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Amyotrophic lateral sclerosis (ALS) is a fatal devastating neurodegenerative disorder, involving progressive degeneration of motor
neurons in spinal cord, brainstem, and motor cortex. Riluzole is the only drug approved in ALS but it only confers a modest
improvement in survival. In spite of a high number of clinical trials no other drug has proved effectiveness. Recent studies support
that vascular endothelial growth factor (VEGF), originally described as a key angiogenic factor, also plays a key role in the nervous
system, including neurogenesis, neuronal survival, neuronal migration, and axon guidance. VEGF has been used in exploratory
clinical studies with promising results in ALS and other neurological disorders. Although VEGF is a very promising compound,
translating the basic science breakthroughs into clinical practice is the major challenge ahead. VEGF-B, presenting a single safety
profile, protects motor neurons from degeneration in ALS animal models and, therefore, it will be particularly interesting to test
its effects in ALS patients. In the present paper the authors make a brief description of the molecular properties of VEGF and its
receptors and review its different features and therapeutic potential in the nervous system/neurodegenerative disease, particularly
in ALS.

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating and fatal
neurodegenerative disorder characterized by rapidly progres-
sive degeneration of motor neurons in the spinal cord, brain-
stem, andmotor cortex [1–4], leading to severe weakness and
atrophy of voluntary muscles. However, it has heterogeneous
clinical manifestations and variable progression rate [2–6].
ALS patients die mainly from respiratory failure, related to
weakness of diaphragm and other respiratory muscles [7–9].

The median survival of ALS patients is 3–5 years after
symptom onset [5, 10–12]. The worldwide incidence and
prevalence are 2-3/100 000 and 4–7/100 000, respectively [13],
with a male/female ratio of 1.5 : 1 [5, 10, 11, 14] approach-
ing a 1 : 1 ratio in ALS patients with late symptom onset.

Most patients have first symptoms between 55 and 65 years
[5, 14].

Most ALS cases are sporadic (SALS) (90–95%) [6], but
about 5–10% have a positive family history [6, 15]. Autosomal
dominant inheritance is the typical pattern in familial ALS
(FALS); however penetrance is quite variable. Approximately
20% of FALS are caused by a missense mutation in the gene
encoding Cu/Zn super oxide dismutase (SOD1) [16]. More
than 16 dysfunctional genes [17] have been described in FALS,
including alsin (ALS2) [18, 19], senataxin (ALS4) [20], vesicle
associatedmembrane protein B (VAPB,ALS8) [21], angiogenin
[22, 23], TAR DNA binding protein (TARDBP or TDP-43)
[24], RNA-binding protein fused in sarcoma (FUS) [25, 26],
optineurin (OPTN) [27], valosin-containing protein (VCP)
[28], and recentlyC9ORF72 [12, 29, 30]. Genetics in ALS is far
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from simple; some gene mutations are of questionable value
in the etiopathogenesis of the disease, as VAPB [31], and in
some subjects different gene mutations should act synergis-
tically in order to cause disease expression—oligogeniticity
[32].

The pathophysiological mechanisms of motor neurons
degeneration in ALS are complex, multifactorial, and incom-
pletely known. Some of these mechanisms include abnor-
mal RNA metabolism and transcriptional abnormalities,
oxidative stress, excitotoxicity (induced by glutamate), pro-
tein aggregates, mitochondrial dysfunction, neuroinflamma-
tion, cytoskeletal derangements, deregulated growth factors,
impaired axonal transport and apoptosis [6, 33], abnormal
calcium metabolism, and activation of proteases and nucle-
ases [2]. Riluzole is the only drug currently approved in
ALS, acting by decreasing glutamate activity in the central
nervous system. However, its impact on survival is modest
[34]. Interestingly, trials with other antiglutamatergic drugs
have been negative in humans [6, 35].

In 2001, Oosthuyse and coworkers associated vascular
endothelial growth factor (VEGF) with the pathogenesis
of ALS [36]. VEGF is a proangiogenic factor that confers
neuroprotection by promoting neuron survival in vivo and
in vitro [37–39], in particular increasing life expectancy of
the ALS mice model [40–43]. In addition, it exerts protective
effects on other cells, such as lung epithelia, bonemarrow, and
bone cells. Oosthuyse and colleagues studied VEGF in mice
with a deletion of the hypoxia-response element (VEGF𝛿/𝛿).
These mice developed adult-onset progressive motor neuron
degeneration reminiscent of ALS [36] and showed reduced
spinal cord and brain protein VEGF levels, suggesting that
reduced hypoxia-mediated VEGF expression is associated
with motor neuron degeneration.

In this review, we highlight the role of VEGF in ALS and
its association with a potential therapeutic use.

2. Biology of VEGF

2.1. Members of the VEGF Family/Isoforms. VEGF is a
homodimeric hypoxia-inducible glycoprotein, heparin-
binding growth factor, which can induce angiogenesis
in vivo [44], a potent mitogen, specific for vascular
endothelial cells (ECs) [45, 46], but is also involved in
some other processes such as inflammation and tumor
progression [47]. In addition to hypoxia, other stimuli
regulate the expression of VEGF gene, such as nitric oxide,
estrogen, and a large variety of growth factors, like insulin-
like growth factor (IGF-1), tumor necrosis factor alpha
(TNF-𝛼), epidermal growth factor (EGF), transforming
growth factor beta (TGF𝛽), interleukin- (IL-) 6, and IL1-𝛽
[45].

Presently, the VEGF family (see Table 1) comprises seven
elements: VEGF-A, VEGF-B, VEGF-C, VEGF-D, PLGF (pla-
cental growth factor), VEGF-E (Orf-VEGF), and Trimeresu-
rus flavoviridis svVEGF (snake venom VEGF). The ability
of various isoforms of VEGF to bind heparin in laboratory
assays depends on the presence or absence of two different
heparin-binding domains [48].

