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Abstract: It is an undeniable fact that Internet of Things (IoT) technologies have become a milestone
advancement in the digital healthcare domain, since the number of IoT medical devices is grown
exponentially, and it is now anticipated that by 2020 there will be over 161 million of them connected
worldwide. Therefore, in an era of continuous growth, IoT healthcare faces various challenges, such
as the collection, the quality estimation, as well as the interpretation and the harmonization of the
data that derive from the existing huge amounts of heterogeneous IoT medical devices. Even though
various approaches have been developed so far for solving each one of these challenges, none of these
proposes a holistic approach for successfully achieving data interoperability between high-quality data
that derive from heterogeneous devices. For that reason, in this manuscript a mechanism is produced
for effectively addressing the intersection of these challenges. Through this mechanism, initially,
the collection of the different devices’ datasets occurs, followed by the cleaning of them. In sequel,
the produced cleaning results are used in order to capture the levels of the overall data quality of
each dataset, in combination with the measurements of the availability of each device that produced
each dataset, and the reliability of it. Consequently, only the high-quality data is kept and translated
into a common format, being able to be used for further utilization. The proposed mechanism is
evaluated through a specific scenario, producing reliable results, achieving data interoperability of
100% accuracy, and data quality of more than 90% accuracy.

Keywords: internet of things; healthcare; medical devices; heterogeneous devices; data heterogeneity;
quality assessment; data cleaning; data quality; data interoperability

1. Introduction

Internet of Things (IoT) technologies are increasing rapidly, having become a milestone
advancement in the digital healthcare domain [1–3]. According to [4], today 50 million medical
devices are in use, and it is anticipated that by 2020 there will be over 161 million of them connected
worldwide. This huge expansion of the IoT medical devices market is due to the evolution of high-speed
networking technologies, and the increasing adoption of wearable devices, smartphones, and other
mobile platforms in healthcare [5]. Therefore, nowadays there exists a large amount of IoT medical
devices, which is gradually increasing with every passing day, resulting into a myriad of heterogeneous
devices that are connected to the healthcare IoT world.

However, these devices are typically characterized by a high degree of heterogeneity [6], producing
huge amounts of health and fitness data in heterogeneous formats [7]. Hundreds of healthcare
organizations deal everyday with challenges in extracting data from different kinds of medical devices,
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affecting both patient care and medical research [8]. Nevertheless, all these healthcare organizations are
facing many difficulties in managing all these huge amounts of data, mainly lacking an integrated data
exchange system [9]. In order to exchange data with as many organizations as possible, interoperability
is the only way for letting systems interact with each other [10], being considered as a necessity in the
electronic healthcare systems for resolving data heterogeneity issues.

However, all this exchanged medical data may be not only of heterogeneous format but also of
different levels of quality [11]. Henceforth, even if all this data will be interoperable among each other,
it is not sufficient to transform all this data into a common format, since all of it is extremely crucial as it
drives medical decision making [12]. On the contrary, it would be wiser and more effective to take into
consideration the different levels of quality that this data may have, thus transforming only the data
that is of a high-quality level. Therefore, the problem that arises is on the one hand the necessity of the
heterogeneous devices’ derived data to be fully interoperable, and on the other hand the difficulty of
identifying the quality of this enormous amount of data. For that reason, it is of crucial importance not
only to find out an automated way for making these devices’ derived data interoperable, but also to
find out an automated way for measuring the quality of all this data so as to apply the interoperability
transformations only upon this data. However, the authors of many current studies tried to address
the one aspect of the aforementioned challenges (i.e., data quality) [13–16], whereas some others tried
to address the other main aspect of these challenges (i.e., data interoperability) [17–20]. Henceforth,
until today, all the developed researches have tried to solve separately the challenges of data quality
and data interoperability, neglecting to propose a holistic approach for successfully achieving data
interoperability upon high-quality data that derive from heterogeneous devices.

To address this challenge, in this manuscript a mechanism is proposed for gathering heterogeneous
IoT medical devices’ data, automatically extracting the data that is of high-quality and making it
interoperable. Based on this mechanism, initially all the available heterogeneous IoT medical devices
are discovered and connected into the mechanism, which is responsible for collecting their data. Once
these devices are connected and their data is successfully gathered, the cleaning of it takes place,
from which the results of each device’s dataset cleaning derive. The latter are combined with the
corresponding overall data quality measurements that are captured from each different device in
combination with its derived data, so as to decide whether the connected devices’ derived data will
be considered as reliable or not. Consequently, only the reliable data is kept and translated into an
interoperable format, and thus are kept to be used for further analysis. The proposed mechanism is
evaluated through a specific use case, by gathering data from heterogeneous IoT medical devices, in
order to clean it and capture its quality levels, and finally make interoperable only the cleaned data
that are of high-quality.

This manuscript is organized as follows: Section 2 (Materials and Methods) analyzes the proposed
mechanism for achieving data quality assessment and interoperability transformation among different
kinds of medical data that derive from heterogeneous IoT medical devices. Section 3 (Results) analyzes
the experiment that was followed in order to evaluate the proposed mechanism, whilst Section 4
(Discussion) describes the findings of our research, stating its innovative points. Finally, Section 5
(Conclusions) analyzes our conclusions that are accompanied with our plans for future research.

2. Materials and Methods

The flowchart of the developed mechanism for achieving both data quality assessment and data
interoperability is shown in Figure 1. More specifically, the mechanism consists of the stages of: (i)
Data Collection, (ii) Data Cleaning, (iii) Data Quality Estimation, and (iv) Data Interoperability.
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Figure 1. Architecture of the proposed mechanism.

2.1. Data Collection

In the first stage of the mechanism, the discovery as well as the connection of the available
heterogeneous IoT medical devices take place, followed by the collection of their data, as depicted in
Figure 2. Therefore, the various available devices (e.g., activity trackers, body weight scales, etc.) are
discovered and connected to the mechanism through the implementation of the approach proposed in
our previous work in [21]. In more detail, this mechanism implements a Bluetooth interface, based
upon the Bluetooth Low-Energy (BLE) [22], thus being able to communicate with devices that can be
recognized and connected only via Bluetooth. As soon as the devices’ connections are successfully
established, following the procedure of [21], the mechanism identifies all the Application Programming
Interface (API) methods of the connected devices, extracting and using the ones that are responsible
for collecting the data from the different connected devices. To this end, it should be mentioned that
the mechanism is able to connect only devices that have open APIs in order to give access to their
methods, since the private ones do not publicly offer information about their methods [23], whereas
these devices might be either of known or of unknown nature (i.e., device type). Apart from this, it
should be noted that since the IoT medical devices are separated into either medical grade or consumer
grade devices [24], the proposed mechanism is able to detect and use both of them.
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2.2. Data Cleaning

In the second stage of the mechanism, the cleaning of the data that has been collected takes place.
In more detail, the developed data cleaning mechanism follows a multi-fold process that includes three
(3) different steps, as depicted in Figure 3.
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More specifically, the steps are: (i) the data validation that identifies all the errors that are associated
with conformance to specific constraints, safeguarding that the gathered data measures comply with
defined business rules or constraints (i.e., conformance to specific data types, conformance to value
representation, conformance to range constraints, conformance to pre-defined values, conformance
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to cross-field validity etc.), (ii) the data cleaning that eliminates the errors identified during the
aforementioned validation process, by applying corrective actions upon the identified erroneous
records of the data, and (iii) the data completion that handles the missing data, safeguarding that the
provided data is fully complete and conforms to mandatory fields (i.e., required fields which cannot be
empty). To this end, it should be noted that the identification of the errors and their cleaning (i.e., data
validation and data cleaning steps) take into consideration well-defined rules that can be set by the IoT
devices’ manufacturers, and do not necessarily employ advanced machine learning business logic in
order to be performed. On the contrary, the handling of missing values (i.e., data completion step) is a
significant research issue [25], and for this reason different mechanisms are employed according to
the variation of the missing values. More specifically, in cases with low variation and frequent data
samples, last non-zero values are used to substitute missing values, in cases with medium variation
and frequent data samples, the moving average is used and the missing value is substituted with the
average of the previous and the next non-zero values, while in cases with higher variation or with
less frequent data samples, machine learning algorithms are employed to predict the missing values.
To be more specific, the latter refers to: (a) the kNN imputation [26], which does not need to create an
explicit predictive model to estimate the missing values, having the ability to easily treat examples with
multiple missing values and both categorical and continuous variables, and (b) the C4.5 algorithm [27],
which inherently ignores the missing values when calculating the features’ information, so that it can
deal with multiple missing attributes in a dataset.

