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Glucagon-like-peptide-1 (GLP-1) and its long acting analogs comprise a novel class of
type 2 diabetes (T2D) treatment. What makes them unique among other T2D drugs is
their concurrent ability to reduce food intake, a great benefit considering the frequent
comorbidity of T2D and obesity. The precise neural site of action underlying this beneficial
effect is vigorously researched. In accordance with the classical model of food intake
control GLP-1 action on feeding has been primarily ascribed to receptor populations in the
hypothalamus and the hindbrain. In contrast to this common view, relevant GLP-1 receptor
populations are distributed more widely, with a prominent mesolimbic complement
emerging. The physiological relevance of the mesolimbic GLP-1 is suggested by the
demonstration that similar anorexic effects can be obtained by independent stimulation
of the mesolimbic and hypothalamic GLP-1 receptors (GLP-1R). Results reviewed here
support the idea that mesolimbic GLP-1R are sufficient to reduce hunger-driven feeding,
the hedonic value of food and food-motivation. In parallel, emerging evidence suggests
that the range of action of GLP-1 on reward behavior is not limited to food-derived
reward but extends to cocaine, amphetamine, and alcohol reward. The new discoveries
concerning GLP-1 action on the mesolimbic reward system significantly extend the
potential therapeutic range of this drug target.
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INTRODUCTION
The alarming rates of obesity in the western world clearly indicate
that we have not yet adapted to the dietary challenges engendered
by the environment of readily available cheap calories. Inability
to limit excessive food intake is likely a key process contribut-
ing to uncontrolled weight gain. It is clear that food, especially
palatable, calorie-dense, obesogenic food, is rewarding. The high
hedonic value and motivational incentive of food are the main
culprits for overeating or eating beyond the immediate metabolic
need; here referred to as food reward behavior. Thus, in order
to develop effective anti-obesity treatments it is of high interest
to discover the mechanisms that can limit the hedonically-driven
eating and food reward behavior. One potentially promising ther-
apeutic is glucagon-like-peptide 1 (GLP-1). Endogenous GLP-1 is
produced in the intestinal L-cells and the hindbrain (Han et al.,
1986; Jin et al., 1988; Larsen et al., 1997a; Reimann et al., 2008).
GLP-1 receptors (GLP-1R) can also be stimulated exogenously via
long lasting GLP-1 analogs (Hayes et al., 2010; Graham et al.,
2012; Parkes et al., 2013). Several GLP-1 analogs, among them
exendin 4 (EX4; Byetta) or liraglutide (Victoza), are approved for
clinical use in type 2 diabetes (T2D) patients to improve glycemic
control (Wang et al., 1997; Greig et al., 1999; Agerso et al., 2002;
Drucker et al., 2010). Much has been learned about the anatomi-
cal, neurochemical, and functional suppressive effects of GLP-1 or
its analogs on food intake; GLP-1’s ability to suppress food reward
behavior is a new concept.

The goal of this review is to extend the understanding of
the neural circuitry mediating the intake inhibitory effects of
GLP-1 beyond the hypothalamus and the hindbrain and into the

mesolimbic areas. Also discussed here will be the behavioral con-
sequences of the aforementioned expansion of the range of GLP-1
impact, into the mesolimbic system. Namely the new behavioral
and physiological effects of GLP-1, such as the regulation of food
and drug reward.

GLP-1 ANOREXIA BEYOND THE DIRECT
HYPOTHALAMUS/HINDBRAIN ACTION
Central or peripheral GLP-1 injection reduces food intake in
rodents and man (Turton et al., 1996; Larsen et al., 1997b;
Naslund et al., 1999; Langhans, 2000; Hayes et al., 2008; Astrup
et al., 2009, 2012). To date the literature has primarily focused
on hypothalamic and brainstem nuclei as the key central nervous
system (CNS) targets for anorexic and to some extent glucoreg-
ulatory effects of GLP-1 (Shughrue et al., 1996; McMahon and
Wellman, 1998; Schick et al., 2003; Hayes et al., 2008, 2009;
Sandoval et al., 2008). This topic has already been discussed
by a number of excellent reviews (Holst, 2004; Hayes et al.,
2010; Trapp and Hisadome, 2011). This hypothalamus/hindbrain
focused model of GLP-1 action, however, does not easily accom-
modate the recent findings showing that GLP-1R stimulation
reduces food reward behavior (Dickson et al., 2012). This obser-
vation was important as it supports the presumption that the
range of impact of GLP-1 on food intake extends beyond home-
ostatic (or metabolic, need based) food intake. It brings attention
to potential activity of GLP-1 in areas classically associated with
reward behavior such as the ventral tegmental areas (VTA) and
the nucleus accumbens (NAc). The VTA and its dopaminer-
gic projections to the NAc orchestrate goal-directed motivated
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behavior to obtain natural reinforcements like food or sex (Wise
and Bozarth, 1984; Wise, 2004a,b, 2006). It is also increasingly
clear that addictive drugs (Koob, 1992) can hijack the reward
system, a system originally evolved to motivate the drive for
natural rewards. While the reward control brain centers are neu-
roanatomically separated they are not entirely disconnected from
the classic homeostatic centers, and bidirectional communication
between both regions takes place under physiological conditions.
Many of the classic hormones regulating feeding have a direct
impact on the mesolimbic VTA/NAc neurons (Abizaid et al.,
2006; Fulton et al., 2006; Hommel et al., 2006; Palmiter, 2007;
Abizaid, 2009; Vucetic and Reyes, 2010; Skibicka and Dickson,
2011; Skibicka et al., 2011; DiLeone et al., 2012). GLP-1 is the
newest member of this group.