2.1.1. VEGF-A. VEGF-A is a dimeric glycoprotein with 33–
42 kDa. Its gene expression is regulated by a variety of
conditions such as hypoxia, growth factors, nitric oxide,
p53 mutations, thyroid-stimulation hormone, and tumor
promoters [49]. Higher levels of VEGF-A mRNA may be
found in the adrenal gland, lung, kidney, and heart [50]. In
humans, the gene encoding VEGF is located on the short arm
of chromosome 6 (6p21.3) [51].

The VEGF-A gene has eight exons and seven introns
[52, 53] and several homodimeric VEGF-A isoforms with
biological activity have been identified: VEGF121, VEGF121b,
VEGF145, VEGF145b, VEFG148, VEGF165 (predominant iso-
form), VEGF165b, VEGF183, VEGF183b, VEGF189, VEGF189b,
and VEGF206 [54–57], respectively, composed of 121, 145, 148,
165, 183, 189, and 206 amino acid residues and resulting from
alternative mRNA splicing [56–58].

2.1.2. Placental Growth Factor (PLGF). Placental growth fac-
tor (PLGF) is an angiogenic protein isolated from placenta,
originally described in 1991 [59]. In humans, the PLGF gene is
mapped on chromosome 14q24, and high levels of expression
in placenta are found at all stages of gestation [49], as well
as in the lungs, heart, skeletal muscle, and thyroid gland
[49, 60, 61].

Four PLGF isoforms are produced through alternative
splicing, with different sizes and binding properties: PLGF-
1 (PLGF 131), PLGF-2 (PLGF 152), PLGF-3 (PLGF 203), and
PLGF-4 (PLGF 224) [49, 62, 63]. PLGF-1 and PLGF-3 are
nonheparin binding diffusible while PLGF-2 and PLGF-4
have heparin binding domains [63, 64].These molecules play
an important role in the regulation of vascular differentiation
[65].

2.1.3. VEGF-B. VEGF-B was discovered in 1996 [66]. Its gene
is located on chromosome 11q13 [67] and comprises seven
exons. Resulting from alternative splicing, two isoforms are
expressed in human, VEGF-B167 and VEGF-B186 (of exon
6) [50], that bind to the tyrosine kinase VEGF receptor
1 (VEGFR-1). VEGF-B is a mitogenic factor for human
ECs [68]. High levels can be observed in most tissues, in
particular the neural tissues (retina, brain, and spinal cord)
[69], myocardium, skeletal muscle, pancreas, prostate, and
brown fat [68, 70–72].

Recently, VEGF-B has been extensively studied and con-
sidered as a strong cell survival factor for different types of
cells, like neurons, vascular cells (pericytes, ECs and smooth
muscle cells), and myocytes [69, 73, 74].

2.1.4. VEGF-C and VEGF-D. Human VEGF-C gene is
located on chromosome 4q34 [72] and the VEGF-D gene on
chromosome Xp22.31 [75]. VEGF-C and VEGF-D isoforms
result from proteolytic mechanisms, not from alternative
splicing as VEGF-A and VEGF-B isoforms [70].

VEGF-C and VEGF-D have an important role in regu-
lation of angiogenesis and lymphangiogenesis [72, 76–82] by
promoting mitogenesis, migration, and survival of the ECs
[49, 70, 83, 84]. Initially, premature forms of VEGF-C and
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VEGF-D are synthesized and subsequently activated when
binding to receptors [70, 81, 85].

HumanVEGF-C levels are higher in the placenta, ovaries,
heart, small intestine, and thyroid gland while humanVEGF-
D levels are higher in the heart, lungs, skeletal muscle, colon,
and small intestine [50].

2.1.5. VEGF-E (Orf-VEGF). VEGF-E consists of 120–140
amino acids [81]. It has a potent angiogenic activity, similar
to VEGF-A [86], more potent in stimulating the proliferation
of ECs than VEGF165, although having no heparin-binding
basic domain [49].

2.1.6. VEGF-F/Trimeresurus Flavoviridis svVEGF (T.f.
svVEGF). In recent studies, the VEGF family of proteins
was also found in snake venom, including the svVEGF from
Bothrops insularis [49, 87] and TfsvVEGF (Trimeresurus
flavoviridis svVEGF) from pit vipers. Comprising 110–
122 amino acid residues, svVEGF functions as dimmers
[49]. TfsvVEGF strongly binds to VEGFR-1 but weakly to
VEGFR-2, resulting in a weak angiogenic activity and a
strong vascular permeability activity [81].

2.2. VEGF Receptors. VEGF binding sites have been identi-
fied on the surface of vascular ECs both in vivo and in vitro
[52, 88]. Two distinct classes of VEGF receptors (VEGFR)
exist—tyrosine kinases and nontyrosine kinase receptors [52,
55].

2.2.1. VEGF Receptors Tyrosine Kinases. VEGFR family has
three members (see Table 2): VEGFR-1 (fms-like tyrosine
kinase-1 or Flt1), VEGFR-2 (KDR in humans, Flk1 in mice),
and VEGFR-3 (fms-like-tyrosine kinase-4 or Flt-4). Both
VEGFR-1 and VEGFR-2 contain seven immunoglobulin-like
domains in the extracellular domain (VEGFR-3 contains only
six), a single transmembrane region, and a consensus tyrosine
kinase sequence interrupted by a kinase insert domain [50,
52, 89, 90].

