ORIGINAL RESEARCH # Utility of Machine Learning in the Prediction of Post-Hepatectomy Liver Failure in Liver Cancer Hirotaka Tashiro, Takashi Onoe, Naoki Tanimine, Sho Tazuma, Yoshiyuki Shibata, Takeshi Sudo, Haruki Sada, Norimitsu Shimada, Hirofumi Tazawa, Takahisa Suzuki, Yosuke Shimizu Department of Surgery, Kure Medical Center Chugoku Cancer Center, National Hospital Organization, Kure, Hiroshima, Japan Correspondence: Hirotaka Tashiro, Department of Surgery, Kure Medical Center Chugoku Cancer Center, National Hospital Organization, 3-1, Aoyama, Kure, Hiroshima, 737-0023, Japan, Tel +823223111, Fax +823210478, Email tashiro.hirotaka.zn@mail.hosp.go.jp **Background:** Posthepatectomy liver failure (PHLF) is a serious complication associated with high mortality rates. Machine learning (ML) has rapidly developed and may outperform traditional models in predicting PHLF in patients who have undergone hepatectomy. This study aimed to predict PHLF using ML and compare its performance with that of traditional scoring systems. **Methods:** The clinicopathological data of 334 patients who underwent liver resection were retrospectively collected. The Pycaret library, a simple, open-source machine learning library, was used to compare multiple classification models for PHLF prediction. The predictive performance of 15 ML algorithms was compared using the mean area under the receiver operating characteristic curve (AUROC) and accuracy, and the best-fit model was selected among 15 ML algorithms. Next, the predictive performance of the selected ML-PHLF model was compared with that of routine scoring systems, the albumin-bilirubin score (ALBI) and the fibrosis-4 (FIB-4) index, using AUROC. **Results:** The best model was extreme gradient boosting (accuracy:93.1%; AUROC:0.863) among the 15 ML algorithms. As compared with ALBI and FIB-4, the ML PHLF model had higher AUROC for predicting PHLF. Conclusion: The novel ML model for predicting PHLF outperformed routine scoring systems. Keywords: machine learning, posthepatectomy liver failure, liver cancer #### Introduction Hepatectomy is an effective treatment for liver cancer, including metastatic liver tumors. Although perioperative management, liver resection techniques, and advances in imaging modalities have contributed to improvements in outcomes after hepatectomy, post hepatectomy liver failure (PHLF) remains a serious complication associated with high mortality.^{1,2} The occurrence of PHLF is mainly determined by the quality and quantity of the remnant liver after resection. A variety of traditional scoring and nomogram models for predicting PHLF and permissible extent of liver resection in patients undergoing liver resection.³ The Child-Pugh score, albumin-bilirubin (ALBI) score, and fibrosis index based on 4 factors (FIB-4) have been developed to determine the status of the liver.⁴⁻⁶ However, these scoring systems cannot precisely predict PHLF. In Japan, the Makuuchi criteria, consisting of serum bilirubin levels and indocyanine green retention rate at 15 min (ICG-R15), have been used to determine the extent of hepatectomy.^{7,8} However, the permissible liver resection rate cannot be calculated precisely. Recently, new models have been developed to predict PHLF using hepatobiliary scintigraphy and magnetic resonance imaging.^{9,10} However, these criteria are not universally applicable. Machine learning (ML), a field of artificial intelligence (AI), has been rapidly developed and is widely used to predict outcomes of liver diseases. ^{11–14} ML has also been used to predict PHLF after hepatectomy for HCC. ML may outperform traditional models as mentioned above. Mai et al developed an artificial neural network model to predict severe liver failure after hemihepatectomy in patients. ¹⁵ Wang et al also developed an ML prediction model for PHLF in HCC using a light gradient boosting machine (LightGBM) algorithm. ¹⁶ These reports demonstrated better predictive performance Tashiro et al **Dove**press than traditional scoring systems. Pycaret, a simple, open-source, and low-code ML library in Python, has been utilized to predict the outcomes of several diseases. 