MESOLIMBIC REWARD SYSTEM GLP-1 RECEPTOR EXPRESSION
Already in 1999 the first neuroanatomical indication for a poten-
tial role of GLP-1 in reward emerged. GLP-1R mRNA and

GLP-1 immunoreactivity was detected in the VTA and NAc, as
well as other reward associated areas including lateral hypotha-
lamus, lateral habenula, hippocampus, and substantia nigra
(Merchenthaler et al., 1999). Identification of the peptide and
receptors, however, does not by itself substantiate a functional
relevance, but evidence for a physiological role of these receptor
populations emerged 13 years later and will be discussed here.

AFFERENT AND EFFERENT INNERVATION OF THE HINDBRAIN
GLP-1-PRODUCING NEURONS
Unlike many of its gut or fat hormone counterparts (ghrelin or
leptin) for which there is little evidence of central production,
GLP-1 can be made in the brain. At the level of the CNS GLP-
1 is produced in the hindbrain, primarily in the nucleus of the
solitary tract (NTS) (Han et al., 1986; Jin et al., 1988; Larsen
et al., 1997a; Reimann et al., 2008). This is a very strategic loca-
tion for the GLP-1 neurons because of the impressive range of
energy balance relevant inputs received by the NTS (Figure 1).

FIGURE 1 | Effect of GLP-1 on food intake and associated behaviors is

neuroanatomicaly distributed. Local application of GLP-1 or GLP-1 analogs
(e.g., EX4) into the VTA or the NAc alters food motivation/reward. Moreover,
many other GLP-1R expressing CNS sites that directly respond to GLP-1 have
clear connections to the mesolimbic dopamine circuitry, key in food reward
behaviors (indicated in blue). This neuroanatomical distribution of GLP-1R
potentially allows for a multi-center, wide-spread impact of GLP-1on food
reward behavior, at several levels of the CNS. Furthermore, it appears that
GLP-1 influences feeding in different brain regions by partly overlapping and
partly distinct mechanisms. Several GLP-1 terminal sites have been
confirmed (in red). Notably two of them are mesolimbic; VTA and NAc.

Presumably, however, most GLP-1R expressing sites would receive
their GLP-1 supply from the only source of GLP-1 in the brain, the hindbrain
NTS GLP-1-producing neurons. This neuroanatomical architecture places the
GLP-1 system as a central sensor of an array of key circulating factors and
neural inputs from the viscera and tongue that is immediately able to
integrate and relay the information to the mesolimbic centers. Prefrontal
cortex, PFC; nucleus tractus solitarius, NTS; ventral tegmental area, VTA;
paraventricular nucleus of the hypothalamus, PVH; lateral hypothalamus, LH;
arcuate nucleus of the hypothalamus, ARC; ventromedial nucleus of the
hypothalamus, VMH; dorsomedial nucleus of the hypothalamus, DMH;
conditioned taste aversion, CTA.
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NTS receives vagal input from the gastrointestinal tract and gus-
tatory input from the tongue (Grill and Kaplan, 2002; Grill and
Hayes, 2009, 2012). Furthermore, the NTS located GLP-1 neurons
extend their dendrites into the circumventricular area postrema,
an area with fenestrated capillaries that can sample blood borne
factors (Llewellyn-Smith et al., 2011). Also projections of these
hindbrain GLP-1 neurons are widely distributed, giving neu-
roanatomical support for the diverse physiological and behavioral
effects of the endogenous GLP-1. Key mesolimbic reward areas,
like the VTA and the NAc, are innervated by the GLP-1 producing
neurons, potentially allowing hindbrain GLP-1 to modulate mod-
ulate reward behavior directly. Ascending fibers from the caudal
NTS, identified with anterograde tracing, terminate in the VTA
and the NAc (Rinaman, 2010). In fact, nearly one third of all the
NTS GLP-1-producing neurons send ascending fibers to the VTA
and the NAc (core and shell regions) (Dossat et al., 2011; Alhadeff
et al., 2012). Thus, GLP-1 neurons are placed in a very influential
position, enabling them to sample the hormonal milieu, visceral
sensory and gustatory input, integrate and carry this informa-
tion directly to the mesolimbic system without any intermediate
stops.