VEGFR-1 and VEGFR-2 feature a central role in regulat-
ing angiogenesis, while VEGFR-3 stimulates lymphangiogen-
esis [52, 81, 91].

VEGFR-1. Human VEGFR-1 consists of 1338 amino acids
[92] and is located on chromosome 13q12 [93]. VEGFR-
1 binds not only to VEGF-A and VEGF-B but also to
PLGF with high affinity. It is expressed in ECs, pericytes,
placental trophoblasts, osteoblasts, renal mesangial cells,
monocytes/macrophages, and some hematopoietic stem cells
[52, 94]. It has a weak mitogenic action in ECs [70].
VEGFR-1 expression is upregulated during hypoxia by a
hypoxia-inducible factor-1- (HIF-1-) dependent mechanism
[95]. Interestingly, the soluble form of VEGFR-1 (soluble Flt-
1) after undergoing alternative splicing inhibits VEGF activity
[52, 96].

VEGFR-1 knockout mice die at embryonic day 8.5 to 9.0
stage (E8.5 to 9.0) from blood vessels disorganization and
excessive growth, not frompoor vascularization [70, 92].This
strongly suggests that VEGFR-1 offsets signals that induce

angiogenesis by suppressing proangiogenic signals in the
embryo (achieving a balance in physiological angiogenesis)
[92].

In humans, abnormal high levels of soluble protein
and sVEGFR-1 were found in serum in women with
preeclampsia, accompanied by decreases in the circulat-
ing free PLGF and VEGF levels, possibly leading to
EC dysfunction in the maternal and placental vessels
[97, 98].

VEGFR-2. VEGFR-2 is located on chromosome 4q11→ q12
[99]. It binds to VEGF-A, VEGF-C, and VEGF-D and has
strong tyrosine kinase activity, appearing to be the most
important VEGF receptor, inducing mitogenesis, migration,
and permeability of the ECs [50, 100, 101]. VEGF has
higher binding affinity for VEGFR-2 than for VEGFR-1.
Selective activation of VEGFR-1 and VEGFR-2 shows that
the latter is the primary signal transmission of VEGF in ECs
[52, 70].

VEGFR-2 activation induces production of platelet
activating factor (PAF) by ECs, stimulating their mitosis
and migration and increasing vascular permeability
[50, 85]. It is also expressed in osteoblasts, cells of
the pancreatic duct, neuronal cells, retinal progenitor
cells, hematopoietic stem cells, and megakaryocytes.
In nervous system, VEGFR-2 stimulates migration,
proliferation, and survival of different neural cell types
[90, 102, 103].

Inactivation of the VEGFR-2 gene in mouse resulted
in the death of the embryo after E8.5 and E9.5, due to
nondevelopment of embryonic vasculature, blood islands,
and hematopoietic cells [104]. Therefore, VEGFR-2 signaling
is essential for the development of the mouse embryo vessels
[70, 92, 104–106].

VEGFR-3. VEGFR-3 binds to VEGF-C and VEGF-D [52, 81,
85, 91, 107]. Two human isoforms are described, resulting
from alternative splicing and differing in their C-terminal
[108].

Expression of VEGFR-3 begins at E8.5 in all embryonic
mouse ECs.Afterwards, its expression is observed in develop-
ing venous and lymphatic vessels [70, 109, 110]. VEGFR-3 and
their ligands play an important role in lymphangiogenesis
[55, 111]. It is involved in mitogenesis, differentiation, and
survival of lymphatic EC [107, 110, 112]. It is also expressed in
osteoblasts, neuronal progenitor cells [113], andmacrophages
[111].

Hamada and coworkers showed that mice embryos with
VEGFR-3 deficiency had abnormal vasculature and devel-
oped severe anemia and concluded that VEGFR-3 activity
is critical in hematopoiesis and vasculoangiogenesis [114].
In another study, [115] it was observed that large vessel
remodeling and maturation were abnormal in VEGFR-3 null
mice embryos, causing abnormal fluid in the pericardial
cavity and resulting in death after E9.5 by cardiovascular
failure. The authors concluded that VEGFR-3 plays an essen-
tial role in the development of the cardiovascular system
in an embryo before the emergence of lymphatic vessels
[109, 111, 115].
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2.2.2. VEGF Receptors Nontyrosine Kinases

Neuropilins: NRP-1 and NRP-2. Neuropilin-1 (NRP-1)
and neuropilin-2 (NRP-2) are nontyrosine kinase
receptors. Neuropilins are single-spanning transmembrane
glycoproteins of about 130-140 kDa, and have 45-50%
sequence identity. NRP-1 and NRP-2 genes are located on
chromosomes 10p12 and 2q34, respectively [116]. NRP-1
and NRP-2 bind to VEGF and PIGF. NRP-1 also binds to
VEGF-B, whilst NRP-2 binds to VEGF-C [70, 116]. Both
receptors bind to heparin-binding splice forms of VEGF:
VEGF165 binds to NRP-1 and NRP-2; VEGF145 binds to
NRP-2 [117–119]. Neuropilins potentiate VEGF signaling by
acting as coreceptors for VEGF receptors [90, 120, 121].

These receptors play a fundamental role in the develop-
ment of neuronal guidance, angiogenesis, and immunology
and are also involved in cardiovascular system [116–118,
121, 122]. They belong to the class-3 semaphorin subfamily
[117, 118, 122, 123], family of secreted molecules mediating
repulsive signals in neuronal axon process guidance [116]. In
a chimericmice study, overexpression of NRP-1 caused exces-
sive blood vessel formation andheartmalformation [116, 124].

