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Association between circulating 
tumor necrosis factor-related 
biomarkers and estimated 
glomerular filtration rate in type 2 
diabetes
Nozomu Kamei1,2,3, Mami Yamashita2,4, Yuji Nishizaki5, Naotake Yanagisawa5, Shuko Nojiri5, 
Kanako Tanaka2, Yoshinori Yamashita3, Terumi Shibata6, Maki Murakoshi6, Yusuke Suzuki6 & 
Tomohito Gohda6

Chronic inflammation plays a crucial role in the development/progression of diabetic kidney disease. 
The involvement of tumor necrosis factor (TNF)-related biomarkers [TNFα, progranulin (PGRN), 
TNF receptors (TNFR1 and TNFR2)] and uric acid (UA) in renal function decline was investigated in 
patients with type 2 diabetes (T2D). Serum TNF-related biomarkers and UA levels were measured 
in 594 Japanese patients with T2D and an eGFR ≥30 mL/min/1.73 m2. Four TNF-related biomarkers 
and UA were negatively associated with estimated glomerular filtration rate (eGFR). In a logistic 
multivariate model, each TNF-related biomarker and UA was associated with lower eGFR (eGFR 
<60mL /min/1.73 m2) after adjustment for relevant covariates (basic model). Furthermore, UA and TNF-
related biomarkers other than PGRN added a significant benefit for the risk factors of lower eGFR when 
measured together with a basic model (UA, ΔAUC, 0.049, p < 0.001; TNFα, ΔAUC, 0.022, p = 0.007; 
TNFR1, ΔAUC, 0.064, p < 0.001; TNFR2, ΔAUC, 0.052, p < 0.001) in receiver operating characteristic 
curve analysis. TNFR ligands were associated with lower eGFR, but the associations were not as strong 
as those with TNFRs or UA in patients with T2D and an eGFR ≥30 mL/min/1.73 m2.

Chronic low-grade inflammation may induce chronic kidney disease (CKD) in patients with diabetes. Tumor 
necrosis factor alpha (TNFα) is a central pro-inflammatory cytokine produced by both macrophages and innate 
kidney cells such as podocytes, mesangial cells, epithelial cells, and endothelial cells1. Treatment with pentoxi-
fylline, a drug that can inhibit TNFα production, significantly reduced albuminuria and slowed estimated glo-
merular filtration ratio (eGFR) decline in patients with type 2 diabetes (T2D) and stage 3–4 CKD2. Awad et al.3 
demonstrated that macrophage-derived TNFα plays a particularly important role in diabetic renal injury using 
macrophage-specific TNFα-deficient mice. Circulating levels of TNF receptors (TNFRs; TNFR1, TNFR2), which 
are the surface receptors of TNFα, in patients with diabetes have been associated with renal traits (albuminuria 
and eGFR) as well as cardiovascular disease (CVD) and all-cause mortality in both cross-sectional and longitu-
dinal studies4–16.
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Progranulin (PGRN), a recently recognized adipokine related to obesity and diabetes, also binds to TNFRs17,18. 
PGRN appeared to have protective effects against endotoxin-induced acute kidney injury or renal ischemia/
reperfusion injury in mice models19,20. Several studies have shown that serum levels of PGRN were elevated in 
patients with diabetes and macroalbuminuria (Macro) or reduced renal function21–23. However, little is known 
about whether PGRN is associated with classical TNF-related biomarkers (TNFα and TNFRs).

Uric acid (UA) has recently re-entered the spotlight because hyperuricemia is not only a result of reduced 
renal clearance or dysfunctional handling by proximal tubules but also a cause of kidney injury24,25. Kim et al.26 
demonstrated that hyperuricemia-induced Nod-like receptor protein 3 (NLRP3) activation of macrophages 
contributes to the progression of renal injury in a rat model of T2D. Moreover, treatment with Febuxostat, a 
non-purine xanthine oxidase-specific inhibitor, improved renal expression of inflammatory molecules such as 
E-selectin and vascular cell adhesion molecule 1 (VCAM-1) and prevented macrophage infiltration in the kidneys 
of streptozotocin (STZ)-induced diabetic rats27.