17-19 The library compares these models and selects the best-fit model. In this study, we used Pycaret to predict PHLF after liver resection for liver cancer and compared its performance with that of routine scoring systems. #### **Patients and Methods** Between January 2016 and December 2022, 384 patients underwent liver resection for primary and metastatic liver cancer at the Department of Surgery, Kure Medical Center, Chugoku Cancer Center, National Organization Hospital. Of the 384 patients, 50 who underwent simultaneous resection of other organs, such as the colon and stomach, or biliary reconstruction were excluded. In total, 334 patients who did not undergo additional surgery, excluding cholecystectomy, were enrolled in this study. Patients' medical records were reviewed retrospectively and data were collected. This retrospective study was approved by the Institutional Review Board of the Kure Medical Center (approval number: 2023-16). Informed consent was waived because of the retrospective design. This study was conducted following the Declaration of Helsinki. The following 20 pre-operative variables were used to predict PHLF: patient's age, sex, body mass index (BMI), tumor size, tumor number, tumor location, surgical approach (laparoscopic or open), number of repeat hepatectomy, hemoglobin (Hb) concentration, white blood count (WBC), platelet count (PLT), Total bilirubin (T-Bil) level, albumin (ALB) level, alanine aminotransferase (ALT) level, aspartate aminotransferase (AST) level, creatinine (Cr) level, prothrombin time (PT), indocyanine green retention rate at 15 min (ICG-R15), estimated liver resection rate (Res). Liver volume was evaluated preoperatively using a computed tomography (CT) volumetric system. Dynamic-enhanced CT images were obtained preoperatively for all patients. Liver volumes were calculated using volume analysis software (SYNAPSE VINCENT; Fujifilm Corp., Tokyo, Japan). The liver resection rate (Res) was calculated by dividing the liver volume to be removed (excluding the tumor volume) by the total liver volume. Post-hepatectomy liver failure (PHLF) was defined according to the International Study Group of Liver Surgery (ISGLS) criteria² as increased international normalized ratio (INR) and concomitant hyperbilirubinemia on or after postoperative day 5. ML was performed using Colaboratory (https://colab.research.google.com/). Pycaret is a machine-learning library in Python that automates ML workflows (https://pycaret.org). Hyperparameter tuning is automatically performed by a RandomGridSearch. The tuning grid for hyperparameters is already defined by Pycaret for all models in the library. Ensemble modeling,²⁰ which combines the predictions from multiple machine-learning models, is implemented in Pycaret. We employed Pycaret to predict PHLF. Pycaret, which has 15 built-in classification models, was trained and evaluated using the dataset. The patient dataset was divided by random splitting into two sets: a training set and a test set. The predictive performance of the 15 ML algorithms was compared using the mean area under the receiver operating characteristic curve (AUROC), accuracy, recall, precision, and F1 scores. Accuracy was calculated as follows: (true positive + true negative) / total. The recall was calculated as true positive / (true positive + false negative). Precision was calculated as true-positive / (true-positive + false-positive). F1 was calculated as $2 \times (precision \times recall)$ / (precision + recall). The model with the highest accuracy in the training