In a recent study, knockout NRP-1 mutant mice died
at embryo stage E13 from impaired neural vascularization,
transposition of large vessels, and weak vascular network
development in the yolk sac. Therefore, the authors con-
cluded that NRP-1 is both effective in embryonic vessels
formation and in nerve fiber guidance [125]. A study in
zebrafish model underscored that NRP-1 is required for the
VEGF-dependent angiogenesis [46, 126]. A study with NRP-
2 knockout mice demonstrated severe abnormalities in the
development of capillaries and small lymphatics [127]. In
NRP-1 and NRP-2 double knockout mice, the embryonic
mice died at E8.5 with avascular yolk sacs [128].

2.3. Regulation of VEGF Expression. VEGF expression is
stimulated by several factors, such as oncogenes, thyroid-
stimulating hormone, estrogen, nitric oxide (NO), hypoxia,
and growth factors. VEGF gene contains various potential
binding sites for transcriptional regulators, like activator
protein-1 (AP-1), activator protein-2 (AP-2), HIF-1, specific
protein (SP-1), Egr-1, signal transducer, and activator of
transcription-3 (Stat-3) [55, 129].

We will shortly mention the key factors and conditions
related to regulation of VEGF expression.

2.3.1. Oxygen Tension. Erythropoietin (EPO) is a glycopro-
tein hormone/growth factor. Its gene is localized on chro-
mosome 7 (7pter-q22) [130]. EPO-producing cells, localized
in the liver and kidneys, have the ability to sense oxygen
concentration and respond to systemic hypoxia by increasing
EPO gene transcription [95, 131, 132]. EPO controls erythro-
poiesis and, thereby, oxygen transportation by circulating
erythrocytes.

Reduced local oxygen tension induces angiogenesis [133],
by regulating the expression of a variety of genes. In partic-
ular, VEGF mRNA expression is stimulated [46, 134]. More-
over, VEGF production is upregulated by hipoglicemia and

acidosis [129, 131, 135]. Hypoxic transcriptional regulation
of VEGF-A is mediated by HIF-1, a heterodimeric protein
transcription factor [136]. Indeed, HIF-1 is also activated
by other environmental stresses as low pH, cytokines, and
several growth factors [137].

HIF-1 has two subunits, HIF-1 alfa (120-kDa) and HIF-1
beta (91–94-kDa), both being basic-helix-loop-helix Per-aryl
hydrocarbon receptor nuclear translocator-Sim (PAS) family
of transcription factors [138–141]. Under normoxic condi-
tions, HIF-1 alfa (HIF-1𝛼) is degraded by ubiquitin pathway
(proteasome degradation-26S proteosome) [142, 143]. HIF-
1𝛼, hydroxylated by prolyl hydroxylases proteins (PHDs),
interacts with the von Hippel-Lindau (pVHL) protein, a
component of the E3 ubiquitin ligase complex, marking
HIF-1𝛼 for degradation [144–146]. However, under hypoxic
conditions, PHDs are inactive, HIF-1𝛼 increases dramatically,
and the fraction that is ubiquitinated decreases [143, 147].
HIF-1𝛼 translocates into the nucleus and associates with
HIF beta (HIF-𝛽) and the coactivators p300/CBP to induce
gene expression by binding to the conserved [A/G] CGTG
hypoxia-responsive element (HRE) [148]. Hypoxia promotes
the induction of transcription and the stabilization of VEGF
mRNA through proteins that bind to sequences located in
the region UTR (3unstranslated region) of the VEGFmRNA
[149].

2.3.2. Cytokines and Growth Factors. VEGF expression in
different cells is upregulated by cytokines (IL-1𝛼, IL-1𝛽, IL-
6, and TNF-𝛼), prostaglandins (E1 and E2), and numerous
growth factors (transforming growth factor 𝛼, transform-
ing growth factor 𝛽, epidermal growth factor, fibroblast
growth factor 4, keratinocytes growth factor, insulin-like
growth factor-1, platelet-derived growth factor BB, and basic
fibroblast growth factor) [46, 136, 150–159]. The upregulated
VEGFmRNA expression suggests that paracrine or autocrine
release of such factors acts synergistically with local hypoxia
to increase VEGF release [46, 52, 65, 149], with influ-
ence on angiogenesis/permeability in inflammatory disorders
[46, 52, 149, 150].

2.3.3. Tumor Suppressor Genes and Oncogenes. The involve-
ment of altered oncogenes and suppressor genes is crucial.
The uncontrolled typical tumoral growth results from acti-
vation of oncogenes and loss of genes/tumor suppressor
proteins at different sites in cell signaling pathways [160].
Oncogenicmutations or amplification of Ras results in VEGF
upregulation. Some studies indicate that Ras-dependent
VEGF expression is necessary, although insufficient, for
progressive tumor growth in vivo [52, 161].

The overexpression of the VEGF gene can occur due
to a mechanism of inactivation of the tumor suppressor
gene. The von Hippel Lindau (VHL) tumor suppressor gene
was implicated in the regulation of VEGF gene expression
[162]. VHL protein provides a negative regulation of a group
of hypoxia-inducible genes, such as VEGF, platelet-derived
growth factor B chain, and the glucose transporters GLUT-1
genes [163]. In presence of a mutant VHL, mRNAs for such
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genes were produced both under normoxic and hypoxic
conditions [65].

3. VEGF in the Nervous System

VEGF has an important role in vascular growth regulation
and development. Moreover, VEGF produces direct effects in
a variety of neuronal cells, including neuritic outgrowth, axon
guidance, neuronal survival, and neuronal migration. Recent
studies have shown that in adverse conditions for neuronal
cells, such as oxidative stress, hypoxia, or glucose deprivation,
VEGF acts as a mediator of multiple mechanisms inhibiting
cell death and stimulating neurogenesis [36–38, 90, 103, 164–
168].

