf weight and number, respectively; and w and T are the value and number of the leaf
node, respectively. Ij is defined as the sample set on leaf node j. The Taylor formula is used

to expand the loss function at ŷ(k−1)
i . gi and hi are the first and second derivatives of the

Taylor expansion. After removing the constant term, the objective function after Taylor
expansion becomes the following:

Obj(k) =
T

∑
j=1

∑
i∈Ij

gi

ωj +
1
2

∑
i∈Ij

hi + λ

ω2
j

+ γT (4)

where ωj is the weight of leaf node j. Next, we set Gi = ∑
i∈Ij

gi, Hi = ∑
i∈Ij

hi and substitute

them into Equation (3). The objective function is then simplified as:

Obj(k) =
T

∑
j=1

[
Giωj +

1
2
(Hi + λ)ω2

j

]
+ γT (5)

In Equation (4), the leaf node ωj is an uncertain value. Therefore, the objective function
Obj(k) is calculated for the first derivative of ωj, and the optimal value ω∗j of the leaf node j
is solved as:

ω∗j = − Gi
Hi + λ

(6)

After substituting ω∗j back into the objective function, the minimum value of Obj(k) is
obtained as:

Obj(k) = −1
2

T

∑
j=1

G2
j

Hi + λ
+ γT (7)

When building CART, XGBoost uses a greedy algorithm to split features. We next set
the maximum depth of the tree to m and the algorithm flow as shown in Algorithm 1.
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Algorithm 1: Exact Greedy Algorithm for Split Finding.

Input: I, instance set of the current node
Input: d, feature dimension
gain← 0
G ← ∑

i∈I
gi, H ← ∑

i∈I
hi

for k = 1 to m do
GL ← 0, HL ← 0

for j in sorted
(

I, by xjk

)
do

GL ← GL + gj, HL ← HL + hj
GR ← G− GL, HR ← H − HL

score← max
(

score, G2
L

HL+λ +
G2

R
HR+λ −

G2

H+λ

)
end
end
Output: Split with max score

During each iteration, the greedy algorithm traverses all the features of each node
from the root node. The point with the highest score is selected as the split node. Split-
ting stops after splitting to the maximum depth of the tree and starting to build the
residua of the next tree. Finally, all the generated trees are gathered to obtain the XGBoost
model. The schematic diagram of the construction of the XGBoost algorithm is shown in
Figure 4 [20].
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XGBoost improves the Gradient Boosting Decision Tree (GBDT) in three main ways.
First, the residual used in traditional GBDT is the result of using the first-order Taylor
expansion, while XGBoost uses the second-order Taylor expansion with the first and second
orders as improved residuals. Consequently, the XGBoost model has more extensive
applications. Secondly, XGBoost adds a regularization term to the objective function to
control the complexity of the model. This regularization term can reduce the variance
and overfitting of the model. Finally, XGBoost also references the practice of the random
forest column sampling method to further reduce overfitting. XGBoost has shown excellent
learning performance with efficient training speed.

3.2. KPCA-LDA-XGB

Linear discriminant analysis (LDA), also known as Fisher discriminant analysis, is a
type of supervised learning classification and dimensionality reduction method. LDA can
effectively use the categorical information of the original data to perform accurate feature
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extraction. By seeking projection transformation, LDA achieves a high degree of differ-
entiation between classes and a high degree of similarity within classes, making it more
efficient for feature extraction.

Kernel Principle Component Analysis (KPCA) is a non-linear feature extraction
method. The process of non-linear mapping is completed in KPCA through the ker-
nel function. The dimensionality reduction of non-linear data is achieved while retaining
the original data information to the greatest extent. KPCA is more effective for capturing
the non-linear characteristics of the data.

Considering the problem of green plum pH prediction, to further improve the feature
extraction ability of our model, KPCA and LDA were used to reduce the dimensionality of
the input of XGBoost. In KPCA, we first used nonlinear mapping P : R→ F to map the
data in the original input space to the high-dimensional feature space F. Then, principal
component analysis was performed on the data in feature space F [21]. The kernel principal
with a relatively large cumulative contribution rate was next selected to form a new data set
to reduce the dimensionality of the data while retaining the nonlinear information between
variables. Since the specific form of the mapping function P was generally unknown,
the kernel function k

(
xi, xj

)
= P(xi)P

(
xj
)

was introduced. Kernel functions can take many
forms. Commonly used kernel functions include linear kernel functions, polynomial kernel
functions, radial basis function kernel, and multilayer perceptron kernel functions. In LDA,
for the sample data of a given training set, the original data were mapped onto a straight
line. The mapping effects obtained by selecting different straight lines w were different.
The LDA method needs to find this straight line to ensure that the projection points of
similar samples are as close as possible and that the projection points of heterogeneous
samples are as distant from each other as possible.