Therefore, the Data Cleaning process takes into consideration the defined business rules, as well
as the available current and historical data, in order to provide to the data completion step of the
mechanism the cleaned, completed and properly validated data. Thus, the final cleaning results are
produced, indicating the total corrective actions that were undertaken upon each different dataset,
in combination with each derived cleaned dataset. In more detail, based on the obtained cleaning
results, the accuracy (i.e., Data_Accuracy) of each different collected dataset is calculated following
the Equation (1), where the Total_Records denote the number of the records that existed in each
different dataset that derived from each different connected device, whereas the Total_Actions denote
the number of the total errors (i.e., erroneous data, missing data, and dropped records) that were
encountered during the whole cleaning process, in the corresponding datasets.

Data_Accuracy =
Total_Records – Total_Actions

Total_Records
(1)

Apart from this metric, based on the cleaning results, we calculate the number of the total faults
(i.e., Faulty_Data) that existed in each different dataset that derived from each different connected
device, following the Equation (2), where Data_Accuracy refers to the corresponding accuracy of each
different dataset.

Faulty_Data = 1 − Data_Accuracy (2)

Finally, we calculate the number of the completeness (i.e., Data_Completion) of each different
dataset that derived from each different connected device, following the Equation (3), where the
Total_Records denote the number of the records that existed in each different dataset, whereas the
Dropped_Records denote the number of the records that were dropped (i.e., deleted) during the whole
cleaning process, in the corresponding datasets.

Data_Completion =
Total_Records − Dropped_Records

Total_Records
(3)

2.3. Data Quality Estimation

In the third stage of the mechanism, the quality estimation of the connected devices’ cleaned
data takes place. This stage is of major importance, since it is not sufficient to keep all the derived
data and use it for further analysis, as much of it may have derived either from unreliable devices or
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from reliable devices that are faulty and error prone. For that reason, it is necessary to measure and
evaluate the quality of all the produced data, so as to finally only keep the reliable data that comes from
only reliable devices. In order to achieve that, as stated in our previous research in [28] for capturing
the quality levels of data, it is more effective to estimate both the devices’ quality themselves, and
the quality of their produced data. Thus, in this stage of the mechanism, three (3) different steps are
followed, as they are illustrated in Figure 4.
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2.3.1. Devices Availability

In the first step of the Data Quality Estimation, the Devices Availability takes place, where the
mechanism calculates the devices’ quality levels. Even though the research in [28] outlines that
there exist a wide range of metrics for capturing the devices’ quality, in this mechanism, in order to
calculate each different connected device’s quality, we measure only the metric of the availability (or
mission capable rate) of them, as it is the most representative metric [29]. A wide range of availability
classifications and definitions exist [30], however in this mechanism the most suitable one that is going
to be measured is the operational availability. Operational availability (i.e., Availability) is the ratio of
the system uptime to total time, given mathematically by the Equation (4), where the Operating_Cycle
is the overall time period of operation being investigated and Uptime is the total time in which the
system was functioning during the specific Operating_Cycle.

Availability =
Uptime

Operating_Cycle
(4)

Therefore, we measure each device’s availability by getting the corresponding values, setting a
timestamp in the developed mechanism in order to measure how often each device communicates
with the latter and provides its data.

2.3.2. Data Reliability

However, as mentioned above, it is not sufficient enough to measure only the devices’ availability
for deciding whether the latter is considered as qualitative or not, but it is more effective to measure
also the quality (i.e., reliability) of these devices’ data. For that reason, we implement the second step
of the Data Quality Estimation, where we use as an input from the Data Cleaning stage the number of
the faulty data that derived upon each dataset, so as to correlate it with the availability results of the
corresponding device that produced this dataset.

On top of this, in order to enhance the reliability of these results, in this stage we capture the
reliability metrics [31] of each different dataset. More specifically, since in our case the reliability
of the incoming data is measured upon the data that comes from the same patients, from the same
types of devices, but in different periods of time, among the different types that exist for measuring
data reliability [32], Test-Retest Reliability (TRR) is the most suitable one. Thus, based upon the
fundamentals of TRR [33], in our case the measurements are taken by a single person (i.e., patient) on
the same item (i.e., type of device), under the same conditions, and in a short period, evaluating the
reliability across this period. In order to calculate the TRR of the connected devices’ data, the SPSS
library [34] is used, calculating the corresponding Intraclass Correlation Coefficient (ICC), since the
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data may contain either interval or ratio data [35]. More specifically, we implement the method of
two-way random effects, absolute agreement, and single rater/measurement (i.e., ICC (2,1)), obeying
the corresponding conditions [33].

2.3.3. Overall Data Quality

As a result, in the final step of the Data Quality Estimation, the Overall Data Quality occurs, where
as soon as the ICC of each different dataset is calculated, its results are combined with the results
of the availability (i.e., Availability) as well as the number of the faulty data (i.e., Faulty_Data) that
derived upon the corresponding data, so as to finally decide whether each device, and as a result its
derived data, are considered as of good quality or not. To this end, it should be noted that in order
to consider the final results (i.e., Overall_Quality) as trustful and reliable, these must exceed the set
threshold of 90%. In more detail, Overall_Quality is calculated mathematically by Equation (5), where
it equals with the sum of the subtraction of the calculated Faulty_Data from the corresponding device’s
Availability that is multiplied with a weight of 0.7, and the corresponding ICC of the data of this
device that is multiplied with a weight of 0.3. With regards to the set weights, these were chosen based
upon the research results that were acquired during relevant experiments that were performed in the
past. These results revealed that the Faulty_Data in combination with the Availability should have a
higher weight than this of the ICC, since they were considered to be more characteristic and decisive
for the calculation of the Overall_Quality results. Consequently, based on the calculated results of
the Overall_Quality, all the data that exceed the set threshold are kept to the mechanism to be made
interoperable, whilst the ones that do not exceed the set threshold are discarded by it.

Overall_Quality = ((Availability− Faulty_Data) ∗ 0.7) + (ICC ∗ 0.3)) (5)

2.4. Data Interoperability

In the fourth stage of the mechanism, by having gathered only the data that is of high-levels of
quality, its interpretation and transformation into the HL7 Fast Healthcare Interoperability (HL7 FHIR)
standard [36] takes place, which is currently widely adopted among different healthcare organizations
for achieving data interoperability [37]. That is why, an updated approach of the FHIR Ontology
Mapper (FOM) that we proposed in [38] is implemented, having the ability to identify the similarities
that exist between the different attributes of the HL7 FHIR resources and the attributes of the healthcare
related datasets, and finally transform them into the HL7 FHIR format. In order to achieve that, the
developed Data Interoperability mechanism follows four (4) different steps, as they are depicted in
Figure 5.