set was evaluated using the test data. Feature importance, which is a process used to select features in a dataset that contribute the most to predicting the target variable, was automatically permuted. The learning curve is visualized as a plot of data accuracy. Calculation of routine scoring systems was performed as follows: The albumin-bilirubin (ALBI) score was calculated as $0.66 \times \log 10 (17.1 \times total \ bilirubin[mg/mL]) + -0.885 \times (10 \times ALB \ level[g/dl]);^5 \ fibrosis 4 (FIB-4) score was calculated$ as AST(U/L)×age(years)/[platelet count (×109/L)×ALT(U/L).⁶ The predictive performance of the ML-PHLF model was compared with that of ALBI and Fib-4 using calculation of AUROC. Continuous variables are expressed as median (range or interquartile range). In the univariate analysis, continuous data were analyzed using the Mann-Whitney U-test. Categorical variables were compared using Fisher's exact test. Multiple logistic regression analysis was performed to estimate the predictors of PHLF. Differences were considered significant if the P value was less than 0.05. Statistical analyses were performed using EZR version 1.52 (Saitama Medical Center, Jichi Medical University, Saitama, Japan).²¹ Dovepress Tashiro et al ## Results A total of 334 patients were divided into the training (n=233) and validation (n=101) cohorts. The clinical characteristics of the entire dataset, training set, and validation set are shown in Table 1. The median age of the entire dataset was 74 years and 254 patients (76%) were men. A total of 209 patients (63%) were diagnosed with HCC, and 103 (31%) underwent repeat hepatectomy. 72 patients received pre-operative chemotherapy: liver metastasis from colorectal cancer, 56; liver metastasis from gastric cancer, 2; intrahepatic cholangiocarcinoma, 5; liposarcoma, 5; others, 4. 70 patients had pathological findings of cirrhosis. The clinical characteristics of the training and validation sets did not differ significantly different (Table 1). There was no case of mortality in this study. PHLF occurred in 31 (9.3%) patients: grade A, 22; grade B, 8; grade C,1. The occurrence rate of Dindo-Clavien ≥ III complication was significantly higher in patients with PHLF than that of patients without PHLF: 22.6% vs 8.2%. Univariate analysis showed that tumor size, prothrombin time, operation method, platelet count, CRP level, Creatine level, ALB level, Res, ICGR15, tumor location, and T-Bil, AST, and ALT levels were significantly associated with PHLF development (Table 2). Multivariate analysis showed that Res, ICGR15, tumor location, and T-Bil and ALT levels were independent risk factors for PHLF (Table 2). Table I The Characteristics of Whole Dataset, Training, and Test Sets | Characteristics | All Patients (n=334) | Training Set (n=233) | Testing Set (n=101) | p value | |----------------------------------------|----------------------|----------------------|---------------------|---------| | Age, years | 74(34–90) | 75(34–90) | 73(39–87) | 0.19 | | Sex, male/female, n | 254/80 | 172/61 | 82/19 | 0.184 | | BMI | 23.2(14.36–46.63) | 23.3(14.36–46.63) | 23.11(15.21–33.96) | 0.621 | | Etiology, primary/metastatic/others, r | 248/95/1 | 166/66/1 | 82/29/0 | 0.821 | | Number of tumor, n | 1(1-18) | 1(1-18) | 1(1–18) | 0.14 | | Size of tumor, mm | 19(0.25–130) | 18(0.25–130) | 20(2.3–83) | 0.943 | | Location, Seg7or8/others, n | 173/161 | 113/120 | 60/41 | 0.074 | | Hemoglobin, g/dl | 12.8(6.4–17.8) | 12.9(6.4–17.8) | 12.6(8.1–16.2) | 0.623 | | Platelet count, ×10 ⁶ /L | 17.25(4.3–44.3) | 16.95(4.3–44.3) | 18.3(6–42) | 0.17 | | Total bilirubin, mg/dl | 0.7(0.2–2.8) | 0.7(0.2–2.8) | 0.7(0.3–1.9) | 0.879 | | Alanine aminotransferase, IU/L | 18(4–145) | 18(4–145) | 18(5–65) | 0.985 | | Aspartate aminotransferase, IU/L | 24(6–102) | 24(10–102) | 23(6–70) | 0.301 | | Albumin, g/dl | 4(2–5.1) | 