However, careful consideration of the relationships among these biomarkers has not yet been performed. 
Therefore, the aim of this study was to determine the associations among TNF-related biomarkers, UA, and renal 
function in a large cohort of Japanese patients with T2D and eGFR ≥30 mL/min/1.73 m2.

Material and Methods
Study design.  Japanese patients with diabetes were recruited for observation of the natural course of diabetic 
kidney disease (DKD) at Kure Medical Center and Chugoku Cancer Center between July 1, 2014 and March 31, 
2016. Patients with type 1 diabetes or secondary diabetes, and those with eGFR <30 mL/min/1.73 m2 (stage 4–5 
CKD) were excluded from this study. A total of 594 patients with T2D and available baseline serum data were 
ultimately included. This study was approved by the ethics committee of Kure Medical Center and Chugoku 
Cancer Center. Informed consent was obtained from all patients, and the study complied with the guidelines of 
the Declaration of Helsinki.

Each patient’s baseline anthropometric and clinical characteristics were recorded. Blood pressure (BP) was 
measured using an automated sphygmomanometer (HBP-9020; Omron healthcare Co., Ltd., Kyoto, Japan) with 
patients in the sitting position after a rest period of at least 5 minutes. Blood and spot urine specimens were 
obtained for laboratory analyses. Body mass index was calculated as weight/height2 (kg/m2). Serum creatinine 
(Cr) was measured in a central laboratory (SRL Co., Ltd., Hachioji, Japan) by means of the enzymatic Cr assay 
method using the liquid Cr measurement reagent Determiner L CRE (Kyowa Medex Co., Ltd., Tokyo, Japan) 
and a BioMajesty JCA-BM8060 auto-analyzer (JEOL, Tokyo, Japan) to calculate eGFR. To develop an eGFR 
equation for the Japanese population by modifying the isotope dilution mass spectrometry (IDMS)-traceable 
Modified Diet in Renal Disease (MDRD) equation, serum Cr and inulin clearance were simultaneously measured 
under an initiative of the Japanese Society of Nephrology (JSN) in the past: eGFR (mL/min/1.73 m2) = 194 × 
[age (years)]−0.287 × [serum Cr (mg/dL)]−1.904 × 0.739 (for females)28. Baseline serum samples were obtained and 
stored at −80 °C until use.

Laboratory measurements.  We used enzyme-linked immunosorbent assay to measure TNFR1, TNFR2, 
PGRN (cat. nos. DRT100, DRT200, DPGRN0; R&D Systems, Minneapolis, MN, USA) and total TNFα (cat. 
no. KAC1751; Invitrogen, Carlsbad, CA, USA) as described previously11,29. Two internal serum controls were 
included in each assay to estimate inter-assay coefficient of variation. The inter-assay coefficient of variation 
for TNF-related biomarkers was consistently <10% (TNFα, 7.0%; PGRN, 6.8%; TNFR1, 8.0%; TNFR2, 9.4%). 
C-reactive protein (CRP), UA, lipids, hemoglobin, and hemoglobin A1c (HbA1c) were measured at Kure Medical 
Center and Chugoku Cancer Center using routine laboratory methods. Non-high-density lipoprotein choles-
terol (non-HDL-C) levels were defined as the difference between total cholesterol and HDL-C levels. Urinary 
albumin and Cr were quantified using immunonephelometry (N-assay TIA Micro Alb; Nittobo Medical Co., 
Ltd., Fukushima, Japan) and an enzymatic method respectively. Urinary albumin to creatinine ratio (ACR) was 
expressed as milligrams per gram of Cr.