Sensors 2019, 19, 1978 6 of 23 

 

2.3.3. Overall Data Quality 

As a result, in the final step of the Data Quality Estimation, the Overall Data Quality occurs, 

where as soon as the ICC of each different dataset is calculated, its results are combined with the 

results of the availability (i.e. Availability) as well as the number of the faulty data (i.e. Faulty_Data) 

that derived upon the corresponding data, so as to finally decide whether each device, and as a result 

its derived data, are considered as of good quality or not. To this end, it should be noted that in order 

to consider the final results (i.e. Overall_Quality) as trustful and reliable, these must exceed the set 

threshold of 90%. In more detail, Overall_Quality is calculated mathematically by equation (5), where 

it equals with the sum of the subtraction of the calculated Faulty_Data from the corresponding 

device’s Availability that is multiplied with a weight of 0.7, and the corresponding ICC of the data of 

this device that is multiplied with a weight of 0.3. With regards to the set weights, these were chosen 

based upon the research results that were acquired during relevant experiments that were performed 

in the past. These results revealed that the Faulty_Data in combination with the Availability should 

have a higher weight than this of the ICC, since they were considered to be more characteristic and 

decisive for the calculation of the Overall_Quality results. Consequently, based on the calculated 

results of the Overall_Quality, all the data that exceed the set threshold are kept to the mechanism to 

be made interoperable, whilst the ones that do not exceed the set threshold are discarded by it. 

Overall_Quality = ((Availability −  Faulty_Data)  ∗  0.7)  + (ICC ∗  0.3)) (5) 

2.4. Data Interoperability 

In the fourth stage of the mechanism, by having gathered only the data that is of high-levels of 

quality, its interpretation and transformation into the HL7 Fast Healthcare Interoperability (HL7 

FHIR) standard [36] takes place, which is currently widely adopted among different healthcare 

organizations for achieving data interoperability [37]. That is why, an updated approach of the FHIR 

Ontology Mapper (FOM) that we proposed in [38] is implemented, having the ability to identify the 

similarities that exist between the different attributes of the HL7 FHIR resources and the attributes of 

the healthcare related datasets, and finally transform them into the HL7 FHIR format. In order to 

achieve that, the developed Data Interoperability mechanism follows four (4) different steps, as they 

are depicted in Figure 5. 

 

 

Figure 5. Data interoperability stage. 

2.4.1. Ontology Creation 

In the first step, the Ontology Creation takes place, which presents an automatic way for 

obtaining an initial organization of the ontological concepts from a collection of any documents that 

can be formed either by text or by structure and text. In our case, in order to create the ontologies, the 

implementation of the mechanism proposed in our work in [39] is followed. More particularly, all the 

collected datasets are preprocessed in order to identify the type of the document in which each dataset 

is stored (e.g. JSON, CSV, etc.), and converted into eXtensible Markup Language (XML) file format [40]. 

Following the 4-step transformation process of [39], each generated file is transformed into the 

corresponding ontologies, in the form of Resource Description Framework (RDF) entities [41]. In 

parallel, all the HL7 FHIR resources that exist in the FHIR resources’ list [36] are also structured in 

their ontological form, through the FHIR Linked Data Module [42]. 

Figure 5. Data interoperability stage.

2.4.1. Ontology Creation

In the first step, the Ontology Creation takes place, which presents an automatic way for obtaining
an initial organization of the ontological concepts from a collection of any documents that can be
formed either by text or by structure and text. In our case, in order to create the ontologies, the
implementation of the mechanism proposed in our work in [39] is followed. More particularly, all
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the collected datasets are preprocessed in order to identify the type of the document in which each
dataset is stored (e.g., JSON, CSV, etc.), and converted into eXtensible Markup Language (XML) file
format [40]. Following the 4-step transformation process of [39], each generated file is transformed
into the corresponding ontologies, in the form of Resource Description Framework (RDF) entities [41].
In parallel, all the HL7 FHIR resources that exist in the FHIR resources’ list [36] are also structured in
their ontological form, through the FHIR Linked Data Module [42].

2.4.2. Structural Mapper

As soon as all the RDF entities (i.e., ontologies) are successfully constructed, the Structural Mapper
takes place following our corresponding approach proposed in [38], thus providing a way for mapping
and identifying the structural similarity between each collected dataset’s attributes and the HL7 FHIR
resources’ attributes, based on their structural form (i.e., syntactic representation of their ontological
names). Consequently, the goal of the Structural Mapper is to identify the similarity measure between
the different ontological names, and provide the probability that a specific attribute of a dataset’s
ontology is the same—in terms of its syntactic interpretation—with a specific attribute of the HL7 FHIR
resources’ ontologies. Therefore, in our case, in order to measure the structural similarity between two
(2) ontologies, the Structural Mapper automatically identifies and iterates over each different ontology
that has been created from the previous step, and provides each ontology as an input to the developed
mechanism. Afterwards, the structural representation of the names of the ontologies to their upper-case
characters takes place, which are then split up into different character pairs (e.g., PATIENT is split
up into {PA, TI, ENT}). Shortly, this part of the mechanism iterates over the structural form of each
ontology between the names of the ontologies of the collected datasets and the names of the HL7 FHIR
resources’ ontologies, and identifies word patterns—in terms of words that are frequently met and
repeated. As soon as these patterns are identified, they are split and stored into different tables for each
ontology, resulting into the identification of the different character pairs that are met. Sequentially, the
next step deals with the checking of the multiple character pairs, in order to identify which characters
can be found in both split strings. The outcome of this step is the total different character pairs that are
similar between the ontologies that are compared to each other. Thus, in the final step, the calculation
of the probability of the structural similarity of the aforementioned pairs occurs based on the structural
similarity calculation equation provided to [38], storing finally the results into different tables. To be
more precise, the probability of the structural similarity of the aforementioned pairs is calculated based
on the equation presented in (6). Shortly, the structural similarity (i.e., St_Simil) between two (2) given
ontologies S1 and S2, is twice the number of character pairs (i.e., Character_Pairs (S1), Character_Pairs
(S2)) that are common to both names of the different ontologies, divided by the sum of the number of
character pairs (i.e., Characters (S1), Characters (S2)) that are identified in both ontologies.

St_Simil =
2 ∗ (Character_Pairs(S1) ∩ Character_Pairs(S2))

(Characters(S1) + Characters(S2))
(6)

2.4.3. Semantic Mapper

In the same concept of the Structural Mapper, the Semantic Mapper is implemented following our
corresponding approach proposed in [38], thus providing the means for aligning and mapping the
different ontologies of the collected datasets and the HL7 FHIR resources, according to their semantical
meaning. Consequently, the Semantic Mapper’s whole process involves running several matching
operations, according to the semantic similarity (i.e., relationships and dependencies between names’
structure and instances’ placement) among the ontologies that were constructed during the Ontology
Creation, and then filtering their results so as to find an overall alignment. Hence, in our case, in
order to measure the semantic similarity between the collected datasets and the HL7 FHIR resources’
ontologies, the identification of the different names, along with their relationships and instances takes
place. As soon as the different triples of information are gathered, these are stored in different triples of
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arrays. In sequel, the comparison of these triples of arrays occurs, in order to calculate their semantic
similarity. For that reason, the Retina API [43] is implemented in the form of a sparse distributed
semantic space, which is based on the assumption that the language is stored in the human brain in the
form of a distributed memory. In that case, the general English Retina Database [43] is being accessed,
converting the different triples of arrays into semantic fingerprints in order to compare their meanings,
by overlaying their semantic fingerprints and calculating their distance. By the time that all the different
combinations of comparisons have occurred, different tables of the semantic similarity between the
different triples of arrays are created. Hence, different probabilities of the correspondence between the
attributes of the collected datasets’ ontologies and the attributes of the HL7 FHIR resources’ ontologies
are calculated based upon the semantic similarity equation provided to [38], and stored into different
tables. More specifically, as soon as the matching between the semantic meanings of the different
ontologies has been performed, the metrics of the final results’ precision and recall are identified, in
order to finally calculate the harmonic mean (i.e., Sem_Simil) of these two (2) measures. Thus, these
results provide the number that indicates how much each specific ontology of the collected datasets is
semantically the same with an ontology of the HL7 FHIR resources, with respect to the Unified Medical
Language System (UMLS) reference alignment [44]. To calculate the Sem_Simil metric, based on [38],
the metrics of both Precision and Recall must be calculated. Hence, sequentially, the Sem_Simil metric
is calculated through Equation (7), which refers to the harmonic mean of the Precision and the Recall
that have already calculated. It should be mentioned that, in essence, the Sem_Simil metric refers to the
Fmeasure metric that is the traditional metric for capturing the harmonic mean of Precision and Recall.