4(2–5.1) | 4(2–5) | 0.621 | | Prothrombin time, % | 99(57–149.8) | 97.9(57–149.8) | 101.2(66.5–122.8) | 0.108 | | Creatinine, mg/dl | 0.84(0.37-11.42) | 0.85(0.37–9.72) | 0.82(0.47-11.42) | 0.453 | | ICGR15% | 11.15(0–58.5) | 11.75(0–58.5) | 10.7(0.5–50.9) | 0.735 | | CRP, mg/dl | 0.13(0.01–27.1) | 0.13(0.01–27.1) | 0.13(0.02–2.85) | 0.691 | | Repeat surgery, 1st/2nd/3rd/4th | 231/75/21/7 | 164/52/13/4 | 67/23/8/3 | 0.655 | | Laparoscopic, yes/no | 191/143 | 129/104 | 62/39 | 0.337 | | Estimated Liver resection rate, % | 13.8(0.6–64) | 13.1(0.6–59) | 15(1–64) | 0.397 | | ASA score | 1/231/102 | 160/73 | 1/71/29 | 0.319 | | PHLF | 31/303 (9.3%) | 22/211 (9.4%) | 9/92 (8.9%) | 1 | Note: Continuous values given as median (range) or absolute and relative frequencies. Abbreviations: BMI, body mass index; ICGR15, indocyanine green retention rate; ASA, American society of anesthesiologist. Tashiro et al Dovepress Table 2 Univariate and Multivariate Analyses for PHLF | | Univariate Analysis | | | Multivariate Analysis | | | |----------------------------------------|---------------------|--------------------|---------|-----------------------|-----------|---------| | | PHLF | | p value | OR | 95% CI | p value | | Characteristics | Yes | No | | | | | | Age, years | 73(67.5–78.5) | 74(68–79) | 0.329 | | | | | Sex, male/female, n | 28/3 | 226/77 | 0.07 | | | | | BMI | 24.74(21.09–25.75) | 23.26(21.46–25.55) | 0.519 | | | | | Etiology, primary/metastatic/others, n | | | | | | | | Number of tumor, n | I(I-2) | I(I-2) | 0.152 | | | | | Size of tumor, cm | 35(17–65) | 16(11–28) | <0.001 | | | | | Location of tumor, Seg7or8/others | 23/8 | 150/153 | 0.013 | 5.13 | 1.31-20.1 | 0.019 | | Hemoglobin, g/dl | 12.8(11.6–14.4) | 12.8(11.6–14.05) | 0.864 | | | | | Platelet count, x10 ⁶ /L | 16.5(11.3–19.75) | 17.4(13.4–22.1) | 0.101 | | | | | Total bilirubin, mg/dl | 1.0(0.8–1.2) | 0.7(0.5–0.9) | <0.001 | 12.1 | 2.6–56.50 | <0.001 | | Alanine aminotransferase, IU/L | 25(18–41) | 17(13–26) | <0.001 | | | | | Asparatate aminotransferase, IU/L | 33(26–40) | 24(19–32) | <0.001 | 1.07 | 1.02-1.13 | 0.006 | | Albumin, g/dl | 3.8(3.15–4.15) | 4.1(3.8–4.3) | <0.001 | | | | | Prothrombin time, % | 95.9(79.2–101.35) | 99.4(92.5–107.1) | 0.029 | | | | | Creatinine, mg/dl | 0.82(0.665–0.875) | 0.84(0.720–0.980) | 0.25 | | | | | ICGR15,% | 15.9(9.4–30.25) | 10.7(6.5–15.75) | <0.001 | 1.2 | 1.09-1.31 | <0.001 | | CRP, mg/dl | 0.32(0.13–0.875) | 0.12(0.06-0.280) | <0.001 | | | | | Repeat surgery, n(%) | 1(1-1) | I(I-2) | 0.442 | | | | | Laparoscopic, yes/no | 8/23 | 183/120 | <0.001 | | | | | Estimated Liver resection rate, % | 29(13.5–43) | 13(4–24) | <0.001 | 1.14 | 1.07-1.21 | <0.001 | | ASA score | 2(2–3) | 2(2–3) | 0.517 | | | | Note: Continuous values given as median (interquartile range). Abbreviations: BMI, body mass index; ICGR15, indocyanine green retention rate; ASA, American society of anesthesiologist. Using 20 variables, the ML model was trained and tuned to the training set, and the performance of 15 classification algorithms was compared. ML analysis showed the accuracy, AUC, recall, precision, and F1 in the training set (Supplementary Table 1). Linear Discriminant analysis (LDA)²² was the best model (accuracy:91.8%, AUROC:0.879). The learning curve, confusion matrix, classification report, and AUROC (Supplementary Figure 1) in the testing set showed that the prediction of PHLF negativity outperformed the precision, recall, and F1 scores by 0.957, 0.967, and 0.962, respectively. However, the prediction of PHLF positivity did not outperform that of PHLF negativity; the precision, recall, and F1 scores were 0.625, 0.556, and 0.588, respectively (Supplementary Figure 1). Next, five risk factors identified by multivariate analysis were used as input variables: Res, ICGR15, tumor location, T-Bil level, and ALT level. However, the