3.1. VEGF in Neurogenesis. Production of progenitor cells
and neurons occurs during development and in adult age.The
two fundamental regions contributing to neurogenesis in the
adult mammalian brain are the subventricular zone (SVZ)
of the lateral ventricles and the subgranular zone (SGZ) in
dentate gyrus of the hippocampus [169]. In both regions,
neurogenesis occurs in the vicinity of blood vessels by the
proliferation of neural stem cells (NSCs) in small clusters
[90, 167, 170].

In adult brain, neurogenesis is a dynamic process regu-
lated by several stimuli, in particular growth factors (epider-
mal growth factor, EPO, brain-derived neurotrophic factor,
stem cell factor, and VEGF), glucocorticoids, sex hormones,
and excitatory neurotransmitters [164]. It can also occur
in response to critical situations such as cerebral ischemia,
mechanical trauma, and seizures [164, 166, 168, 169, 171]. In
addition, these injuries drive migration of new neurons into
affected regions to promote tissue repair [171].

VEGF has an important role in adult neurogenesis [90,
172], participating in the crosstalk between ECs and NSCs
within vascular niches. This process can be highlighted by
the presence of cells labeled with bromodeoxyuridine (BrdU)
and doublecortin (Dcx), which are markers of proliferation
and neuronal lineage, respectively [171]. In animal studies,
intracerebroventricular administration of VEGF stimulates
neurogenesis. Additionally, other studies have stressed that
VEGF favors survival of newly formed neurons [103, 164,
166]. The role of VEGF in neurogenesis is rather com-
plex. Testosterone-induced neurogenesis is preceded by an
upregulation of VEGF and VEGFR-2. Brain-derived neu-
rotrophic factor (BDNF), secreted by ECs, acts through
VEGF increase subsequently stimulating neural cell prolifer-
ation [173]. Granulocyte colony-stimulation factor (G-CSF)
stimulates neurogenesis by increasing the release of VEGF
from NSCs and the expression of VEGFR-2 in those cells.
VEGFR-2 tyrosine kinase inhibitor blocks the neurogenesis
stimulated by G-CSF [172, 174].

Antidepressant drugs stimulate neuron proliferation in
part due to the upregulation ofVEGF andVEGFR-2 signaling
in the hippocampus [175]. This positive effect is lost by
previous intraventricular infusion of a VEGFR-2 inhibitor.
In behavioral models, VEGF infusion into the brain mimics
the positive effect of antidepressants drugs on neurogenesis

[167, 175–177]. Hippocampus VEGF expression is increased
in animals exposed to enriched environment conditions and
on learning protocols. The hippocampal overexpression of
VEGF via viral gene transfer led to increased neurogenesis
and improved cognition. In a study, the use of a dominant-
negative mutant KDR/VEGFR-2 (mKDR) resulted in neg-
ative effects on neurogenesis and learning process, but not
inhibiting the proliferation of ECs [172, 178].

VEGF-B participates in the regulation of neurogenesis
in adult brain. Intracerebroventricular VEGF-B adminis-
tration leads to BrdU incorporation in neuronal lineage
cells in vivo and in vitro. Moreover, VEGF-B knock-
out mice showed reduced neurogenesis, coherent with its
neurogenesis-promoting activity [165, 179]. VEGF-C pro-
motes neurogenesis of neural progenitor cells expressing
the VEGFR-3 [113]. Overexpression of VEGF-C stimulates
VEGFR-3 expressing NSCs as well as neurogenesis in the
SVZ, but not affecting angiogenesis. Reciprocally, SVZ neu-
rogenesis is diminished by conditional deletion of VEGFR-3
in neural cells and by blockage of VEGFR-3 signaling with
antibodies [180].

3.2. VEGF in Neuroprotection and Neuroregeneration. Exper-
imental studies in vivo and in vitro demonstrated the
neuroprotective, neurotrophic, and angiogenic properties
of VEGF [36, 37] through its action on various neuronal
cell types [42, 43, 90, 166]. The effects are observed in
hippocampus, as well as in dopaminergic, cerebellar, and
retinal neurons, and also in the peripheral nervous sys-
tem. VEGF protects these cells against death induced by
a wide variety of different stress conditions like hypoxia
and excitotoxicity stimuli [37, 42, 90, 171, 181, 182]. In
hippocampus, protection against excitoxicity occurs via two
pathways: phosphatidylinositol 3-kinase (PI3K)/Akt (PI3K-
K/AKT) and mitogen-activated protein kinase/extracellular
signal-regulated kinase (MEK)-extracellular signal regulated
kinase (ERK) (MEK/ERK) [183]. VEGFR-2 is predomi-
nantly responsible for mediating this neuroprotective effect,
although VEGFR-1 can also have some of these effects [90].

Some studies demonstrated that VEGF exerts its neu-
roprotective action directly by inhibiting programmed cell
death (apoptosis). VEGF also exerts neuroprotective effects
indirectly through its action on multiple processes such as
angiogenesis, increased blood brain barrier permeability to
glucose and activation of antioxidants [90, 181, 184].

3.2.1. Direct Neuroprotective Functions of VEGF. Several
studies support the role of VEGF in increasing neuron
survival when subjected to hypoxia, by inhibition of Caspase
3 activation via Caspase 9, thereby reducing apoptosis [103,
164, 166, 184–186]. The increased expression of VEGFR-2 in
neurons, when subjected to hypoxia and glucose deprivation,
indicates that this receptor is especially involved in the
neuroprotective effect of VEGF [184, 186, 187].