Statistical analyses.  All variables were expressed as percentage values for categorical data and represented 
as mean (SD) or median (interquartile range) for continuous data. The distribution of concentration of biomark-
ers was right-skewed, and four TNF-related biomarkers, UA, CRP, ACR, and eGFR were handled as continu-
ous variables after common logarithmic transformation. For analytical purposes, patients were stratified based 
on their eGFR [eGFR <60 vs. ≥60 (mL/min/1.73 m2)] or ACR [ACR <30, normoalbuminuria (Normo); ACR 
30–299, microalbuminuria (Micro); ACR ≥300, Macro (mg/g·Cr)] levels. Differences between groups were ana-
lyzed using Student’s t-test for continuous variables and chi-square test for dichotomous variables, or one-way 
analysis of variance when comparing more than two groups. Pearson correlation analysis was used to assess asso-
ciations among renal traits (ACR and eGFR), UA, and TNF-related biomarkers.

Univariate logistic regression analyses were used to examine the factors associated with lower eGFR. Next, 
using a multivariate logistic regression model, we evaluated the association of UA or TNF-related biomarkers with 
lower eGFR. Candidate covariates were selected as follows: First, age and sex were included into adjusted models 
based on biological plausibility; next, traditional confounders of DKD such as systolic BP (Sys BP), HbA1c, and 
ACR were also included in the adjusted models based on findings from prior studies. Finally, the following covar-
iate associated with eGFR was considered for inclusion based on findings from univariate logistic regression anal-
ysis in the present study: hemoglobin (OR, 0.70; 95% CI, 0.63–0.78; p < 0.001). Bonferroni correction was applied 
for selection of covariates (n = 11), i.e., p-value < 0.0045. The basic model eventually consisted of six covariates 
(age, sex, hemoglobin, Sys BP, HbA1c, and ACR). To examine the additive benefit of TNF-related biomarkers and 
UA in comparison with the basic model alone as risk factors of increased ACR, we added eGFR instead of ACR 
for selection of covariates. Each biomarker was added individually and then in pairwise combinations. Because 
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TNFR1 and TNFR2 were very strongly correlated, they were not included in the model simultaneously. The con-
tribution of each TNF-related biomarker or UA as a risk factor of lower eGFR (eGFR < 60 mL/min/1.73 m2) and 
increased ACR (ACR ≥ 30) was calculated based on area under the receiver operating characteristic (ROC) curve 
(AUC). The optimal cut-off points of each TNF-related biomarker and UA for risk of lower eGFR was obtained 
from the point on the ROC curve closest to (0, 1). Statistical analysis was performed using the software SAS 9.4 
(SAS Institute, Cary, NC, USA). A two-sided p-value < 0.05 was considered statistically significant.

Results
Baseline patient characteristics.  The mean (±SD) age of the study population was 65 (±13) years; 329 
(55.4%) patients were men and 260 (43.8%) patients had increased ACR (Micro or Macro). Median (25th–75th 
percentile) eGFR was 69 (56–84) mL/min/1.73 m2.

Clinical characteristics of the 594 patients with diabetes stratified based on eGFR (mL/min/1.73 m2) 
(≥60,<60) or ACR (mg/g·Cr) [<30 (Normo), 30–299 (Micro), ≥300 (Macro)] are summarized in Table 1 and 
Supplementary Table 1. Patients in the eGFR <60 group were older and tended to be male; had higher frequencies 
of increased ACR; had a higher UA level and ACR; and had lower HDL-C, hemoglobin, and HbA1c levels. In 
addition, serum levels of TNFα, PGRN, TNFR1, and TNFR2 in the eGFR <60 group patients were significantly 
higher than those in the eGFR ≥60 group patients, although CRP levels did not differ between the groups.

Correlation among TNF-related biomarkers, UA, eGFR and ACR.  As shown in Fig. 1, significant 
positive correlations among TNF-related biomarkers were observed with r-values ranging from 0.23 (TNFα vs. 
PGRN) to 0.92 (TNFR1 vs. TNFR2). Correlation between TNFα and its receptors (TNFRs) was stronger com-
pared with that between PGRN and the receptors (TNFα–TNFR1, r = 0.48; TNFα–TNFR2, r = 0.53; PGRN–
TNFR1, r = 0.34; PGRN–TNFR2, r = 0.36). All TNF-related biomarkers were also positively correlated with ACR 
with r-values ranging from 0.19 (TNFα) to 0.45 (TNFR1), and negatively correlated with eGFR with r-values 
ranging from −0.16 (PGRN) to −0.60 (TNFR1). UA is also associated with two renal traits [ACR (r = 0.12); 
eGFR (r = −0.34)] and TNF-related biomarkers other than PGRN [TNFα (r = −0.20); PGRN (r = 0.07); TNFR1 
(r = −0.45); TNFR2 (r = −0.39)].