performance of ML using 20 variables was almost the same as that of ML using five independent risk factors: Res, ICGR15, tumor location, T-Bil level, and ALT level (Supplementary Figure 2 and Supplementary Table 2). Thus, the ML was trained and tuned using 12 variables identified by univariate analysis. The performance of ML using the 12 variables improved slightly. Extreme Gradient Boosting (XGBoost) was the best model **Dove**press Tashiro et al (accuracy:93.2%, AUC:0.862) (Table 3). The learning curve showed that the training scores were higher than the crossvalidation scores, and the cross-validation score reached 0.9 in 100 samples (Figure 1A). The feature importance plot of ML in the training set is shown in Figure 1B. The five highest features were Res, which was the most important feature among the clinical characteristics, ALB level, PT, ICGR-15, and laparoscopic approach. The confusion matrix (Figure 1C) and classification report (Figure 1D) for the testing set are shown in Figure 1. The ML classification report demonstrated that the predictive performance of no PHLF with precision, recall, and F1 scores were 0.958, 0.989, and 0.973, respectively. The predictive performance of the PHLF model showed precision, recall, and F1 scores of 0.833, 0.556, and 0.677, respectively (Figure 1D). Last, we performed ensemble model using light gradient boosting machine (lightGBM) and XGBoost (Supplementary Table 3). We further compared the predictive performance of the ML PHLF model with that of routine clinical models, including ALBI and Fib-4. The ML-PHLF model had the highest AUROC for the prediction of PHLF among the noninvasive models in the training and testing sets (Table 4 and Supplementary Figure 3). The ML PHLF model using Pycaret was more accurate than routine scoring models in predicting PHLF. ## **Discussion** In the current study, we developed and validated an ML model for predicting PHLF after hepatectomy for primary and metastatic liver cancers using PyCaret. The accuracy of the PHLF model was superior to that of conventional models. To the best of our knowledge, this is the first study using Pycaret to predict PHLF after hepatectomy for liver cancers. ML has been increasingly applied to the field of liver surgery to predict the outcomes of patients who have undergone liver resection. Two studies on ML models developed to predict PHLF have been reported. Mai et al reported that an artificial neural network model predicted the risk of severe PHLF after hemi-hepatectomy in patients with HCC. 15 Wang et al developed an ML model based on light gradient boosting machines (Light GBM), which accurately predicted the risk of PHLF compared to conventional models such as ALBI, FIB-4, and CTP. 16 In this study, we adopted the Pycaret Model **Accuracy** AUC Recall **Precision** xgboost Extreme Gradient Boosting 0.9312 0.8628 0.4333 0.6583 qda Quadratic Discriminant Analysis 0.9274 0.7588 0.4167 0.5167 Table 3 Comparison of 15 Classification Algorithms by Pycaret FΙ 0.4924 0.4433 Logistic Regression 0.9232 0.8763 0.35 0.45 0.3833 svm SVM - Linear Kernel 0.9232 0 0.2333 0.4 0.2833 lda Linear Discriminant Analysis 0.9232 0.8784 0.4 0.5667 0.4567 lightgbm Light Gradient Boosting Machine 0.9225 0.8345 0.4167 0.5833 0.47 Random Forest Classifier 0.9185 0.7831 0.1833 0.4 0.25 Gradient Boosting Classifier 0.9185 0.841 0.35 0.5 0.4033 gbc Extra Trees Classifier 0.9145 0.8207 0.2 0.35 0.25 knn K Neighbors Classifier 0.9143 0.6837 0.1 0.2 0.1333 Ridge Ridge Classifier 0.9143 0.1333 0.3 0.1833 ada Ada Boost Classifier 0.9101 0.7545 0.35 0.5333 0.3971 dt Decision Tree Classifier 0.9058 0.6846 0.4167 0.4433 0.4055 **Dummy Classifier** 0.9058 0.5 0 0 0 Dummy Naive Bayes 0.8844 0.8829 0.5833 0.4 0.4676 Abbreviation: AUC, area under curve. Figure I Learning curve (A) feature importance plot (B) confusion matrix (C) classification