GLP-1R-DRIVEN ACTIVATION OF THE MESOLIMBIC NEURONS
On the basis of immediate early gene expression analysis it seems
that GLP-1 or its analogs can increase neuronal activity in the
mesolimbic system. Local application of GLP-1 to the core of the
NAc increases the number of neurons expressing the immedi-
ate early gene, c-fos, in this region (Dossat et al., 2011). Similar
activation can even be obtained with a peripheral GLP-1 analog,
EX4, injection (Labouesse et al., 2012). Given that EX4 is adminis-
tered peripherally as a part of the anti-diabetic treatment regimen,
data linking peripheral GLP-1 analog injections to altered neu-
ronal activity in reward areas may be relevant in the clinical and
therapeutic setting.

MESOLIMBIC GLP-1R DRIVEN FOOD-ORIENTED BEHAVIORS
Even though the research on the physiological role of the
mesolimbic GLP-1 activation is in its early stages the first stud-
ies addressing this question provide compelling evidence for an
important role of the GLP-1 system in the mesolimbic circuitry
and resulting reduction in food intake. Based on the earlier dis-
cussed receptor expression, innervation and their crucial role
in behavioral control two mesolimbic nuclei, the VTA and the
NAc, became the first targets of studies exploring behavioral con-
sequences of the mesolimbic GLP-1R activation. The VTA is a
key nucleus that modulates reward behavior and that harbors
the cell bodies of dopamine neurons (Wise and Bozarth, 1984;
Koob, 1992). Selective and local VTA microinjection of EX4 con-
sistently yields reduction in food intake and body weight. These
intake suppressive effects are not macronutrient specific since the
intake of both palatable (high-fat or high-sugar) food and nor-
mal chow (Alhadeff et al., 2012; Dickson et al., 2012) is reduced
by GLP-1R activation. The finding that exogenous stimulation
of GLP-1R results in suppression of food intake irrespective of
its macronutrient content is perhaps consistent with previous
data that indicate that all macronutrients (carbohydrates, fat,
proteins) can induce the release of GLP-1 from the intestinal

L-cells (Reimann, 2010; Diakogiannaki et al., 2012). Intake of
chow, however, is only reduced if the rats are overnight fasted
or, in ad libitum fed rats, if the chow is available as the only
source of calories (Dickson et al., 2012). In contrast, if a choice
between chow and high-fat diet is given to satiated rats EX4
appears to selectively reduce the high-fat intake but surprisingly
increase the chow intake (Alhadeff et al., 2012). These find-
ings can lead us to conclude that VTA GLP-1R activation might
result in a lack of preference for high-energy/fat food. Similar
results were reported for the selective stimulation of the GLP-
1R in the NAc (Dossat et al., 2011; Alhadeff et al., 2012; Dickson
et al., 2012). NAc is a terminal site for the dopaminergic projec-
tions originating in the VTA; it can also directly communicate
with the lateral hypothalamus, an important interface between
the homeostatic and reward circuits. It can be divided into two
subregions, the shell and the core; contributions of these two
subregions to the control of motivated reward behavior might
differ (Di Chiara, 2002). GLP-1 projections are neuroanatomi-
cally positioned to influence both subregions, since GLP-1R and
innervating fibers can be found in both the shell and the core.
Like the VTA GLP-1R, those in the NAc contribute to the intake
suppressive responses by GLP-1. Localized delivery of EX4 to the
shell or core region reduces high-fat or sucrose intake and body
weight. However, in NAc higher doses of EX4 are required to
reduce chow intake in both fasted and ad libitum fed rats com-
pared with those effective in the VTA, indicating perhaps that
NAc is somewhat less sensitive to the intake reducing effects
of EX4 (Alhadeff et al., 2012; Dickson et al., 2012). The intake
suppressive effect is not unique to the GLP-1 analogs as the
native GLP-1 peptide can similarly reduce chow intake when
locally delivered to the NAc core (but not shell) (Dossat et al.,
2011). Noteworthy, the reported reductions in food consump-
tion appear to be associated with a reduction in body weight
(Alhadeff et al., 2012; Dickson et al., 2012). This is an impor-
tant observation as it may imply that targeting the mesolimbic
reward system with GLP-1 agonists may be a viable weight loss
strategy.

Together, these data support a role for mesolimbic GLP-1Rs
in the regulation of food intake, irrespective of the macronutri-
ent composition of the food. These results are important from
a clinical perspective as a reduction in food intake accompanied
by weight loss is a desirable outcome in an obese patient. They
do not, however, address the question of the physiological role
of the endogenously released GLP-1 in these mesolimbic areas.
This question has been pursued through focal microinjections of
a GLP-1R antagonist into the mesolimbic nuclei. Utilizing this
methodology, several reports provide convincing evidence that
endogenous GLP-1 released in the VTA and the NAc is in fact
necessary for food intake control and blockade of its signal can
lead to increased food intake (Dossat et al., 2011; Alhadeff et al.,
2012; Dossat et al., 2013). Further support for this idea is pro-
vided by Dossat et al. (2013) who report that tonic release of
GLP-1 in the NAc core is necessary to reduce the palatability of
a sucrose solution and also participates in limiting the size of
the sucrose meal. Supportively, both the size of a sucrose meal
in rats and also the rate of licking during the first meal, an
effect often indicative of a perceived increase in palatability, were
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increased by local microinjection of a GLP-1R antagonist in the
NAc core (Dossat et al., 2013). Interestingly, the recently reported
NAc manipulation did not alter non-caloric sweet saccharine con-
sumption (Dossat et al., 2013), suggesting that GLP-1 released in
the NAc likely interacts with calories but not taste of the sugary
solution. It is worth noting that bypassing the taste signaling by
infusing glucose directly into the stomach is sufficient for evoking
the rewarding properties of glucose and the associated dopamine
release in the NAc (Ren et al., 2010). Thus, it is plausible that
the hindbrain GLP-1 neurons are a part of the ascending path-
way activated by intragastric glucose, with a role to limit reward
responses perhaps.