TNF-related biomarkers and UA as risk factors of lower eGFR and increased albuminuria.  All 
TNF-related biomarkers and many clinical covariates, such as age, sex, hemoglobin, HDL-C, HbA1c, ACR, and 
UA, were associated with lower eGFR (eGFR <60 mL/min/1.73 m2) in the univariate logistic regression analysis 
(Table 2). The prediction accuracy of each biomarker for risk of lower eGFR was low to moderate (UA, AUC 
0.709; TNFα, AUC 0.703; PGRN, AUC 0.621; TNFR1, AUC 0.846; TNFR2, AUC 0.833) (Supplementary Table 2). 
Next, we calculated AUC to examine the additive benefit of TNF-related biomarkers or UA compared with covari-
ates alone comprising age, sex, Sys BP, hemoglobin, HbA1c, and ACR (basic model) as risk factors of lower eGFR. 

Characteristic

All eGFR ≥ 60 eGFR 30–59

P a(N = 594) (n = 402) (n = 192)

eGFR (mL/min/1.73 m2) 69 (56, 84) 80 (69, 92) 48 (43, 55)

ACR (mg/g·Cr) 22 (9, 123) 18.5 (8.0, 58.3) 66 (13, 360) <0.001

Normo (%) 56.2 63.7 40.6

<0.001Micro (%) 28.8 27.6 31.3

Macro (%) 15.0 8.7 28.1

Age (yr) 65 ± 13 62 ± 13 71 ± 10 <0.001

Male sex (%) 55.4 52.0 62.5 0.01

BMI (kg/m2) 25.1 ± 4.6 25.3 ± 4.9 24.7 ± 3.9 0.13

Sys BP (mmHg) 139 ± 17 138 ± 16 141 ± 20 0.13

UA (mg/dL) 5.4 ± 1.3 5.0 ± 1.3 6.0 ± 1.3 <0.001

HDL-C (mg/dL) 52 ± 13 53 ± 13 50 ± 13 0.007

Non-HDL-C (mg/dL) 130 ± 32 131 ± 33 127 ± 32 0.12

Hemoglobin (g/dL) 13.6 ± 1.7 13.9 ± 1.6 12.9 ± 1.7 <0.001

HbA1c (%) 7.3 ± 1.2 7.4 ± 1.2 7.2 ± 1.1 0.03

CRP (mg/dL) 0.11 (0.06, 0.19) 0.10 (0.06, 0.19) 0.11 (0.07, 0.19) 0.28

TNF-related biomarkers

TNFα (pg/mL) 12.6 (9.5, 18.3) 11.1 (8.8, 15.8) 15.9 (12.2, 21.5) <0.001

PGRN (ng/mL) 56 (49, 65) 55 (47, 63) 60 (52, 67) <0.001

TNFR1 (pg/mL) 1562 (1263, 2016) 1384 (1169, 1691) 2149 (1695, 2627) <0.001

TNFR2 (pg/mL) 3339 (2717, 4297) 2972 (2535, 3610) 4337 (3696, 5635) <0.001

Table 1.  Characteristics of the study group by eGFR level. aeGFR ≥60 vs. eGFR 30–59. Data are mean ± SD, 
median (quartiles), or %. ACR, the ratio of urinary albumin to creatinine; BMI, body mass index; CRP, 
C-reactive protein; eGFR, estimated glomerular filtration rate; HbA1c, hemoglobin A1c; HDL-C, high-density 
lipoprotein cholesterol; Micro, microalbuminuria; Normo, noromoalbuminuria; PGRN, progranulin; Macro, 
macroalbuminuria; SD, standard deviation; Sys BP, systolic blood pressure; TNFR, TNF receptor; UA, uric acid.