After performing KPCA and LDA processing on the original spectral data to obtain
the feature vector, the XGBoost model was trained via the following process: (1) Input the
obtained feature vectors and labels into the model; (2) obtain the residual according to the
sum of the predicted value of the currently learned base learner and the true value of the
sample, with an initial predicted value of 0; (3) initialize the feature list to be segmented.
For potential segmentation points, achieve a change of the objective function before and
after segmentation; (4) determine whether the depth of the current base learner reaches
the maximum split depth. If it does not reach the maximum depth, find the optimal
segmentation point and assign samples to the left and right leaf nodes based on the optimal
split point, and then return to step (3). If the maximum split depth is reached, stop splitting,
calculate the weight of each leaf node, and complete the establishment of the current
base learner; and (5) determine whether the training of the current model reaches the
termination condition (i.e., if the number of base learners reaches the set maximum value).
If it does not, return to step (2). If it does, combine all the base learners obtained through
training to obtain XGBoost. End model training. The XGBoost model training flowchart is
shown in Figure 5.
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4. Results and Discussion
4.1. Performance Analysis of Different Kernel Functions

In this study, three KPCA kernel functions (linear, radial basis function (RBF), and poly-
nomial (Poly)) were used to reduce the dimensionality of the original data set. The dimen-
sions of the original green plum spectral data were reduced from 119 to 105, and the original
data information was retained to the greatest extent. The results are shown in Figure 6,
which illustrates the curves of the 366 sets of raw data processed by the three KPCA kernel
functions (linear, RBF, and Poly). The horizontal axis represents the dimension of the data,
and the vertical axis represents the value of each dimension after processing via the kernel
function. Here, the original data after dimensional reduction of the three KPCA kernel
functions of linear, RBF, and Poly are similar in their shape and size intervals. The data
range processed using the Poly kernel function is larger than that processed using RBF and
linear. The data processed using the linear kernel function are also more evenly distributed
than those using the RBF kernel function. Therefore, the linear kernel function was used
when the original data were processed by KPCA.

To further optimize the performance of the KPCA-LDA-XGB model in predicting the
acidity of green plums, LDA was integrated (on the basis of KPCA) to achieve superior
supervised feature extraction performance and dimensional reduction of the data. The di-
mension of the raw spectral data of green plums processed by KPCA was reduced to 29.
To evaluate the performance of the current model, the KPCA(RBF)-LDA-XGB, KPCA(Poly)-
LDA-XGB, and KPCA(linear)-LDA-XGB models were compared through two indicators:
the correlation coefficient in prediction set (RP) and the root mean squared error in predic-
tion set (RMSEP). Figure 7 shows the prediction effects of different kernel functions in the
KPCA-LDA-XGB model, and Table 4 shows the comparison results of the different kernel
functions in the KPCA-LDA-XGB model.
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Table 4. Comparison of the prediction and cross validation performance of the linear kernel function
with the other kernel functions in the KPCA-LDA-XGB model.

Model RP RMSEP RCV RMSECV

KPCA(RBF)-LDA-XGB 0.805 0.112 0.744 0.128

KPCA(Poly)-LDA-XGB 0.814 0.108 0.753 0.126

KPCA(linear)-LDA-XGB 0.829 0.107 0.739 0.128

The comparison results show that the KPCA(linear)-LDA-XGB model offers better
acidity prediction performance for green plum. Compared with KPCA(RBF)-LDA-XGB and
KPCA(Poly)-LDA-XGB, the RP of the model were improved by 3.0% and 1.8%, respectively,
and the RMSEP was increased by 4.5% and 0.9%, respectively. These results show that the
selection of the linear kernel function can determine whether the KPCA-LDA-XGB model
will achieve the best performance in predicting the acidity of green plum. Indeed, com-
pared to the other two kernel functions, in KPCA, the linear kernel function was selected.
Moreover, the data processed by KPCA-LDA were more uniform in their distribution and
had a smaller data distribution range, which gave the model better dimensional reduction
capabilities.
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4.2. Performance Analysis of the KPCA-LDA-XGB Model

The inputs of the KPCA-LDA-XGB model included the hyperspectral characteristic
curves of the green plum and the pH value corresponding to 119 dimensions. The number
of principal components of the KPCA was set to 105. The chosen kernel function was linear,
and the number of principal components of LDA was set to 29. The selected optimization
problem algorithm (solver) was the eigen decomposition algorithm (eigen). The actual
number of iterations was set to 2000.