In the previous paragraphs we have reviewed evidence for
the clear suppression of food intake by mesolimbic GLP-1 acti-
vation. What is left unresolved is the mechanism(s) responsible
for this reduction. Previously discussed data hint at a poten-
tial reduction in palatability evoked from the core of the NAc,
understood as less pleasure obtained from food and hence
leading to less food consumption. The mesolimbic system is,
however, key to regulating the incentive salience or motivation
(Berridge, 1996). Thus, in the next section the available data
on a potential role of the GLP-1 system in motivation will be
discussed.

Reviewing the literature it can be somewhat difficult to obtain
a consensus on a definition of the now frequently used term,
“food reward.” As mentioned earlier, for the purposes of this
review this term will refer to eating beyond the immediate caloric
need, eating for the hedonic value of food, or heightened incen-
tive salience or motivation to eat. Thus, reducing the motivation
to eat is one way to reduce food reward. Food motivation can
be measured in animal models (and recently also in human
subjects) with an operant procedure for food in which earn-
ing each food pellet requires more work than the one before,
reflecting craving and wanting for food; this test is called pro-
gressive ratio operant procedure (Hodos, 1961; Miras et al.,
2012). It is a plausible mechanism via which GLP-1 may lead to
intake suppression since activation of GLP-1 via EX4 injection
was shown to decrease the motivation to obtain food (Dickson
et al., 2012), in a progressive ratio operant conditioning. This
effect was rather striking as the central (ventricular) EX4 injec-
tion produced an impressive 80% reduction in rewards earned.
The food reward-reducing effect of EX4 is further confirmed
in another test of food reward, the conditioned place prefer-
ence test, in which rats conditioned to spend most of their time
in an environment previously paired to chocolate pellets lost
that conditioned preference when injected with EX4 (Dickson
et al., 2012). Of course, these results obtained with peripheral
or central infusions of the agonist, while of some clinical rele-
vance (peripheral route), do not address the issue of the neural
substrate underlying these reward effects. This issue has been pur-
sued through combining localized mesolimbic delivery of EX4
with the sucrose-motivated progressive ratio test. The reported
results are consistent with the hypothesis that the key mesolim-
bic areas, the VTA and the NAc, represent the neural substrate
driving the food reward suppressing effect of GLP-1R stimula-
tion. Selective intra-VTA or intra-NAc EX4 application reduces
the incentive value for sucrose (Dickson et al., 2012). Again, the

VTA was more sensitive to GLP-1R stimulation. This VTA GLP-
1R driven reduction in sucrose reward behavior was shown in
both overnight food restricted and ad libitum fed rats indicat-
ing that this response is robust (Dickson et al., 2012). When
sucrose-driven operant behavior is performed in food-restricted
rats, the motivation to work for sugar is generally reliable and
high for all rats. This is in contrast to the ad libitum condition
in which some rats still choose to expend a significant amount
of work for their sugar reward (high-responders); others, how-
ever, expend only a fraction of the work they are willing to do
in a restricted state (low-responders) (Dickson et al., 2012). This
interesting observation was used to show that these innate dif-
ferences in ad libitum fed rats may interact with GLP-1R-driven
reward responses. This is reflected by data showing that EX4
is mostly effective in high-responders, leaving the responses of
low-responders intact.

The classic mesolimbic reward areas are clearly important in
driving the effect of GLP-1 on food reward; GLP-1R, however,
are detected in several other nuclei that contribute to the dif-
ferent aspects of reward control. Substantia nigra is one such
interesting candidate area. The crucial role of the substantia nigra
dopaminergic neurons in operant conditioning for food emerged
from data showing that selective restoration of dopamine pro-
duction in substantia nigra or its primary terminal target, the
dorsal striatum, is sufficient to restore the motivation to work
for food in mice that lack dopamine otherwise (Sotak et al.,
2005; Robinson et al., 2006, 2007; Palmiter, 2008). GLP-1R has
been detected in the substantia nigra (Merchenthaler et al., 1999),
its role in food reward behavior is unexplored, but is certainly
worth considering in future studies. Interestingly, while we do
not know the role of GLP-1 in this circuit on food reward
several studies have explored the therapeutic potential of nigro-
striatal GLP-1 action in animal models of Parkinson’s disease
(Harkavyi et al., 2008; Kim et al., 2009; Abuirmeileh et al., 2012;
Holscher, 2012) with great success culminating now with clinical
trials.