Sem_Simil =
2 ∗ (Precision ∗ Recall)
(Precision + Recall)

(7)

2.4.4. Overall Ontology Mapper

Based on the aforementioned results, the Overall Ontology Mapper takes place, which is the final
step of the Data Interoperability stage. More specifically, the Overall Ontology Mapper provides a way
for aggregating the results that have derived from the Structural Mapper and the Semantic Mapper, so
as to identify the ontologies that have been properly mapped, and finally translate the attributes of
these ontologies into the HL7 FHIR format. In our case, in order to calculate the aggregated final result,
the Overall Ontology Mapper queries through the metrics and values that have been calculated for
each different ontology, and provides the average (i.e., Mean) between the structural and the semantic
similarities. Thus, this average is calculated as the total of the structural (i.e., St_Simil) and the semantic
(i.e., Sem_Simil) similarities, divided by two, as stated in Equation (8).

Mean =
St_Simil + Sem_Simil

2
(8)

Sequentially, according to the calculated mean of the structural and the semantic similarities, it is
assumed that an attribute of a collected dataset is characterized that it matches to a specific attribute of
the HL7 FHIR resources in the case that their mean is over the threshold of 90% (i.e., 90% structural
and semantic similarity). In the case that the mean is lower than this threshold, then the attribute of
the HL7 FHIR resource with higher probability of similarity with a specific attribute of the dataset, is
automatically considered that it represents the specific attribute. The mechanism iterates for all the
stored ontologies so as to finally identify the ontologies of the data and translate them into HL7 FHIR
format. Therefore, through this way, the mechanism achieves to make all the collected reliable data
interoperable, successfully transforming it into the HL7 FHIR format.



Sensors 2019, 19, 1978 9 of 24

3. Results

3.1. Dataset Description

In order to perform a complete testing and evaluation of the proposed mechanism, twenty (20)
IoT consumer grade medical devices were chosen, being able to communicate through Bluetooth with
the mechanism. These devices have been selected since they represent different types of medical
devices, offering open APIs for accessing their data. Some of these devices are of the same type, while
being produced either by the same or by different manufacturers. To be more precise, for those twenty
(20) chosen devices we had prior knowledge about their name, manufacturer, and device type (i.e.,
activity trackers (AT), blood pressure monitor (BPM), pulse oximeter (PO), body weight scale (BWS),
and glucometer (GL)). As depicted in Table 1, three (3) of these devices were activity trackers, four (4)
were blood pressure monitors, two (2) were pulse oximeters, nine (9) were body weight scales, and
two (2) were glucometers.

Table 1. Devices’ specifications.

# Name Manufacturer Type # Name Manufacturer Type

1 iHealth Clear iHealth BPM 11 iHealth View iHealth BPM
2 Fitbit Aria 2 Fitbit BWS 12 Withings BPM Withings BPM
3 iHealth Lite iHealth BWS 13 Polar Balance Polar BWS
4 iHealth Air iHealth PO 14 iHealth Smart iHealth GL
5 Withings Body Withings BWS 15 Withings Body Cardio Withings BWS
6 iHealth Track iHealth BPM 16 iHealth Wave iHealth AT

7 Garmin Index
Smart Scale Garmin BWS 17 Xiaomi Mi Body

Composition Scale Xiaomi BWS

8 Withings Steel Withings AT 18 NONIN 3230 NONIN PO
9 Withings Body+ Withings BWS 19 Garmin Vivofit Garmin AT
10 iHealth Align iHealth GL 20 iHealth Core iHealth BWS

3.2. Experimental Results

The proposed mechanism was developed in Java SE using the NetBeans IDE v8.0.2 [45], and used
a processing environment with 16 GB RAM, Intel i7-4790 @ 3.60 GHz × 8 CPU Cores, 2 TB Storage,
and Windows 10 operating system. Regarding the results of the mechanism, these are depicted below,
following the four (4) stages described in Section 2 (Materials and Methods). It should be noted that
the source code availability is not currently in open-source format, since it has not been finalized yet.

3.2.1. Data Collection

To begin our experiment, in the first stage of the mechanism (i.e., Data Collection) the chosen
devices were used, where all these devices had to be connected to the mechanism. Following the
procedure proposed in our work in [21], we identified all the API methods of the connected devices,
extracting and using the ones that are responsible for collecting their medical data. Through this way,
the mechanism gathered the data from all the connected devices. To this end, it should be noted that
all the gathered data was in the form of JavaScript Object Notation (JSON) files, but for the purposes
of the experiment it was automatically transformed into XML files via our mechanism. A snapshot
of a JSON file and the corresponding XML file of one (1) of the chosen device’s (i.e., Withings BPM
blood pressure monitor) produced data can be seen in Figure 6. What is more, it should be noted that
the collected data were captured from the corresponding devices that were provided and used by an
anonymized patient of BioAssist’s platform [46] who gave us her consent.
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3.2.2. Data Cleaning

Sequentially, in the second stage of the mechanism (i.e., Data Cleaning), the steps of the data
cleaning process described in Section 2.2 (Data Cleaning) were applied, so as to clean all the collected
data. Within the context of our experiment, the cleaning process was executed against the data that
was collected over a period of two (2) months (i.e., 61 days), so as to facilitate the aggregation of
enough data records. The cleaning process was applied across all the connected devices collected data.
However, in the experimental results only the results of the cleaned data of the four (4) connected blood
pressure monitors (i.e., iHealth Clear, iHealth Track, Withings BPM, and iHealth View) are described.
Thus, for each one of the blood pressure monitors that we utilized, we triggered the Data Collection
process four (4) times per day, even though in some cases slight differentiations occurred, resulting in
slightly lower or slightly higher numbers of data records collected. Henceforth, concerning the total
number of the records of the datasets that were received from the different blood pressure monitors
into the 61 days, the iHealth Clear contained 238 records, the iHealth Track contained 239, the Withings
BPM contained 244, and the iHealth View contained 243. It should be mentioned that since the data
collection process was triggered four (4) times per day, under perfect conditions, each different blood
pressure monitor should provide 244 records within these 61 days. It should be added that each one of
these records contained three (3) different measurements, including the Diastolic Blood Pressure, the
Systolic Blood Pressure, and the Heart Rate. All the records from all these devices contained the same
elements (i.e., date and time of the observation, diastolic blood pressure (including its code, value, and
unit), systolic blood pressure (including its code, value, and unit) and heart rate (including its code,
value, and unit)). For each element, the corresponding constraints were defined, as they are presented
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in Table 2, whereas the snapshot of Figure 6 depicts an uncleaned observation of the Withings BPM
blood pressure monitor.

Table 2. Elements’ constraints.