www.nature.com/scientificreports/

4SCiEntifiC ReporTs |  (2018) 8:15302  | DOI:10.1038/s41598-018-33590-w

Each TNF-related biomarker or UA was independently associated with lower eGFR even after adjustment for the 
basic model. However, TNFR ligands had no impact on eGFR when either TNFR or UA was included in the basic 
model (Data not shown). In addition, the AUC increased with inclusion of any of biomarkers other than PGRN: 
(UA, ΔAUC 0.049, p < 0.001; TNFα, ΔAUC 0.022, p = 0.007; PGRN, ΔAUC 0.013, p = 0.06; TNFR1, ΔAUC 
0.064, p < 0.001; TNFR2, ΔAUC 0.052, p < 0.001). When either TNFR and UA were included in the basic model, 
the AUC further increased (Table 3).

Next, we examined the additive benefit of TNF-related biomarkers or UA compared with the basic model 
alone as risk factors of increased ACR. In multivariate logistic regression analysis, eGFR was included as a covar-
iate instead of ACR from the above basic model. Each TNF-related biomarker, but not UA, was independently 

Figure 1.  Pearson’s correlation coefficients of eGFR, common logarithmic transformed ACR (l_ACR), UA, and 
TNF-related biomarkers and their scatter plots * <0.0001, † <0.01.

ORa (95% CI) P

Age 1.08 (1.06–1.10) <0.001

Sex 1.54 (1.08–2.19) <0.001

Hemoglobin 0.70 (0.63–0.78) <0.001

Sys BP 1.01 (0.998–1.02) 0.13

HbA1c 0.85 (0.73–0.99) <0.001

HDL-C 0.98 (0.97–0.995) 0.008

ACR 1.85 (1.55–2.22) <0.001

UA 1.81 (1.55–2.10) <0.001

TNFα 1.97 (1.64–2.38) <0.001

PGRN 1.53 (1.29–1.84) <0.001

TNFR1 5.11 (3.86–6.78) <0.001

TNFR2 4.79 (3.64–6.32) <0.001

Table 2.  ORs for the risk factors of lower eGFR in study patients using clinical predictors and TNF-related 
biomarkers. Abbreviations used in this table are the same as those in Table 1. OR, odds ratio; CI, confidence 
interval. aORs are per 1 increase or per 1-SD (ACR = 0.76; TNFα = 0.21; TNFR1 = 0.15; TNFR2 = 0.15; 
PGRN = 0.09) increase of each logarithm-transformed TNF-related biomarker.
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associated with increased ACR (Micro) even after adjustment for the basic model. Moreover, PGRN showed an 
impact on ACR even if either TNFR was included in the basic model. Further, the inclusion of each TNF-related 
biomarker except TNFα in the basic model increased the AUC (PGRN, ΔAUC 0.029, p = 0.03; TNFR1, ΔAUC 
0.066, p < 0.001; TNFR2, ΔAUC 0.048, p < 0.001) (Supplementary Table 3).

Discussion
The major finding in this large cross-sectional study was that circulating TNF-related inflammatory biomark-
ers (TNFα, PGRN, TNFR1, and TNFR2) were associated with two important renal traits (ACR and eGFR) in 
Japanese patients with T2D and an eGFR ≥30 mL/min/1.73 m2. Among four TNF-related biomarkers, the associ-
ation of both TNFRs (marginally stronger for TNFR1) with eGFR were the strongest after adjustment for relevant 
covariates. The performance of UA for the risk factor of lower eGFR appeared to be almost equivalent to each 
TNFR and superior to TNFR ligands. Note that each TNFR and UA were independently associated with renal 
traits after adjustment for relevant clinical covariates.