COMPETING AND CONFOUNDING BEHAVIORS
Certain limitations should always be considered when a suppres-
sion of ingestive or motivated behavior is obtained. In the case of
GLP-1 two most prominent limitations to drawing specific con-
clusions about the role of the peptide in regulation of reward
are (1) nausea or visceral illness and (2) the non-specific motor
disturbance.

Nausea/aversion
The concern with nausea resulting from GLP-1 should not come
as a surprise as this is in fact the most common side effect
reported in patients receiving GLP-1 analog treatment (Calara
et al., 2005). This clinical observation is closely mimicked in pre-
clinical rodent studies, in which signs of visceral illness, nausea
or conditioned taste aversion after EX4 or GLP-1 treatment have
been clearly demonstrated (Thiele et al., 1997, 1998; Rinaman,
1999a,b; Seeley et al., 2000; Kinzig et al., 2002; Kanoski et al.,
2012). It seems, however, that while stimulation of some GLP-
1R expressing neuronal populations is responsible for reducing
food intake in association with nausea or aversion stimulation of
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others can lead to food intake reduction via mechanisms indepen-
dent of nausea (McMahon and Wellman, 1998; Alhadeff et al.,
2012; Dickson et al., 2012; Kanoski et al., 2012). It is, of course,
warranted to consider this possibility carefully as the mesolimbic
system underlies the establishment of aversion responses. Three
reports to date suggest that VTA and NAc GLP-1Rs induced sup-
pression of food intake and reward is not associated with visceral
illness (Dossat et al., 2011; Alhadeff et al., 2012; Dickson et al.,
2012). The fact that a similar conclusion, the lack of associa-
tion between nausea and GLP-1 in reward areas, was obtained
across different laboratories, diverse methods of visceral illness
assessment and different GLP-1R agonists makes this a much
more compelling argument. Relevant studies were conducted in
rodents in which conditioned taste aversion and kaolin con-
sumption were used to evaluate potential nausea or malaise
associated with EX4 or GLP-1. Kaolin consumption is a form of
PICA response (consumption of non-nutritive substances) that is
indicative of visceral malaise (Takeda et al., 1993; De Jonghe et al.,
2009). The PICA response has been used extensively to study
visceral malaise in rats, a species that cannot vomit. VTA and
NAc shell directed EX4 application, at doses that clearly reduce
food intake and reward behavior, does not induce consumption
of kaolin. Similarly intra-NAc core GLP-1 administration at a
dose that reduced chow intake did not elicit a conditioned taste
aversion to saccharine, indicating that the rats did not find the
accumbal GLP-1R stimulation aversive (Dossat et al., 2011). The
collective value of these findings is not only in offering sup-
port to the hypothesis that mesolimbic GLP-1 has a specific role
in reward behavior but also in emphasizing the neuroanatom-
ical separation of the reward and visceral illness mechanisms
of GLP-1. Currently this information is of little benefit to the
patients receiving GLP-1 based therapy that is applied periph-
erally and provides drug access presumably to all brain GLP-1R
populations simultaneously. However, the fact that the potentially
clinically beneficial food reward suppressing effects of GLP-1R
stimulation can be disassociated from the clinically undesirable
nausea offers promise for a future therapy selectively targeting
the mesolimbic reward system GLP-1R populations that could
be free of this most common adverse effect of GLP-1 analog
therapy.

Motor disturbances/hypoactivity
Another concern with therapies targeting the mesolimbic system
is that the behavioral outcomes obtained are not specific to inges-
tive behavior and mediated via a general increase or decrease in
physical activity. This becomes a valid concern for GLP-1 as some
studies indicate that peripheral GLP-1R agonist application can
result in a reduction in spontaneous motor activity (Mack et al.,
2006; Erreger et al., 2012). Other reports, however, fail to find
this GLP-1/EX4 associated hypoactivity in otherwise normal rats
or mice (Talsania et al., 2005; Hayes et al., 2008). Local, intra-
VTA GLP-1R activation appears to align with the latter reports
and does not result in any changes in non-goal oriented motor
activity (Dickson et al., 2012). This is in contrast to the NAc
GLP-1R stimulation which led to a brief (10 minute long) reduc-
tion in activity, during the 1 h long testing period. Considering
how short-lived the hypoactivity period was, it seems unlikely