3.2.2. Indirect Neuroprotective Functions of VEGF. VEGF also
has an indirect neuroprotective function that affects neuronal
survival in critical conditions. It promotes heme oxygenases
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Table 3: VEGF neurotrophic activity (adapted from Keifer et al.,
2014 [198]).

VEGF factor Role References

VEGF-A

Neurogenesis [103, 277, 278]
Nerve migration [279]
Axonal guidance [167, 280, 281]
Survival/neuroprotection [39, 41, 282]
Protective effects in adverse
conditions:
Hypoxia
Serum deprivation
Excitotoxicity
Mechanical trauma
Chemical toxicity

[36, 37, 182, 183,
212, 251, 283,

284]

VEGF-B Survival: retinal and cortical
neurons [165, 217]

VEGF-C
Nervous system development
Proliferation and activation of
astroglia and microglia

[113, 285, 286]

VEGF-D
Survival/neuroprotection
Development of embryonic
stem cells

[279, 287]

PLGF Survival/neuroprotection [288, 289]

Table 4: VEGF activity in dendritogenesis, synaptic plasticity,
and axonal growth in adult brain (adapted from Mackenzie and
Ruhrberg, 2012 [167]).

VEGF Role References

VEGF
Dendritogenesis [167, 172, 282, 290–292]
Synaptic plasticity [90, 172, 290–295]

Axonal growth [102, 167, 172, 280–
282, 296–298]

antioxidative activity [188–190], increases brain glucose sup-
ply by GLUT-1 transport pathway, dilates cerebral arterioles,
and induces endothelial fenestrations [191]. Moreover, angio-
genesis exerts neuroprotective effects by increasing cerebral
blood flow [37, 184].

VEGF has neuroregenerative properties. Bearden and
colleagues used a model of axotomy to show regeneration
mediated by VEGFR-2 activation. In addition, VEGF seques-
tration by sVEGFR-1 impairs the regeneration of axotomized
nerves [192, 193]. VEGF promotes increased growth cone area
of sympathetic neurons via VEGFR-2 and NRP-1 mediation
[193]. Other studies support VEGFR-1 signaling induction of
chemotaxis andmicroglial proliferation [194]. VEGF also acts
on glial cells in the adult nervous system, promoting neuron
survival [39, 195, 196].

The various roles of VEGF proteins in the nervous system
of the adult brain are briefly summarized in Tables 3 and 4.

4. Role of VEGF in ALS

4.1. Animal Models

4.1.1. Rats and Rodents Models. Strong evidence of the role
of VEGF in the nervous system comes from studies in ALS.

In the past decade, VEGF has been implicated in motor neu-
ron degeneration in mice. In 2001, Oosthuyse and colleagues
found that transgenic mice with homozygous deletion of the
hypoxia-response element in the VEGF promoter (VEGF
𝛿/𝛿 mice) gene showed reduced VEGF levels by about 25–
40% in the neural tissue. The affected mice developed limb
weakness and neurogenic muscular atrophy by five weeks
of age, with electromyographic signs of muscle denervation
and reinnervation associated with loss of motor neurons in
the spinal cord. Approximately 60% of the mice died before
or at birth due to severe lung vascular alterations [36, 42,
181, 197, 198]. A follow-up study [40] used mice that resulted
from crossing SOD1G93A and VEGF𝛿/𝛿 models [199]. This
mice model showed an earlier onset of muscle weakness and
shorter survival [40]. Wang et al. crossed SOD1G93A mice
with mice overexpressing VEGF-A in neurons. These double
transgenic mice had a significant delay in motor neuron
loss and in the onset of weakness, resulting in an increased
survival compared to the single transgenic mice [3].

Interestingly, decreased VEGF expression in the spinal
cord of SOD1G93A mice has been reported. In vitro models
suggest that it derives from reduced stability of mRNA
VEGF. Indeed, Lu and colleagues identified thatmutant SOD1
leads to downregulation and destabilization of mRNA VEGF
[200]. It was shown that in mutant SOD1 mice but not
in wild-type mice, ribonucleoprotein complex with adenine
and uridine-rich stability elements (ARE) is present in the
3unstranlated region (UTR) of mRNA VEGF, resulting in
lower VEGF expression levels [200–202]. Contrary to the
above reports, Van Den Bosch et al. described no significant
difference in the levels of VEGF-A in the spinal cord of
SOD1G93A mice when compared to wild-type controls [203]
andMurakami et al. reported a higher VEGF expression level
in the spinal cord of SOD1G93A mouse [204]. It seems that
VEGF expression in SOD1G93A motor neurons is minimally
upregulated by hypoxia [90, 204], which reinforces the role
of VEGF expression in the pathogenesis of motor neuron
degeneration [204]. Exposition of mutant SOD1G93A mice to
prolonged periods of hypoxia did not affect their life span
after the upregulation of VEGF in the spinal cord [203].

Resulting from the VEGF role in perfusion of the brain
and spinal cord [36, 172, 203, 205] a reduction of neuronal
perfusion in the symptomatic VEGF𝛿/𝛿 mice was described
[36]. Moreover, decreased spinal cord blood flow has been
observed in the presymptomatic mutant SOD1 mice [8,
36, 206]. However, it still remains unclear whether the
reduced neural perfusion is present before the onset of motor
neuron degeneration or is just a consequence of neuronal
loss.