Element Name Data Type Required Constraints

Date String Yes Format: YYYY-MM-DD
Time String Yes Format: HH:MM:SS

Diastolic Blood Pressure Code UUID Yes Unique Identifier
Diastolic Blood Pressure Value Integer No Range Constraints
Diastolic Blood Pressure Unit String No mmHg
Systolic Blood Pressure Code UUID Yes Unique Identifier
Systolic Blood Pressure Value Integer No Range Constraints
Systolic Blood Pressure Unit String No mmHg

Heart Rate Code UUID Yes Unique Identifier
Heart Rate Value Integer No Range Constraints
Heart Rate Unit String No mmHg

It should be noted that during the cleaning process, for the required elements that were randomly
missing, the corresponding records were discarded. For the non-required elements that were missing,
the corresponding values were filled in with pre-defined values, whereas for the non-required elements
missing at random, the machine learning techniques described in Section 2.2 (Data Cleaning) were
employed. As a result, applying in all the acquired datasets the corresponding cleaning actions, the
results of Tables 3–6 were produced, demonstrating the cleaning actions that were applied upon the
different attributes (i.e., Data-Time, Diastolic Blood Pressure Code/Value/Unit, Systolic Blood Pressure
Code/Value/Unit, and Heart Rate Code/Value/Unit) of the four (4) connected blood pressure monitors
(i.e., iHealth Clear, iHealth Track, Withings BPM, and iHealth View). In more detail, the columns of
the Tables entitled as “Device Name” denote the name of each different connected blood pressure
monitor. The columns entitled as “Erroneous Data” present the number of the records that the specific
attribute did not conform to the validation rules documented in the first step (i.e., data validation) of
the cleaning process. The columns entitled as “Corrective Actions” document the type of the actions
taken for correcting the values of the erroneous attributes. The columns entitled as “Missing Data”
signify the number of the records that their attributes contained missing values, whilst the columns
entitled as “Corrective Actions” document the type of the actions taken for correcting the values of the
missing attributes.

After the calculation of all the aforementioned results, the data cleaning results of each different
connected blood pressure monitor were combined, resulting into the results of Table 7. More specifically,
the column of the Table entitled as “Device Name” denotes the name of each different connected
blood pressure monitor, the column entitled as “Initial Records” presents the total number of the
records that were initially collected by each device, whilst the column entitled as “Final Records”
presents the total number of the records that remained after the cleaning actions that were performed
upon the datasets. Based on the results of Tables 3–6, the column entitled as “Errors Encountered”
denotes the total number of both the erroneous and the missing data values—including the records
that were dropped, the column entitled as “Records Dropped” provides the total number of both the
erroneous and the missing corrective actions that had dropped (i.e., deleted) records (i.e., triples of
measurements), while the column entitled as “Errors Corrected” denotes the total number of both
the erroneous and the missing data values—excluding the records that were dropped. The column
entitled as “Data Accuracy” provides the percentage of the accuracy of the collected data that were
cleaned. What is more, the column entitled as “Faulty Data” denotes the total number of the faulty
data that derived upon the different datasets, which is one of the most important metrics of the Data
Cleaning process of our mechanism, and is going to be used in the Data Quality Estimation stage.
Finally, the column entitled as “Data Completion” denotes the final percentage of data completion
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after the successful cleaning of the data. To this end, it should be noted that in order to calculate the
“Data Accuracy”, the “Faulty Data” as well as the “Data Completion” percentages, the corresponding
equations of (1), (2), and (3) of Section 2.2 (Data Cleaning) were implemented.

Table 3. Date-Time cleaning results.

Device Name Erroneous Data Corrective Actions Missing Data Corrective Actions

iHealth Clear 0 None 0 None
iHealth Track 0 None 1 Dropped record
Withings BPM 0 None 0 None
iHealth View 1 Dropped record 2 Dropped record

Table 4. Diastolic Blood Pressure cleaning results.

Device Name Erroneous Data Corrective Actions Missing Data Corrective Actions

Diastolic Blood Pressure Code

iHealth Clear 0 None 0 None
iHealth Track 0 None 0 None
Withings BPM 0 None 0 None
iHealth View 0 None 0 None

Diastolic Blood Pressure Value

iHealth Clear 2 kNN imputation 3 C4.5 imputation
iHealth Track 1 kNN imputation 2 C4.5 imputation
Withings BPM 2 kNN imputation 4 C4.5 imputation
iHealth View 3 kNN imputation 3 C4.5 imputation

Diastolic Blood Pressure Unit

iHealth Clear 0 None 0 None
iHealth Track 0 None 0 None
Withings BPM 0 None 0 None
iHealth View 0 None 0 None

Table 5. Systolic Blood Pressure cleaning results.

Device Name Erroneous Data Corrective Actions Missing Data Corrective Actions

Systolic Blood Pressure Code

iHealth Clear 0 None 0 None
iHealth Track 0 None 0 None
Withings BPM 0 None 0 None
iHealth View 0 None 1 Dropped record

Systolic Blood Pressure Value

iHealth Clear 2 kNN imputation 2 C4.5 imputation
iHealth Track 2 kNN imputation 1 C4.5 imputation
Withings BPM 1 kNN imputation 4 C4.5 imputation
iHealth View 1 kNN imputation 3 C4.5 imputation

Systolic Blood Pressure Unit

iHealth Clear 1 Filled with value 1 Filled with value
iHealth Track 1 Filled with value 0 None
Withings BPM 1 Filled with value 2 Filled with value
iHealth View 0 None 0 None
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Table 6. Heart Rate cleaning results.

Device Name Erroneous Data Corrective Actions Missing Data Corrective Actions

Heart Rate Code

iHealth Clear 0 None 0 None
iHealth Track 1 Dropped record 0 None
Withings BPM 0 None 1 Dropped record
iHealth View 0 None 0 None

Heart Rate Value

iHealth Clear 3 kNN imputation 3 C4.5 imputation
iHealth Track 2 kNN imputation 2 C4.5 imputation
Withings BPM 1 kNN imputation 4 C4.5 imputation
iHealth View 3 kNN imputation 5 C4.5 imputation

Heart Rate Unit

iHealth Clear 0 None 0 None
iHealth Track 0 None 0 None
Withings BPM 0 None 0 None
iHealth View 0 None 0 None

Table 7. Overall cleaning results.

Device
Name

Initial
Records

Final
Records

Errors
Encountered

Records
Dropped

Errors
Corrected

Data
Accuracy

(%)

Faulty
Data (%)

Data
Completion

(%)

iHealth
Clear 238 238 17 0 17 92.86 7.14 100.00

iHealth
Track 239 237 13 2 11 94.56 5.44 99.16

Withings
BPM 244 243 20 1 19 91.80 8.20 99.59

iHealth
View 243 239 22 4 18 90.95 9.05 98.35

The same cleaning process was executed on the remaining sixteen (16) different collected datasets
by applying the corresponding predefined constraints, thus implementing all the needed cleaning
actions, and updating finally the corresponding XML files of the datasets. Following the snapshot
of Figure 6, the depicted item contained a faulty value of systolic blood pressure (i.e., 7), which was
corrected with the kNN imputation as depicted in Table 5. More specifically, the new corrected value
was 127, as it is illustrated in the attribute “measuredValue” in Figure 7.
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3.2.3. Data Quality Estimation

In sequel, in the third stage of the mechanism (i.e., Data Quality Estimation), the calculation of the
overall data quality of the devices’ cleaned datasets occurred, by combining (i) the availability of each
device, (ii) the number of the faulty data that was calculated during the Data Cleaning process for the
collected dataset of each corresponding device, and (iii) the ICC of this data, following the procedure
described in Section 2.3 (Data Quality Estimation). Therefore, we captured the overall data quality
of the twenty (20) connected devices by measuring all the aforementioned metrics. However, in the
experimental results, following the example of the Data Cleaning process, only the results of the four
(4) connected blood pressure monitors (i.e., iHealth Clear, iHealth Track, Withings BPM, and iHealth
View) are described.