The correlation coefficient (R) is a statistical indicator used to reflect the correlation
proximity between variables. The value range of R is [–1, 1]. When R = 0, there is no linear
relationship between variables. When |R| = 1, the variables are completely linearly related.
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When evaluating the prediction ability of the model, if |R| > 0.6, then the model can be
used for predicting situations with low accuracy requirements. When |R| > 0.8, the model
has good prediction ability and can complete the required forecasting task.

The root mean squared error (RMSE) is the arithmetic square root of the variance,
which can reflect the degree of dispersion of a data set. Therefore, the correlation coefficient
R and the root mean squared error RMSE were used to evaluate the performance of the
KPCA-LDA-XGB model. The correlation coefficient in cross validation set (RCV) and
the root mean squared error in cross validation set (RMSECV) of the KPCA-LDA-XGB
model were 0.739 and 0.128, respectively [22]. After training, the RP and RMSEP of the
KPCA-LDA-XGB model in the prediction of green plum acidity were 0.829 and 0.107,
respectively.

To evaluate the performance of the current model, the KPCA-LDA-XGB model was
compared with the three models of XGBoost, KPCA-XGB, and LDA-XGB. Figure 8 shows
the prediction effects of the four models, including the XGBoost, KPCA-XGB, LDA-XGB,
and KPCA-LDA-XGB models. The RP and RMSEP were used to evaluate the prediction
effects of the model. The horizontal axis represents the true value of green plum acidity,
and the vertical axis represents the predicted value of green plum acidity. Table 5 shows
the comparison results of the KPCA-LDA-XGB model and the three other models.
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Table 5. Comparison of the prediction and cross validation performance of the KPCA-LDA-XGB
model and the traditional integrated models.

Model RP RMSEP RCV RMSECV

XGBoost 0.462 0.164 0.214 0.186
KPCA-XGB 0.681 0.139 0.589 0.155
LDA-XGB 0.608 0.147 0.655 0.144

KPCA-LDA-XGB 0.829 0.107 0.739 0.128
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Compared with XGBoost, KPCA-XGB, and LDA-XGB, the RP of the KPCA-LDA-XGB
model increased by 79.4%, 21.7%, and 36.3%, respectively, and the RMSEP decreased by
31.2%, 17.4%, and 12.5%, respectively. These results show that the KPCA-LDA-XGB model
offers good performance for predicting green plum acidity. This result occurred primarily
because the input of the XGBoost model included the original 119-dimensional spectra
data of green plums, while the input of the KPCA-XGB, LDA-XGB, and KPCA-LDA-XGB
models was the data after feature extraction and dimensional reduction, including 105, 29,
and 29 dimensions, respectively.

At the same time, the KPCA-LDA-XGB model achieved an importance ranking of the
input 29-dimension data that affect the characteristics of green plum acidity, as shown in
Figure 9. The vertical axis uses f0 − f28 to sequentially represent the 29-dimensional data
input of the KPCA-LDA-XGB model. The horizontal axis represents the importance score
of each dimensional datum. In the model established to determine the acidity of green
plum and extract features based on the XGBoost algorithm, the importance scores were
arranged in descending order. f0 was the most important parameter affecting the acidity
of green plum, while f28 was the least important parameter affecting the acidity of green
plum.
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5. Conclusions

Green plum acidity is an important component index considered during the deep
processing of green plums. The use of non-destructive testing technology for green plum is
of great significance and high practical value for improving the quality of green plum deep
processing products, promoting industrial transformations, and upgrading and improving
the automation and intelligence levels of green plum production. Using hyperspectral
technology, we took the green plum acidity index as the object in this paper to develop a
non-destructive testing method for green plum. The experimental analysis proved that
the use of visible light/near infrared spectroscopy technology can effectively predict the
pH of green plum. Spectral information was collected from 400 to 1000 nm, and the
supervised learning model XGBoost was used to predict the acidity of the green plum fruit.
The RP and RMSEP of the model were 0.462 and 0.164, respectively. To further improve
the prediction accuracy of green plum acidity, the KPCA-LDA-XGB model was proposed
based on the XGBoost model. The feature extraction method of the KPCA-LDA-XGB model
was improved through the KPCA and LDA methods. The experimental results show that
compared with the basic XGBoost model, the KPCA-LDA-XGB model has a 79.4% increase
in its RP value and a 31.2% decrease in its RMSEP. Compared with KPCA-XGB and LDA-
XGB, which use KPCA or LDA alone for feature extraction and data dimensional reduction,
the RP of the KPCA-LDA-XGB model increased by 21.7% and 36.3%, respectively, and the
RMSEP were reduced by 17.4% and 12.5%, respectively. Ultimately, the proposed KPCA-
LDA-XGB model offers good prediction performance for the acidity of green plums. Since
the amount of collected green plum data was not very large, this sample set could be
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increased in future research to reduce randomness. More machine learning models could
also be used to further improve the accuracy of the model.
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