that it is a major contributing factor to reward-associated behav-
ioral effects of EX4 that lasted for a period of several hours.
However, this possibility could not be entirely eliminated based
on the available data. Nevertheless, the results obtained with
VTA GLP-1R population suggest that the suppression of food
reward and intake can be fully disassociated from any changes
in general motor activity. It is worth mentioning that in the
literature evaluating the rewarding effects of psychostimulants
a change in physical activity is not considered problematic, as
many psychostimulants like cocaine or amphetamine are associ-
ated with hyperactivity, and this behavior seems to be intimately
linked to increases in dopamine (Imperato and Di Chiara, 1986;
Wise and Bozarth, 1987). Thus, a reduction of hyperactivity is
often translated to mean a reduction in NAc dopamine release
and used as a proxy measure for a reduction of the reward-
ing/addictive properties of a given psychostimulant. If this line
of thinking is applied to the mesolimbic GLP-1R activation,
it is plausible that while NAc GLP-1R activation is associated
with a suppression of the dopamine signal, the VTA GLP-1R
reduce reward behavior via another mechanism. This is, however,
rather speculative and requires future investigation that should
involve a direct measurement of the dopamine release after intra-
VTA or intra-NAc GLP-1 application during a food reward task
in vivo.

GLP-1 IMPACT ON ALCOHOL INTAKE AND REWARD
Sugars are clearly rewarding; when sugars undergo alcoholic fer-
mentation alcohol is one of the resulting products. While alcohol
is reinforcing in itself (Henningfield and Meisch, 1975), it is the
only addictive substance that also provides a source of calories. A
number of studies highlight the importance of the gut-brain sig-
naling in the regulation of alcohol intake (Crespi, 1998; Leggio,
2010). Thus, it is not surprising that the initial discovery of
the impact of GLP-1 on food reward opened up the question
whether GLP-1R stimulation could be beneficial for curbing alco-
hol intake. The link between alcohol and GLP-1 starts already in
the gut, as alcohol intake can result in an elevated level of gut-
produced GLP-1 in rats (Davis et al., 2012b) suggesting a possible
relationship between alcohol intake and GLP-1. Direct evidence
for this relationship followed this initial discovery and included
findings showing that peripheral injections of GLP-1 or the GLP-
1 analog, EX4, reduce alcohol consumption in rodents (Davis
et al., 2012b; Shirazi et al., 2013). Interestingly, in both studies
this ability to reduce alcohol consumption seems to be dependent
on the baseline consumption levels. The consumption of alco-
hol is significantly reduced, but only in genetically-determined
alcohol-preferring rats or those selected from an outbred pop-
ulation for high-alcohol consumption. In contrast, low-alcohol
consuming rats show little change in their alcohol drinking after
GLP-1R stimulation. The suppressing effect of GLP-1 on alco-
hol intake is linked to suppressed alcohol reward, an idea now
tested in both rats and mice with two different tests of alco-
hol reward behavior, adding strength to the conclusion. Mice
treated with GLP-1 do not show a conditioned place prefer-
ence to alcohol (Shirazi et al., 2013) and alcohol-preferring rats
injected with EX4 reduce their operant responding for an alco-
hol solution (Davis et al., 2012a). Peripheral injection of EX4 also
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appears to reduce alcohol-induced accumbal dopamine release,
findings consistent with the idea that a peripheral EX4 treat-
ment can have an impact on the mesolimbic dopamine system
(Egecioglu et al., 2013). Together these data indicate that the stim-
ulation of GLP-1R is sufficient to reduce alcohol consumption;
however, they do not speak to the ability of the endogenous GLP-
1 to regulate alcohol intake. To this end, we recently reported
that blockade of GLP-1R via a peripheral injection of a GLP-1R
antagonist in outbred Wistar rats results in increased alcohol con-
sumption (Shirazi et al., 2013). Thus, endogenous GLP-1 makes
a significant contribution to the normal regulation of alcohol
intake and when that endogenous signal is taken away the rats
drink more alcohol. In contrast, the same GLP-1R blockade was
not sufficient to elevate alcohol drinking in alcohol-preferring
rats, perhaps reflecting a differential alcohol intake regulation
in this strain (Davis et al., 2012b). Importantly, the effect of
GLP-1 on alcohol intake may be driven locally by mesolimbic
VTA GLP-1R activation, since acute intra-VTA injection of GLP-
1 or EX4 reduces overnight alcohol consumption by nearly 30%,
(Shirazi et al., 2013). This newly emerging alcohol-suppressing
effect of GLP-1 is certainly of clinical interest. Since GLP-1 analogs
are already approved for clinical use in T2D and deemed clin-
ically safe, it is surely an attractive possibility to consider their
use for alcohol disorders. It is important to note, however, that
the data summarized here include only preclinical studies; thus,
future studies are necessary to determine whether this newly
discovered effect can be generalized to a clinical population.
Furthermore, all discussed reports evaluate only acute effects of
the treatment, and evaluation of long-term effects of the GLP-
1R stimulation on the alcohol intake has not yet been reported.
Nevertheless, collectively these findings provide further support
for a pleiotropic impact of GLP-1 on the mesolimbic circuitry and
reward behavior.