As most trophic effects on motor neurons are mediated
by VEGFR-2 and NRP-1 [42, 207, 208], several authors
suggest that coexpression of VEGF and VEGFR-2 may lead
to supplementary positive effects on these cells [36, 209,
210]. When the transgenic Thy:VEGFR-2 mice, which leads
to an overexpressing VERGFR-2 under control of Thy1.2
promoter that triggers its expression in postnatal neurons,
were intercrossed with SOD1G93A, the resulting double trans-
genic mice, Thy-VEGFR-2 X SOD1G93A, demonstrated that
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VEGFR-2 overexpression in motor neurons retards degener-
ation of spinal motor neurons in SOD1G93A mice [90, 211]. A
recent study showed that the administration of recombinant
VEGF165b exerts neuroprotection against multiple insults.
The neuroprotection is dependent on the activation of the
VEGFR-2 and MEK1/2, and the inhibition of caspase 3
induction [212].

4.1.2. Zebrafish Models. In zebrafish embryos, the overex-
pression of mutant SOD1 (mSOD1) protein revealed the
induction of a dose-dependent motor axonopathy. Lowering
VEGF induced a more severe phenotype, whereas upregulat-
ing VEGF rescued mSOD1 axonopathy [213].

More recently, DaCosta created a newmodel of zebrafish,
the T70Imutant (mutant zebrafish line).ThismSOD1 protein
zebrafish replicates several of the features of human ALS,
such as early neuromuscular junction abnormalities, adult-
onset motor neuron disease phenotype, and susceptibility to
oxidative stress. This model can be a useful in vivo tool for
therapeutic screening [214].

4.1.3. Culture Models. It was observed in a study using motor
neuron models, in cultures containing mutant SOD1G93A,
through administration of adenovirus vector, that VEGF
increased neurons survival [215]. Tovar-y-Romo and Tapia
showed the importance of the PI3K/AKT survival pathway
role, as well as the inhibition of p38 MAPK (p38 mitogen
activated protein kinase)—stress-activated protein kinase, in
the protective mechanism exerted by VEGF against exci-
totoxic spinal motor neuron death in vivo, thus suggesting
that VEGFR-2, the p38 MAPK, and PI3K pathway constitute
appealing therapeutic targets for ALS [208].

Increase in motor neuron survival by VEGF has been
reported even in adverse conditions such as hypoxia, hypo-
glycemia, and deprivation of serum. However, it seems
that VEGF does not protect neurons from excitotoxicity
[203].

4.2. VEGF-B in ALS. VEGF-B, recently identified by Grim-
mond et al. (1996) [66] and Olofsson et al. (1999) [72],
appears to provide a potent survival and protective factor
for neurons, namely, cortical, retinal, and spinal cord motor
neurons [165, 216, 217]. Moreover it is a survival factor for
endothelial cells, pericytes, and smooth muscle cells [201,
218, 219]. Administration of small quantities of VEGF-B
causes neuroprotection without causing adverse effects or
vascular blood-brain barrier leakiness [220]. In contrast,
VEGF-A administration is related to angiogenesis and edema
[220, 221]. In VEGF-B in knockout mice, Sun and colleagues
described a 40% increase of lesion size after cerebral ischemia.
It was also found that VEGF-B protected cultured cortical
neurons from hypoxic brain injury [165]. More recently Li
and coworkers [201, 217, 219] showed that VEGF-B acts
as a potent survival factor by suppressing the expression
of BH3-only protein and other apoptotic cell death-related
genes [201, 217, 219].

When crossing SOD1G93A with VEGFB−/− mice two
lines SOD1G93A VEGF-B+/− and VEGF-B SOD1G93A VEGF-
B−/− are obtained. Double transgenic mice SOD1G93A VEGF-
B−/− developed the most severe form of motor neuron
disease [211, 220, 222]. Further treatment with VEGF-B has
changed clinical phenotype to a milder form, as observed
for VEGF-A [211]. Since VEGF-B shows weaker angiogenic
and permeability properties than VEGF-A, it has an excellent
safety profile.

4.3. VEGF in Human ALS

4.3.1. Genetic Studies. Several clinical studies point to the
involvement of VEGF in ALS. However, clinical reports
failed to identify any specific VEGF mutation [40, 223–225].
A study based on Swedish, English, Belgian, Russian, and
American patients displayed an association between 2 hap-
lotypes determined by 3 single-nucleotide polymorphisms
(SNPS) −2.578C/A, −1.154 L/C, and −634G/C—in the VEGF
upstream promoter/leader sequence of the VEGF gene with
an increased risk of ALS [40, 226–228]. Other studies
reported no association between these polymorphisms and
SALS in various populations, as in Chinese [229], Italian
[230], Dutch [231], German [232], British [224], and North
American [233]. A meta-analysis was performed in order
to clarify those different results: three polymorphisms were
studied, involving 7000 patients from various countries in
Europe and America. This study did not confirm the original
conclusion that VEGF haplotypes increase the risk of ALS in
humans but confirmed a significant association of the VEGF-
2578 AA genotype and ALS susceptibility in males [226].

4.3.2. Plasma, Serum, and Cerebral Spinal Fluid (CSF). There
are conflicting reports of VEGF levels in CSF, serum, and
plasma in humans with ALS. Normally, VEGF levels are
much higher in serum than in plasma and even lower in
CSF. Measurements in serum are potentially contaminated
by release of VEGF from platelets [234]. Serum levels of
VEGF inALS have been reported as unaltered [235] or higher
than normal [236, 237]. Lambrechts et al. [226] found that
plasma VEGF levels were around 50% lower in ALS patients
than in controls, in particular in those carrying at-risk VEGF
genotypes. However, in other studies plasma levels of VEGF
were within normal limits in ALS patients [237–240] without
significant change in patients with hypoxemia [237, 239, 240].
Indeed, Moreau and coworkers showed that HIF-1 was not
activated by hypoxia in monocytes from ALS patients [241].