Serum UA levels are increased in patients with reduced eGFR, and those levels are associated with future 
eGFR decline30. This association is true even in patients with type 1 diabetes (T1D) and almost normal eGFR31. 
The same research group also demonstrated that those levels were an independent predictor of early GFR decline 
in a prospective cohort study of patients with T1D and normal eGFR32. A post hoc analysis of the Reduction of 
Endpoints in Non-insulin-dependent diabetes mellitus with the Angiotensin II Antagonist Losartan (RENAAL) 
trial showed that approximately 15% of losartan’s renal protective effect is attributed to the decrease in serum UA 
levels33. To date, there have been few randomized controlled studies evaluating the effect of serum UA lowering 
therapy34. Liu et al.35 demonstrated that long-term serum UA-lowering therapy using allopurinol increased eGFR 
in patients with T2D even though the study had a randomized open parallel-controlled design. Therefore, we 
have high expectations for the allopurinol study on preventing early renal function loss (PERL) in 400 patients 
with T1D and increased ACR36. In the present study, the impact of UA for risk of lower eGFR was equivalent to 
that of TNFRs but superior to that of TNFR ligands.

Krolewski et al.5,6,13,14 found that circulating levels of TNFRs were robust predictors of GFR decline in patients 
with both types of diabetes at various stages. Since then, studies from several groups have corroborated the use-
fulness of these biomarkers7–9,37. Elevated levels of TNFRs were also inversely associated with the percentage of 
endothelial cell fenestration and positively associated with the mesangial fractional volume in American Indians 
with T2D and preserved renal function, a population at very high risk of renal function decline38. Remarkably, the 
median levels of TNFRs in Pima Indians (TNFR1, 2833 pg/mL; TNFR2, 4835 pg/mL) were almost twice as high 
as those in the Joslin Kidney Study cohort, which was predominantly composed of Caucasians (TNFR1, 1310 pg/
mL; TNFR2, 2527 pg/mL). In the present study, the median levels of TNFR1 and TNFR2 in patients with eGFR 
≥60 mL/min/1.73 m2 were 1384 pg/mL and 2972 pg/mL, respectively. In addition, the cutoff values of TNFR1 
and TNFR2 for risk of lower GFR (eGFR <60 mL/min/1.73 m2) were 1776 pg/mL and 3610 pg/mL, respectively, 
according to the ROC analysis. The levels of TNFRs in Japanese individuals appeared lower than those in Pima 
Indians, considering that approximately 90% of Pima Indian study participants had normal GFR (GFR ≥60 mL/
min/1.73 m2). Thus, levels of TNFR in the Japanese population appear to be equivalent to those in Caucasians. 
The differences in the distribution of TNFR levels may be partly derived from the high degree of obesity. Further 
studies are required to determine whether TNFR levels differ among race.

PGRN was initially considered a pro-inflammatory adipokine induced by TNFα, but it has been considered 
to also have anti-inflammatory functions since Tang et al. showed that PGRN is a ligand for TNFRs and inhibits 
the TNF–TNFR signaling pathway18,39. Therefore, we measured PGRN in addition to TNFα in the present study 
although further studies are needed to clarify the precise basic mechanisms of PGRN underlying the pathogen-
esis of DKD. Richter et al.21 demonstrated that CKD stage (eGFR) was the strongest independent predictor of 

ORa (95% CI) P AUC
Difference in AUC 
(95% CI) P

Basic model (age, sex, hemoglobin, Sys BP, 
HbA1c, and ACR) Ref. 0.812 Ref.

Basic model + UA 2.00 (1.66–2.41) <0.001 0.861 0.049 (0.026, 0.072) <0.001

Basic model + TNFα 1.72 (1.39–2.13) <0.001 0.834 0.022 (0.006, 0.038) 0.007

Basic model + PGRN 1.50 (1.21–1.85) <0.001 0.825 0.013 (−0.0004, 0.026) 0.06

Basic model + TNFR1 4.03 (2.90–5.58) <0.001 0.876 0.064 (0.039, 0.089) <0.001

Basic model + TNFR2 3.29 (2.43–4.45) <0.001 0.863 0.052 (0.028, 0.076) <0.001

Basic model
+UA
+TNFR1

1.82 (1.49–2.23)
3.66 (2.60–5.16)