More specifically, regarding the availability measurements of these devices, we measured their
uptime through the frequency of their data transmission to the mechanism every day for the period of
the 61 days. Therefore, we captured the availability for each one of these devices, assuming that a device
is fully available (i.e., 100% availability) when it sends four (4) records (i.e., triples of measurements) per
24 hours (i.e., per day), resulting in 244 records for the total 61 days of the experiment. After iterating
this process, we resulted into Table 8 that depicts the results that we collected, having performed the
same experiment for 61 days in a row. In more detail, Table 8 summarizes our results including the
column “Device Name” that denotes the name of each different connected blood pressure monitor, the
column “Final Records” that denotes the total number of the records that remained after the cleaning of
each device’s dataset, the column “Availability” that presents the percentage of the data availability of
these devices, considering the data availability of the aforementioned fully available device, the column
“Faulty Data” that presents the percentage of the faulty data that resulted from the Data Cleaning
process, the column “ICC” that denotes the TRR of the devices’ collected data, and the column “Overall
Quality” that presents the final percentage of the devices’ derived overall data quality. To this end, it
should be noted that in order to calculate the “Overall Quality” the Equation (5) of Section 2.3 (Data
Quality Estimation) was implemented.

Table 8. Overall quality results.

Device Name Cleaned Records Availability (%) Faulty Data (%) ICC (%) Overall
Quality (%)

iHealth Clear 238 97.54 7.14 91.00 90.58
iHealth Track 237 97.13 5.44 90.00 91.18
Withings BPM 243 99.59 8.20 95.00 92.47
iHealth View 239 97.95 9.05 96.00 91.03

As stated in Section 2.3 (Data Quality Estimation), in order to consider the final results (i.e., Overall
Quality) of each device’s data as trustful and reliable, and thus keep it for making it interoperable, these
must exceed the set threshold of 90%. Thus, based upon the results of Table 8, it can be observed that
all the cleaned data was of high-levels of quality, as it exceeded the set threshold, whereas the Withings
BPM had the best Overall Quality results among all the other blood pressure monitors (highlighted
with gray). As a result, all the data of all the blood pressure monitors kept in the mechanism in order to
become interoperable in the next stage of the mechanism. The same quality process was executed on
the remaining sixteen (16) collected datasets, by capturing their overall quality (i.e., Overall Quality),
and thus concluding whether these would be kept into the mechanism for further analysis or not,
depending on whether their overall quality percentages exceeded the set threshold or not. It should be
noted that in the case that a device’s overall quality did not exceed the set threshold, then this device
was discarded by the mechanism, totally erasing its data from it.
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3.2.4. Data Interoperability

Finally, in the fourth stage of the mechanism (i.e., Data Interoperability), all the steps of the data
interoperability process that were described in Section 2.4 (Data Interoperability) were employed, in
order to transform the cleaned data of high-levels of quality into the HL7 FHIR format.

Since the data was already in XML format, we did not have to transform it into another format.
Therefore, our initial step was to transform the provided data into their ontological form. Based on the
snapshot of the cleaned dataset that was provided by the Withings BPM (Figure 7), the ontological
hierarchical tree that was created is depicted in Figure 8, visualizing the different names, relationships
and instances of the constructed ontology. It should be noted that the same process is repeated for all
the different datasets that were not discarded during the Data Quality Estimation process, in order to
get their ontological form.
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Sequentially, in the next step we identified the structural similarity that existed among the attributes
of the different datasets and the HL7 FHIR resources, comparing the names of the corresponding
constructed ontologies, following the process of the Structural Mapper described in Section 2.4 (Data
Interoperability). As soon as the Structural Mapper performed on the different combinations, it
provided the results of Table 9. Shortly, Table 9 depicts a snapshot of the top-2 structural similarities
between the HL7 FHIR resources’ attributes and the attributes of the snapshot of the dataset that was
provided by the Withings BPM (Figure 7).

In the next step of Data Interoperability, the identification of the semantic similarity that
existed among the different constructed ontologies of the datasets and the HL7 FHIR resources
occurred, taking into account the different names, relationships and instances that could have been
identified. Consequently, following the process of the Semantic Mapper described in Section 2.4 (Data
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Interoperability), the latter performed on the different combinations, providing the results of Table 10.
As in the previous step, Table 10 depicts a snapshot of the top-2 semantic similarities between the HL7
FHIR resources’ ontologies and the ontologies of the snapshot of the dataset that was provided by the
Withings BPM (Figure 7).

Table 9. Structural similarity between attributes of HL7 FHIR resources and Withings BPM dataset.

Dataset Attribute
Top-1 Similarity Top-2 Similarity

HL7 FHIR Resource
Attribute

Structural
Similarity (%)

HL7 FHIR Resource
Attribute

Structural
Similarity (%)

identifier Observation.identifier 54 DiagnosticReport.identifier 23
status Observation.status 61 DiagnosticReport.status 34

category Observation.category 29 DiagnosticReport.category 22
sub-category Observation.category 34 DiagnosticReport.category 28

patient Patient 100 - 0
patient.identifier Patient.identifier 100 - 0

patient.name Patient.name 100 - 0
dateOfMeasurement Observation.effectiveDateTime 56 Observation.valueDateTime 32

practitioner Practitioner 100 - 0
practitioner.identifier Practitioner.identifier 100 - 0

practitioner.name Practitioner.name 100 - 0
measuredValue Observation.valueQuantity 82 Observation.valueRange 13

Table 10. Semantic similarity between attributes of HL7 FHIR Resources and Withings BPM dataset.

Dataset Attribute
Top-1 Similarity Top-2 Similarity

HL7 FHIR Resource
Attribute

Semantic
Similarity (%)

HL7 FHIR Resource
Attribute

Semantic
Similarity (%)

identifier Observation.identifier 56 Patient.identifier 39
status Observation.status 81 DiagnosticReport.status 17

category Observation.category 74 DiagnosticReport.category 21
sub-category Observation.code 44 Observation.category 32

patient Observation.subject 39 Patient 34
patient.identifier Observation.subject.identifier 54 Patient.identifier 43

patient.name Observation.subject.name 53 Patient.name 47

dateOfMeasurement DiagnosticReport.
effectiveDateTime 53 Observation.

effectiveDateTime 36

practitioner Observation.subject 63 Practitioner 22
practitioner.identifier Observation.subject.identifier 68 Practitioner.identifier 15

practitioner.name Observation.subject.name 74 Practitioner.name 19
measuredValue Observation.valueQuantity 100 - 0

Afterwards, as soon as the results of the Structural and the Semantic Mapper had been captured,
the Overall Ontology Mapper took place, deriving the results of Table 11, which depicts the largest
calculated pairs of means of the Structural and the Semantic Mapper results.

It should be noted that in Table 11, only the largest calculated pairs of means of the Structural
and the Semantic Mapper results are depicted, since it would be almost impossible to illustrate all
the derived combinations. For instance, in Table 9 it can be seen that the practitioner dataset attribute
had greater value in structural similarity with the Practitioner HL7 FHIR resource (100.0%), while in
Table 10 it can be seen that the same dataset attribute (i.e., practitioner) had greater value in semantic
similarity with the Observation.subject HL7 FHIR resource (63.0%). However, after calculating all
the pairs of means for the case of this specific similarity, we concluded that the greater value of the
overall mean resulted into the fact that the practitioner dataset attribute was more similar with the
Practitioner HL7 FHIR resource, concerning both the structural and the semantic similarity results.
The same process was repeated for all the different pairs, concluding to the largest calculated pairs of
means of the different similarities, and thus to the mapping of all the datasets to the HL7 FHIR format.
Following the snapshot of Figure 7, the depicted item of Withings BPM was translated into HL7 FHIR
format, as illustrated in Figure 9.