GLP-1 IMPACT ON PSYCHOSTIMULANT AND NICOTINE
REWARD
Considering that the mesolimbic reward system is a key target not
only for food and alcohol, but also for psychostimulants and nico-
tine (Koob, 1992), it is perhaps not surprising that recent work
has explored the potential of GLP-1 analogs to alter psychostim-
ulant reward. It must be noted that the effects of a substance
to reduce food reward cannot be simply extrapolated to sug-
gest a psychostimulant reward-reducing effect. Melanocortins,
for example, are one of the most potent anorexic neuropeptides
(Cone, 2005), they reduce food reward behavior (Davis et al.,
2011) but may increase mesolimbic dopamine release and psy-
chostimulant reward (Lindblom et al., 2001; Hsu et al., 2005).
Thus, a careful and direct evaluation of the role of GLP-1 on
the psychostimulant reward was necessary and proved fruitful,
since an impact of GLP-1 on both cocaine and amphetamine
behavioral response was revealed (Erreger et al., 2012; Graham
et al., 2012). Peripheral delivery of EX4 attenuated cocaine reward
behavior in mice in a cocaine-induced conditioned place pref-
erence test. Perhaps surprisingly, this attenuation of the condi-
tioned preference response was not associated with a reduction
in cocaine-induced hyperactivity, even though the doses used
were well into the range of those previously shown to induce

hypoactivity and 10 to 100-fold higher than those needed for an
anorexic response. Since it is often suggested that the cocaine-
induced hyperactivity might be a correlate of dopamine release
in the NAc, the lack of an effect of EX4 on cocaine hyper-
activity might indicate that the reduction in reward value of
cocaine occurs via a mechanism outside of or downstream of the
dopamine release. In contrast, a peripheral injection of EX4 in
rats reduced both basal locomotor activity and amphetamine-
induced hyperactivity, which may be indicative of a reduced
dopamine signal. If the results of these two studies were to
be integrated it could be concluded that the impact of GLP-
1R activation on psychostimulant-induced hyperactivity, and by
extension dopamine release, may be species (mice vs. rats) or drug
(cocaine vs. amphetamine) dependent. Interestingly, peripheral
injection of liraglutide was shown to reduce behavior induced by
apomorphine (a non-selective dopamine agonist) (Dixit et al.,
2013). The effect of liraglutide was strikingly comparable to
that achieved by a well-established antipsychotic medication,
haloperidol (Dixit et al., 2013). While these are very promising
results, it is clear that future studies are needed to determine
the mechanisms (intracellular signals and downstream neuro-
transmitters) behind the impact of EX4 on the specific psy-
chostimulant reward. Furthermore, nothing is known about the
contribution of the endogenous GLP-1 to the psychostimulant
reward; it would certainly be worthwhile to explore whether
changes/dysfunction in the endogenous GLP-1 system are a con-
tributing factor to psychostimulant reward and addiction. This
essential contribution of endogenously produced GLP-1 to drug
reward is, however, suggested by Tuesta et al. (2012). They
show that nicotine reward, tested via a conditioned place pref-
erence in mice lacking the GLP-1R, was significantly enhanced
(Tuesta et al., 2012). Moreover, the GLP-1R knockout mice self-
administered more nicotine than their wildtype counterparts
(Tuesta et al., 2012); which could suggest an enhanced motiva-
tional salience of nicotine in these mice. These compelling data
suggest that the endogenous GLP-1 is necessary for curbing the
reward experience from drugs.

CONTRIBUTION OF GLP-1 TO CHANGES IN REWARD
BEHAVIOR AFTER BARIATRIC SURGERY
Bariatric surgery results in an impressive weight loss, reduced
food intake and a lack of compensatory energy expenditure
reduction (le Roux and Bloom, 2005; Sjostrom et al., 2007;
Buchwald and Oien, 2009; Buchwald, 2010; Carlsson et al., 2012).
Some studies also report reduced food reward post-surgery (Shin
and Berthoud, 2011; Miras et al., 2012) but this reduction is not
detected by others (Mathes et al., 2012). The effect of bariatric
surgery on the GLP-1 system is also well-established (Cummings,
2009). The peripheral GLP-1 system is more responsive to both
meals and alcohol after bariatric surgery (Davis et al., 2012b).
Some reports also suggest that this surgery can lead to reduced
alcohol intake and reward in both humans and rodents (Davis
et al., 2012b). Thus, it is likely that an elevated circulating GLP-1
contributes to the reduced food and alcohol reward after bariatric
surgery. In fact, pharmacological blockade of GLP-1R that is
ineffective in sham rats, restores the chow intake of Roux-en-Y
gastric (RYGB) operated rats (Abegg et al., 2013). This essential
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contribution of GLP-1 was not, however, found in a mouse model
of vertical sleeve gastrectomy (Wilson-Pérez et al., 2013). Further
studies evaluating the effect of longer-term or central GLP-1R
stimulation are still needed to entirely eliminate the require-
ment of GLP-1 signaling for the food/alcohol suppressing effect
of bariatric surgery. It is also noteworthy that one recent report
indicates an elevated ethanol intake and reward in diet-induced
obese rats after bariatric surgery (Hajnal et al., 2012) that might
be associated with higher levels of another gut peptide, ghrelin.
This is consistent with reports indicating that a small but sig-
nificant subpopulation of baratric surgery patients drinks more
alcohol after the surgery. The involvement of GLP-1 was not sug-
gested by either of these studies. These surprisingly conflicting
results in preclinical bariatric surgery models might be associated
with the different rat strains used: lean outbred rats, lean alco-
hol preferring rats vs. diet-induced obese rats, an idea in need
of further experimental support. The question: which preclini-
cal bariatric surgery model is the most relevant for the human
condition remains to be answered.