<0.001
<0.001 0.897 0.085 (0.057, 0.114) <0.001

Basic model
+UA
+TNFR2

1.81 (1.49–2.20)
2.92 (2.06–4.11)

<0.001
<0.001 0.887 0.075 (0.048, 0.103) <0.001

Table 3.  ORs and AUC for the risk factors of lower eGFR in study patients using clinical predictors, UA, and 
TNF-related biomarkers.Please see the attachment table 3. I would like to change the table frame. Abbreviations 
used in this table are the same as those in Tables 1 and 2. AUC, areas under the ROC; Ref, reference; ROC, 
receiver operating characteristic. aORs are per 1 (UA) increase or 1-SD (TNFa = 0.21; TNFR1 = 0.15; TNFR2 = 
0.15; PGRN = 0.09) increase of each logarithm transformed TNF-related biomarker.



www.nature.com/scientificreports/

6SCiEntifiC ReporTs |  (2018) 8:15302  | DOI:10.1038/s41598-018-33590-w

PGRN in 532 patients with stage 1–5 CKD, although they did not measure another important renal trait, ACR. In 
contrast, a more recent study showed that only ACR and serum Cr were associated with PGRN after adjustment 
for clinical covariates and the inflammatory markers interleukin-6 and TNFα in patients with T2D22. In our 
study, we partially confirmed their results of a stronger association between ACR and PGRN, compared with that 
between eGFR and PGRN. Of note, in the present study, both ligands of the TNFRs had no association with lower 
eGFR (eGFR <60 mL/min/1.73 m2) when either TNFR was included in the model as a covariate. However, PGRN 
but not TNFα was weakly associated with increased ACR (Micro) even after adjustment for either TNFR, sug-
gesting that measurement of PGRN may be related to development of early renal injury in patients with diabetes.

It is unclear why circulating levels of TNFRs were more closely associated with eGFR than those of their lig-
ands, because laboratory data regarding the role of TNF–TNFR and PGRN–TNFR pathways in the kidney are 
limited. A possible explanation is that because TNFR levels are at least 100 times higher than TNFα levels despite 
a certain level of correlation between TNFα and its receptors, circulating TNFRs may play a role in progression of 
DKD independent of TNFα levels, apart from functioning as decoys for TNFα. On the other hand, PGRN might 
have a low specific affinity for TNFRs compared to that of TNFα, based on the observation that TNFα–TNFRs 
correlation was stronger than PGRN–TNFRs correlation despite circulating levels of PGRN being at least 1000 
times higher than those of TNFα.

It is possible that the correlation between TNF-related biomarkers and eGFR merely reflects reduced renal fil-
tration by the kidney. In fact, we previously reported that the levels of TNFRs in hemodialysis patients are approx-
imately 10-fold higher than those in the patients of the present study40. Further, the levels of all TNF-related 
biomarkers measured in the present study increased overall with reduced eGFR. However, this association may 
not be applicable for all patients, as shown in Fig. 1. In an isotope-labeled experiment, Bemelmans et al.41 showed 
that the levels of TNFα and TNFRs increased in bilateral nephrectomized mice and that the liver and lungs as 
well as the kidneys were involved in the clearance of TNFR. These findings suggest that the clearance of these 
molecules is closely related; however, it cannot explain all of our findings.

The main limitation of our study was its cross-sectional design. Therefore, our study did not establish a causal 
or temporal relationship among TNF-related biomarkers, UA, and renal traits. However, it should be noted that 
we recruited a substantial number of homogeneous Japanese patients with T2D and simultaneously measured two 
different ligands of TNFRs in addition to TNFRs. In conclusion, the present study provides evidence that TNFR 
ligands were associated with lower eGFR, but the associations were not as strong as those with TNFRs and UA in 
Japanese patients with T2D and an eGFR ≥30 mL/min/1.73 m2. These results also suggest that development of 
novel therapies targeted at inhibiting TNFRs as well as UA may be beneficial in prevention of DKD progression. The 
precise mechanism underlying the TNF–TNFR pathway in patients with diabetes requires further investigation.
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