report (D) receiver operating characteristics (ROC) curve (E) of XGBClassifier using 12 variables identified by univariate analysis. library, which contains 15 built-in classification models. Pycaret contains decision tree classifiers, such as the Random Forest classifier and Light GBM, discriminant analysis, logistic regression, K Neighbor Classifier, and support vector machine (SVM). In Pycaret, the predictive performance of the 15 ML algorithms was compared based on the accuracy, mean AUROC, recall, precision, and F1 scores. The best model was evaluated in terms of accuracy and AUROC for the test set. A confusion matrix, learning curve, and feature importance were provided. First, we performed ML using 20 variables and the model's accuracy was 91.8%. Using the five variables identified by multivariate analysis, the accuracy was 92.3%. Finally, using the 12 variables identified by univariate analysis, the accuracy was 93.1%. Consequently, the performance of ML was trained, tuned, and improved. In the training set, XGBoost, which is a scalable, distributed gradient-boosted decision tree (GBDT) ML library, 23 showed the best performance among the 15 algorithms, with an accuracy, AUROC, recall, and precision of 0.9183, 0.8628, 0.433, and 0.6583, respectively. Our study has an advantage Table 4 Comparison of Performances of ALBI, Fib-4, and ML for Predicting **PHLF** | | Area Under the ROC | 95% CI | |-------|--------------------|-------------| | ALBI | 0.754 | 0.645-0.863 | | FIB-4 | 0.643 | 0.512-0.774 | | ML | 0.862 | 0.763-0.912 | Abbreviations: ROC, receiver operating characteristics; ALBI, the albumin-bilirubin score; FIB-4, the fibrosis-4 index; ML, machine learning. Dovepress Tashiro et al over previous studies in terms of comparing the performances of 15 ML algorithms and predicting the occurrence of PHLF using the best model. Among the 101 patients in the test set, 91 of 92 cases of no PHLF (specificity:0.967) and 5 of 9 cases of PHLF (recall:55.6%) were precisely predicted. ML performed well in predicting negative PHLF with precision, recall, and F1 scores of 0.957, 0.967, and 0.962, respectively. However, the predictive performance for positive PHLF was low, with precision, recall, and F1 scores of 0.833, 0.556, and 0.667, respectively. This discrepancy is believed to be due to the imbalance in the rates of positivity and negativity of PHL in our study: the incidence of PHLF was 9.3%. The performance of ML in predicting PHLF should improve in cases limited to major hepatectomy because the incidence rate of PHLF is high in cases of major hepatectomy. Large-scale studies are required to improve the performance of ML in predicting PHLF. The top five features ranked in our ML model were Res, ALB level, PT, ICGR-15, and laparoscopic approach. These Results are partially incompatible with the results of a multivariate analysis that showed that Res, ICGR15, tumor location, T-Bil level, and ALT level were independent risk factors for PHLF. Res and ICGR-15 were common important variables in both the ML model and the multivariate analysis. Res, which is the most commonly identified significant predictor of PHLF,³ was the most important feature of the ML model. ICGR15, which is included in the Makuuchi criteria⁷ and is recognized as one of the most useful indicators of liver function in Japan, was a top five important feature in the ML model. ALB and prothrombin, which are important proteins produced in the liver, were the second- and third-most important features in the ML model. ALB level and prothrombin time are important parameters used in MELD and Child-Pugh scores. The occurrence rate of PHLF was significantly lower in the laparoscopic approach than in the open approach. The laparoscopic approach is less invasive than the open approach. Differences in the hepatectomy approach are unlikely to affect postoperative liver function. These discrepancies between the ML and multivariate analyses may be attributed to the study methodologies. The ML PHLF model using Pycaret was more accurate in predicting PHLF than the traditional scoring models, Fib-4 and ALBI. However, these traditional models can more easily calculate scores and predict PHLF. These statistics-based traditional scoring models and the ML model are complementary.