Sensors 2019, 19, 1978 17 of 24

Table 11. Overall similarity results Withings BPM dataset.

Dataset Attribute HL7 FHIR Resource Attribute Overall Similarity (%)

identifier Observation.identifier 55.0
status Observation.status 71.0

category Observation.category 51.5
sub-category Observation.code 39.0

patient Patient 67.0
patient.identifier Patient.identifier 71.5

patient.name Patient.name 73.5
dateOfMeasurement Observation.effectiveDateTime 46.0

practitioner Practitioner 61.0
practitioner.identifier Practitioner.identifier 57.5

practitioner.name Practitioner.name 59.5
measuredValue Observation.valueQuantity 91.0Sensors 2019, 19, 1978 17 of 23 
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4. Discussion

The current research proposed a mechanism for assessing the quality of data that derive from
heterogeneous IoT medical devices, and making it finally interoperable, following a 4-stepped approach.
In order to evaluate this mechanism, we implemented a specific experiment, through which we tested
the effectiveness of each different stage of the mechanism, focusing mainly on the three (3) key research
stages of them, which were the Data Cleaning, the Data Quality Estimation, as well as the Data
Interoperability stages.

Regarding the Data Cleaning process, as expected, several data records were found to be inherently
“dirty”, either requiring the entire data record to be dropped, or requiring the data record to be completed
by means of filling in missing values. Nevertheless, after the implementation of the Data Cleaning
process, the completion of the data records increased significantly, as signified by the column “Data
Completion” of Table 7. In order to achieve these results, various mechanisms were employed for
filling in missing values, including: (i) filling in missing values with pre-defined values in the case
of erroneous or missing units, (ii) handling missing values using the kNN imputation in the case of
correcting erroneous values of specific attributes (namely dropping the erroneous values such as out
of range values and substituting them with imputed ones), and (iii) filling in missing values using
the C4.5 imputation, since missing values were statistically more than the erroneous values. Thus,
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taking into consideration all these different cases, the results of the Data Cleaning process were of
high accuracy.

With regards to the Data Quality Estimation process, as mentioned in Section 2.3 (Data Quality
Estimation), it needed as a prerequisite for its successful implementation the Data Cleaning results,
referring to the faulty data that had derived from it. Based on the captured results of Table 8, we
can conclude that through this process it is effective to decide whether each device’s derived data is
considered as reliable or not, by combining: (i) the results of the availability, (ii) the number of the
faulty data that derived upon the different data, as well as (iii) the corresponding reliability of this data
based upon its ICC measurements. More specifically, as it can be observed, all the collected data that
was cleaned was finally considered to be of high-quality, as it exceeded the set threshold. Since the
threshold was set in 90%—a very demanding value, this indicated that the devices’ derived data was
of high-quality, a fact that was verified from the quality measurements (i.e., availability, faulty data,
reliability) that were manually calculated upon this data.

In deeper detail, Table 12 depicts the manually captured quality results (i.e., Manual Results) of
the four (4) connected blood pressure monitors, in combination with the corresponding proposed
mechanism’s quality results (i.e., Automatic Results). As it can be observed in Table 12, the iHealth
Track’s manually calculated percentage of availability (highlighted with blue), has small differences
(i.e., 0.41%) with the corresponding percentage of the mechanism (highlighted with yellow), without
however affecting the overall results. This is because the mechanism accidentally discarded a record
that it should not have been discarded, affecting the total number of records that were considered.
Concerning the total number of the faulty data that were manually derived upon the different datasets
(highlighted with blue), it can be observed that in some devices (i.e., iHealth Track, iHealth View), slight
differences (i.e., 0.83% and 0.82% accordingly) were encountered compared with the mechanism’s
results (highlighted with yellow). This is due to the fact that during the manual cleaning of the
corresponding datasets, it was observed that the mechanism corrected a number of values that should
not have been corrected, since the initial values were already correct. Nevertheless, with regards to
the rest of the values that were corrected, the correction actions of the mechanism were successfully
performed and adjusted. Concerning each device’s data reliability percentages of ICC, since the
mechanism used the SPSS library for calculating them, and in the manual results we used the SPSS tool
as well, the calculated results were identical. Therefore, since the calculation of the Overall Quality
depended on all of the aforementioned metrics, its manually calculated final values were different as
well, due to the differences in the highlighted cells of Table 12. Henceforth, since there were found
inconsistencies only upon the measurements of the iHealth Track and iHealth View devices, their final
overall quality results were differentiating as well.

Table 12. Manual and automatic overall quality results.

Device Name Availability (%) Faulty Data (%) ICC (%) Overall Quality (%)

Manual Results

iHealth Clear 97.54 7.14 91.00 90.58
iHealth Track 97.54 4.60 90.00 92.05
Withings BPM 99.59 8.20 95.00 92.47
iHealth View 97.95 8.23 96.00 91.60

Automatic Results

iHealth Clear 97.54 7.14 91.00 90.58
iHealth Track 97.13 5.44 90.00 91.18
Withings BPM 99.59 8.20 95.00 92.47
iHealth View 97.95 9.05 96.00 91.03

Figure 10 visualizes the results of Table 12, depicting the percentages of the manually and the
mechanism’s calculated results, regarding the overall quality of the four (4) blood pressure monitors.
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However, as it can be observed in Figure 10, the differences between the manual and the automatic
results were not remarkable, since the absolute difference of their overall quality percentages was
extremely small (approximately 0.05%), with the Withings BPM device having again the best quality
results. Consequently, it becomes clear that the proposed mechanism provided highly effective and
reliable results, concerning the devices overall quality. However, in some cases, like the one of the
Withings BPM, we conclude that it is not always proper to derive rules or patterns about the overall
quality of the data, setting the same weights of necessity for both the availability and the faulty data.
More specifically, as it can be observed in Table 12, despite the fact that the Withings BPM transmitted
data in a regular basis, achieving almost 100% availability, the latter contained a relatively large
number of errors/faults (i.e., 8.20), slightly reducing its overall quality (i.e., 92.47%) that still remained
in high-levels. On the contrary, the number of the faulty data should have a more significant impact
in the final result of the overall quality, as it is more effective to produce and send reliable-unfaulty
data, instead of sending data in a basis of 100% availability. For that reason, additional experiments
should take place to obtain a more global view of the overall quality of the data, implementing different
degrees of weights among the availability and the faulty data measurements.

Regarding the Data Interoperability process, it is clear that in order to identify and map ontologies,
both structural and semantical mappings have to be applied. In more detail, through Tables 9–11, it can
be observed that despite the fact that a dataset attribute has been mapped with a specific HL7 FHIR
resource attribute due to their structural similarity, the same dataset attribute has been also mapped
to a different HL7 FHIR resource attribute due to their semantic similarity, at the same time. Thus,
there might be cases that an ontology may have structural similarity with a specific HL7 FHIR resource
ontology (e.g., Patient.name dataset attribute had 100% structural match with the Patient.name FHIR
resource attribute), but it may not have any semantic similarity with this specific HL7 FHIR resource
ontology (e.g., Patient.name dataset attribute had 47% semantical mapping with the Patient.name
FHIR resource attribute, whereas it had the greatest semantic similarity with Observation.subject.name
FHIR resource attribute). Consequently, we are not able to create patterns and rules mentioning that in
the case that an ontology matches structurally or semantically with a specific ontology, it will have
always an exact match with it.