FUTURE PROSPECTS
The data reviewed here paint a clear picture of the potent and
robust food and drug reward suppressing action of the GLP-
1 system. The GLP-1-reward field is, however, very young and
much work remains to be done. The results reviewed here need
to be confirmed in a clinical population. There is good rea-
son to expect that similar food/drug reward suppressing effects
would be obtained in human subjects since most beneficial effects
of GLP-1 reported to date are easily translated from preclinical
to clinical studies. Nonetheless, direct evidence is still miss-
ing. Furthermore, almost all available evidence reflects the acute
effects of GLP-1 manipulation on reward; thus long-term stud-
ies are still needed to confirm that the reward-suppressing action
can be maintained over time and with repeated GLP-1 analog
administration.

The food-reward suppressing effect of GLP-1R stimulation
needs to be confirmed in the target preclinical and clinical
population—obese subjects. Chronic high-fat or high-sugar food
intake is associated with changes in the mesolimbic reward sys-
tem and reward behavior (Li et al., 2009; Vucetic et al., 2011;
Sharma et al., 2013). There seems to be a lack of consensus on the
exact impact of this chronic overeating on the reward circuitry.
Both enhanced and reduced food reward behavior have been sug-
gested, either as a contributor or a result of obesity (Berthoud
et al., 2011). In an attempt to reconcile the disparate findings it
has been suggested that the activity of food responsive reward
circuitry is high before development of obesity and becomes sup-
pressed with time due to excessive consumption of the rewarding
food. Thus, it is clear that an effect of a drug on reward in non-
obese animals cannot be simply extrapolated to those that are
obese and it will be crucial to determine whether the food reward
suppressive effects of GLP-1 and analogs is relevant and benefi-
cial in an obese model. Moreover, while GLP-1 analog therapy
is clearly effective in regulating blood glucose of obese patients,
the anorexic effects of the acute peripheral injections of GLP-1
or EX4 may be attenuated in rats fed a high-fat diet (Williams

et al., 2011). Yet evidence also exists suggesting that the anorexic
response to a GLP-1 analog, liraglutide, is in fact enhanced and
lasts much longer in high-fat fed rats (Mul et al., 2013). Which
of these findings is relevant for food reward regulation by GLP-1
remains to be determined.

Studies exploring the CNS effects of GLP-1 could also greatly
benefit from a neuroanatomical dissection of the hindbrain
GLP-1-producing neuronal population and its projection tar-
gets. Peripheral or ventricular exogenous drug application can
likely allow for stimulation of most GLP-1R-expressing cell
populations simultaneously. It would be of great interest to
determine whether it is possible to stimulate, also in a clini-
cal setting, specific GLP-1 populations. One way this could be
achieved would be if different hindbrain GLP-1-producing neu-
rons have divergent projection targets and a different set of
inputs. For example, if one population activated by factor X
projects specifically to the amygdala but another activated by
factor Y to the VTA, it would be possible to achieve more
precise and selective VTA GLP-1R activation by simply apply-
ing factor Y. Elegant studies of this type have been done for
example by Leshan and colleagues to show that only a subpop-
ulation of VTA dopamine neurons projecting specifically to the
amygdala but not the NAc is activated by leptin (Leshan et al.,
2010). The idea of diverse subpopulations for GLP-1 produc-
ing neurons is, at this point, purely speculative and remains
to be investigated. Furthermore, understanding the function-
ality of the GLP-1R may help in development of more spe-
cific GLP-1 analogs (Patterson et al., 2013). The neurochem-
ical mediators downstream from the mesolimbic GLP-1R are
also largely unexplored. Thus, both the intracellular signals
engaged by the GLP-1R expressing cells and the downstream
neuropeptides and neurotransmitters released await a detailed
analysis.

CONCLUDING REMARKS
Behavioral feeding responses are evolutionarily conserved and
necessary for survival. The neurocircuitry underlying feeding
control is complex and requires the coordinated involvement of
many likely redundant and parallel brain circuits. Thus, it is likely
that the most efficient way to achieve a reduction in food intake
would have to involve a simultaneous impact on a number of
CNS regions controlling different aspects of feeding regulation
from the cognitive, decision-making, memory, and rewarding
aspects to the feeling of satiety and hunger. The evidence reviewed
here supports the idea that GLP-1 action on the CNS is dis-
tributed with many brain nuclei being engaged simultaneously
via central GLP-1 to regulate metabolism, and reward-seeking
behaviors.
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