²⁴ The ML model for predicting PHLF combined with traditional scoring models should contribute to safer and more accurate liver resection. This study has some limitations. First, the severity of PHLF was classified into 3 grades. Several studies have focused on severe PHLF (grade B or C). In the current study, the number of cases of PHLF grades A, B and C was 22, 8 and 1, respectively, and this was too small to allow focus on severe PHLF. Second, this study was non-specific for primary liver cancer because it consisted of patients diagnosed with primary and secondary liver cancers, including metastasis, who had undergone hepatectomy. Differences in etiology may affect liver function. There is a need for a large-scale study using a multicenter database focusing on severe PHLF and specific etiology. In conclusion, ML using Pycaret in combination with traditional scoring systems may contribute to safer and more accurate liver resection. # Acknowledgment We would like to thank Editage for English language editing. #### **Author Contributions** All authors contributed to data analysis, drafting or revising the article, have agreed on the journal to which the article will be submitted, gave final approval of the version to be published, and agree to be accountable for all aspects of the work. ## **Disclosure** The authors have no commercial associations (eg, consultancies, stock ownership, equity interest, patent/licensing arrangements) that might pose a conflict of interest related to the submitted manuscript. Tashiro et al **Dove**press ## References 1. Belghiti J, Hiramatsu K, Benoist S, Massault P, Sauvanet A, Farges O. Seven hundred forty-seven hepatectomies in the 1990s: an update to evaluate the actual risk of liver resection. J Am Coll Surg. 2000;191(1):38-46. doi:10.1016/S1072-7515(00)00261-1 - 2. Rahbari N, Garden J, Padbury R, et al. Posthepatectomy liver failure: a definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery. 2011;149(5):713-724. doi:10.1016/j.surg.2010.10.001 - 3. Yoshino K, Yoh T, Taura K, Seo S, Ciria R, Briceno-Delgado J. A systematic review of prediction models for post-hepatectomy liver failure in patients undergoing liver surgery. HPB. 2021;23(9):1311-1320. doi:10.1016/j.hpb.2021.05.002 - 4. Pugh RN, Murray-Lyon IM, Dawson JL, Pietroni MC, Williams R. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg. 1973;60(8):646-649. doi:10.1002/bjs.1800600817 - 5. Johnson PJ, Berhane S, Kagebayashi C, et al. Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. J Clin Oncol. 2015;33(6):550-558. doi:10.1200/JCO.2014.57.9151 - 6. Sterling RK, Lissen E, Clumeck N, et al. Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology. 2006;43(6):1317-1325. doi:10.1002/hep.21178 - 7. Makuuchi M, Kosuge T, Takayama T, et al. Surgery for small liver cancers. Semin Surg Oncol. 1993;9(4):298-304. doi:10.1002/ssu.2980090404 - 8. Imamura H, Seyama Y, Kokudo N, et al. One thousand fifty-six hepatectomies without mortality in 8 years. Arch Surg. 2003;138(11):1198–1206. doi:10.1001/archsurg.138.11.1198 - 9. Olthof PB, Arntz P, Truant S, et al. Hepatobiliary scintigraphy to predict postoperative liver failure after major liver resection; a multicenter cohort study in 547 patients. HPB. 2023;25(4):417-424. doi:10.1016/j.hpb.2022.12.005 - 10. Li C, Wang Q, Zou M, et al. A radiomics model based on preoperative gadoxetic acid-enhanced magnetic resonance imaging for predicting post-hepatectomy liver failure in patients with hepatocellular carcinoma. Front Oncol. 