However, the overall mechanism provides reliable results, since all the provided results have been
also calculated manually and compared with the aforementioned results. For that purpose, the specific
dataset’s attributes were mapped manually with the HL7 FHIR resources’ attributes to compare the
results of the proposed Data Interoperability process with the actual outcomes. This was the main
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reason that a small sample of attributes was chosen for the process evaluation, in order to manually
conclude more easily to these results. Table 13 illustrates the results of the manual transformation (i.e.,
Manual Results), in comparison with the automatic results of the proposed mechanism (i.e., Automatic
Results). Based on the results of Table 13, it can be observed that there exist cases where the results
of the developed process were not efficient, such as in the case of the Observation.effectiveDateTime,
where the automated transformation provided results of low value, which however were identical
with the results of the manual transformation. Hence, we can conclude that the Data Interoperability
process provided results of 100% accuracy.

Table 13. Manual and automatic overall ontology mapper results.

Method Identifier Manual Results Similarity (%) Automatic Results Similarity (%)
identifier Observation.identifier 100 Observation.identifier 55.0

status Observation.status 100 Observation.status 71.0
category Observation.category 100 Observation.category 51.5

sub-category Observation.code 100 Observation.code 39.0

patient Observation.subject
(subject is Patient) 100 Patient 67.0

patient.identifier Observation.subject.identifier
(subject is Patient) 100 Patient.identifier 71.5

patient.name Observation.subject.name
(subject is Patient) 100 Patient.name 73.5

dateOfMeasurement Observation.effectiveDateTime 100 Observation.effectiveDateTime46.0

practitioner Observation.subject
(subject is Practitioner) 100 Practitioner 61.0

practitioner.identifier Observation.subject.identifier
(subject is Practitioner) 100 Practitioner.identifier 57.5

practitioner.name Observation.subject.name
(subject is Practitioner) 100 Practitioner.name 59.5

measuredValue Observation.valueQuantity 100 Observation.valueQuantity 91.0

Figure 11 visualizes the results of Table 13, depicting the percentages of the manually as well as
the mechanism’s calculated results, regarding the overall interoperability, based upon the cleaned and
reliable data of the four (4) 4 blood pressure monitors.

Sensors 2019, 19, 1978 20 of 23 

 

 

However, the overall mechanism provides reliable results, since all the provided results have 

been also calculated manually and compared with the aforementioned results. For that purpose, the 

specific dataset’s attributes were mapped manually with the HL7 FHIR resources’ attributes to 

compare the results of the proposed Data Interoperability process with the actual outcomes. This was 

the main reason that a small sample of attributes was chosen for the process evaluation, in order to 

manually conclude more easily to these results. Table 13 illustrates the results of the manual 

transformation (i.e. Manual Results), in comparison with the automatic results of the proposed 

mechanism (i.e. Automatic Results). Based on the results of Table 13, it can be observed that there 

exist cases where the results of the developed process were not efficient, such as in the case of the 

Observation.effectiveDateTime, where the automated transformation provided results of low value, 

which however were identical with the results of the manual transformation. Hence, we can conclude 

that the Data Interoperability process provided results of 100% accuracy.  

Figure 11 visualizes the results of Table 13, depicting the percentages of the manually as well as 

the mechanism’s calculated results, regarding the overall interoperability, based upon the cleaned 

and reliable data of the four (4) 4 blood pressure monitors. 

 

 

Figure 11. Comparison between manual and automatic overall interoperability results. 

5. Conclusions 

It is an undeniable fact that devices’ data management is a very demanding research topic in the 

IoT area, characterized by a plethora of challenges that are currently far from solved. One of these 

challenges is the one of gathering heterogeneous IoT medical devices’ data, extracting the data that 

is of high-quality, and thus transforming only this data into a common format, ignoring the ones that 

are of low-level quality. For that reason, in this manuscript we have studied the challenging topics of 

both data quality and data interoperability, considering data that is coming from heterogeneous IoT 

medical devices of both known and unknown nature. By implementing this solution, we achieved to 

develop an innovative approach that can be interoperable and pluggable to different IoT platforms, 

regardless of the nature and the format of the data that they can manipulate. 

More particularly, through our approach a mechanism of four (4) stages was implemented for 

coping exactly with this challenge. Based on this mechanism, initially all the available heterogeneous 

IoT medical devices were discovered and connected into the mechanism, in order to collect their data. 

Once the data was gathered, its cleaning took place by identifying and eliminating possible errors 

that encountered, whereas completing possible missing values, thus safeguarding that the provided 

data was fully complete and conformed to required attributes. Sequentially, these results were 

Figure 11. Comparison between manual and automatic overall interoperability results.



Sensors 2019, 19, 1978 21 of 24

5. Conclusions

It is an undeniable fact that devices’ data management is a very demanding research topic in the
IoT area, characterized by a plethora of challenges that are currently far from solved. One of these
challenges is the one of gathering heterogeneous IoT medical devices’ data, extracting the data that is
of high-quality, and thus transforming only this data into a common format, ignoring the ones that are
of low-level quality. For that reason, in this manuscript we have studied the challenging topics of both
data quality and data interoperability, considering data that is coming from heterogeneous IoT medical
devices of both known and unknown nature. By implementing this solution, we achieved to develop
an innovative approach that can be interoperable and pluggable to different IoT platforms, regardless
of the nature and the format of the data that they can manipulate.

More particularly, through our approach a mechanism of four (4) stages was implemented for
coping exactly with this challenge. Based on this mechanism, initially all the available heterogeneous
IoT medical devices were discovered and connected into the mechanism, in order to collect their
data. Once the data was gathered, its cleaning took place by identifying and eliminating possible
errors that encountered, whereas completing possible missing values, thus safeguarding that the
provided data was fully complete and conformed to required attributes. Sequentially, these results
were combined with the overall data quality measurements that were captured from the different
devices, so as to decide whether each connected devices’ derived data would be considered as reliable
or not, and as a result it would be kept in order to be translated into an interoperable format, and used
for further analysis. Thus, finally the transformation of all the acquired reliable data into a common
format occurred. The aforementioned mechanism was evaluated through a specific experiment,
concluding that it was sufficient enough for assessing heterogeneous IoT medical devices’ data quality
and interoperability.

Our future work includes that the mechanism will be tested with a huge amount of multiple
heterogeneous IoT medical devices of different types. Apart from this, we aim to extend the list of
the Data Cleaning already supported techniques, by implementing additional techniques such as
the moving average method, and the interpolation and extrapolation methods. Moreover, we are
willing to extend the Data Cleaning process by setting personalized constraints and rules that the
collected medical data have to obey, considering that this data may come from different patients that
may have different health statuses. On top of this, in the Data Quality Estimation process we aim to
create a registry that will store in separate sub-registries the specifications (e.g., name, manufacturer,
etc.) of the devices for whom the data has been considered as reliable. Consequently, the devices
for which we will need in the future to identify their derived data quality will be compared with the
aforementioned registries, and in the case that they will have some common specifications with the
already stored devices’ specifications, they will be considered as of high-quality, bypassing the step of
the devices’ availability estimation. Furthermore, with regards to the Data Interoperability process,
we are planning to construct an automated tool that would implement different ontology matching
techniques, since having a formal representation of these matchings will be useful for extending our
mechanism. Furthermore, we will continue evaluating the proposed Data Interoperability process with
multiple datasets of various medical standards and formats. It should be noted that in the cases that
the underlying physical mechanism of capturing the physiological data is different among the tested
devices, regarding the Data Interoperability process, the mechanism does not take into account the
values of the gathered data, as it only deals with the format of the data. However, regarding the Data
Cleaning and the Data Quality Estimation processes, the proposed mechanism will be updated in order
to identify these cases, and will either inform the end user to terminate the overall process or ignore it
in the case that this difference in the gathered data is not causing anomalies of vital importance. Finally,
we aim to implement a visualization module providing detailed information about the connected
devices and their derived data. More particularly, through this interface, the end users will be able
to observe and manage their connected devices, being able to monitor the state and the location of
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their devices, visualize the acquired data, whereas observing all the transformations that the data is
subjected to, being able to finally store all the transformed data.
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