2023;13:1164739. doi:10.3389/fonc.2023.1164739 - 11. Famularo S, Donadon M, Cipriani F, et al. Machine learning predictive model to guide treatment allocation for recurrent hepatocellular carcinoma after surgery. JAMA Surgery. 2023;158(2):192-202. doi:10.1001/jamasurg.2022.6697 - 12. Ruzzenente A, Bagante F, Poletto E, et al. A machine learning analysis of difficulty scoring systems for laparoscopic liver surgery. Surg Endo. 2022;36(12):8869-8880. doi:10.1007/s00464-022-09322-7 - 13. Theysohn J, Demircioglu A, Kleditzsch M, et al. Prediction of left lobe hypertrophy after right lobe radioembolization of the liver using a clinical data model with external validation. Sci Rep. 2022;12(1):20718. doi:10.1038/s41598-022-25077-6 - 14. Amygdalos I, Muller-Franzes G, Bednarsch J, et al. Novel machine learning algorithm can identify patients at risk of poor overall survival following curative resection for colorectal liver metastases. J Hepatobiliary Pancreat Sci. 2023;30(5):602-614. doi:10.1002/jhbp.1249 - 15. Mai RY, Bai T, et al. Artificial neural network model for preoperative prediction of severe liver failure after hemihepatectomy in patients with hepatocellular carcinoma. Surgery. 2020;168(4):643-652. doi:10.1016/j.surg.2020.06.031 - 16. Wang J, Zheng T, Liao Y, et al. Machine learning prediction model for post-hepatectomy liver failure in hepatocellular carcinoma: a multicenter study. Front Oncol. 2022;12:986867. doi:10.3389/fonc.2022.986867 - 17. Evrimler S, Gedik MA, Serel TA, et al. Bladder urothelial carcinoma: machine learning-based computed tomography radiomics for prediction of histological variant. Acad Radiol. 2022;29(11):1682-1688. doi:10.1016/j.acra.2022.02.007 - 18. Yang E, Ding Q, Fan X, et al. Machine learning modeling and prognostic value analysis of invasion-related genes in cutaneous melanoma. Comput Biol Med. 2023;162:107089. doi:10.1016/j.compbiomed.2023.107089 - 19. Lundervold AJ, Hillestad EMR, Lied GA, et al. Assessment of self-reported executive function in patients with irritable bowel syndrome using a machine-learning framework. J Clin Med 2023;31:3771. doi: 10.3390/jcm12113771 - 20. Zhang Z, Chen L, Xu P, Hong Y. Predictive analytics with ensemble modeling in laparoscopic surgery: a technical note. Laparosc Endosc Rob Surg. 2022;5(1):25-34. doi:10.1016/j.lers.2021.12.003 - 21. Kanda Y. Investigation of the freely available easy-to-use software 'EZR' for medical statistics. Bone Marrow Transplant. 2013;48(3):452-458. doi:10.1038/bmt.2012.244 - 22. Fisher RA. The use of multiple measurements in taxonomic problems. Ann Eugenics. 1936;7(2):179–188. doi:10.1111/j.1469-1809.1936.tb02137.x - 23. Chen T, He T, Benesty M, et al. Extreme Gradient Boosting. Package Version-0.4-1.4; 2015. Available from: https://xgboost.ai/. Accessed May, 15, 2023. - 24. Bzdok D, Altman N, Krzywinski M. Statistics versus machine learning. Nat Methods. 2018;15(4):233-234. doi:10.1038/nmeth.4642 #### Journal of Hepatocellular Carcinoma # Dovepress # Publish your work in this journal The Journal of Hepatocellular Carcinoma is an international, peer-reviewed, open access journal that offers a platform for the dissemination and study of clinical, translational and basic research findings in this rapidly developing field. Development in areas including, but not limited to, epidemiology, vaccination, hepatitis therapy, pathology and molecular tumor classification and prognostication are all considered for publication. The manuscript management system is completely online and includes a very quick and fair peer-review system, which is all easy to use. Visit http://www.dovepress.com/testimonials.php to read real quotes from published authors Submit your manuscript here: https://www.dovepress.com/journal-of-hepatocellular-carcinoma-journa