Devos et al. [238] studied CSF VEGF levels in 24 patients
with ALS. They reported lower CSF levels in the early phase
of the disease when compared with other disease controls,
but similar to levels recorded in healthy subjects. In contrast,
Gupta et al. [242] found that VEGF levels were increased
in CSF and serum in ALS in general and further increased
with hypoxia. In long duration ALS, Ilzecka [243] found that
the VEGF level in CSF was increased. The VEGF level in
CSF is not clearly associated with hypoxia in ALS, as a lack
of upregulation of CSF VEGF during hypoxemia has been
reported, when compared with hypoxemic controls [244].
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Table 5: Summary of themode of administration and delivery form
ofVEGF, its advantages, and disadvantages (adapted from Keifer et
al., 2014 [198]).

Administration
Direct Indirect/Remote

(i) Direct access to the target
area
(ii) Decreases complications
in areas outside the
therapeutic scope
(iii) Smaller dose required

(i) The product is delivered
in the CNS secondarily
(ii) Necessary higher dosages
(iii) Less invasive
administration
(iv) Product should have the
ability to cross the BBB, pial
barrier, and be transported
retrogradely by CNS

Delivery
Cells that produce or secrete VEGF-A
Use of a viral vector or nonviral to produce VEGF-A or a protein
that enhances expression of endogenous VEGF-A (transcription
factor)
Immediate delivery of VEGF-A protein to the target region

Carilho et al. found no correlation betweenVEGF plasma
levels and forced vital capacity, PaO2 or PaCO2, meaning that
hypoxia was not an effective stimulant of VEGF production.
However, it was reported that ALS patients in respiratory
distress showed a marked increase in VEGF level following
noninvasive ventilation onset. This suggests that correction
of hypoxia leads to higher activation of the hypoxia element
response in the VEGF promoter by HIF-1. In addition,
the same authors found that VEGF plasma level increased
strikingly in some ALS patients undergoing exercise [240].
Interestingly, an increased expression of VEGF mRNA with
exercise has been demonstrated in muscle of normal exercis-
ing mice [245].

A correct evaluation of the results from the above studies
should consider somemethodological issues, namely: limited
number of ALS patients and controls included; low sensitivity
of the ELISA kit used; possible influence on the results from
the cycles of freezing and thawing of biological samples [246–
248].

An immunohistochemical study reported that VEGFR-2
immunostaining in neuropil was decreased in the spinal cord
of ALS patients when compared to controls [210, 249]. These
results reinforce the hypothesis that the reduction of the
VEGF signaling may play a role in the pathogenesis of ALS
[246].

5. Therapeutical Potential of VEGF in ALS

There is a great potential of VEGF treatment in ALS; Table 5
summarizes its potential routes for administration and deliv-
ery.

5.1. VEGF Gene and VEGF Protein Delivery in Central Ner-
vous System (CNS). Several studies used rodent ALS mod-
els for therapeutic purposes. After intracerebroventricular
administration of recombinant VEGF in mice with ALS, it

was observed delayed disease onset and prolonged survival
[211], but systemic administration was noneffective. It was
demonstrated that VEGF injected in the intracerebroven-
tricular space is able to be transported anterogradely to the
brainstem and lumbar spinal neurons, hence preserving the
neuromuscular junctions and improving functional outcome
[211, 250]. The intracerebroventricular administration of
VEGF also induces the expression of GluR2 in the ventral
spinal cord of rats, which demonstrates the protective effect
of VEGF on motor neurons [251]. It was also shown that
astrocytes are capable of protecting against excitotoxicity by
inducing the expression of GluR2 on motor neurons, while
this feature is not present in mSOD1 mice [252]. Motor neu-
rons express lower levels of GluR2 subunit leaving themmore
vulnerable to AMPA receptor-mediated excitotoxicity [251,
253]. Administration of VEGF by intraperitoneal injections
in SOD1G93A transgenic mouse showed muscle weakness
delay and prolonged survival in treatedmice [254]. Intranasal
administration of VEGFmay provide an effective alternative.
In one study, it was reported that after intranasal adminis-
tration of VEGF in adult Sprague-Dawley rats, the highest
tissue delivery was found in the trigeminal nerve, followed by
the optic nerve, olfactory bulbs, olfactory tubercle, striatum,
medulla, frontal cortex, midbrain, thalamus, hippocampus,
and cerebellum [255].

Positive studies with VEGF were found in other studies,
including one from Azzouz et al., which used a lentiviral
vector pseudotyped with the rabies G envelope protein
(EIAV vectors). Intramuscular administration of the vector
permitted its retrograde transportation to the motor neuron,
resulting in slower disease progression of the SOD1G93A mice
model, even when treatment was started at the onset of
paralysis [41]. A more recent study with SOD1G93A mice
injected with adeno-associated virus serotype 4 VEGF vector
showed promising results. Intracerebroventricular injection
of AAV4-VEGF-165 led to significant extension of survival
[198, 256]. By adenoviral vector it is possible to get an
upregulation of VEGF expression indirectly and remotely
delivered, through the use of a zinc finger protein. A study
used engineered zinc-finger protein into a vector Ad-32-
Flag-Ep65 (AD-p65), allowing to upregulate the expression
of endogenous VEGF (VEGF-ZFP) in a laryngeal nerve
(RLN)-crush injury model. The mice injected with ade-
novirus engineered ZFP-VEGF presented improvement in
nerve regeneration, which led to a more rapid recovery when
compared to controls [257]. Kliem and colleagues used a
plasmid encoding zinc finger transcription factor protein
(ZFP-TF) engineered to induce VEGF expression in mSOD1
rat model. The plasmid was administered intramuscularly
in the lateral and medial gastrocnemius muscles at 80 days
of age (prior to initiation of motor neuron degeneration)
and weekly for a period of 6 weeks. Unilateral intramuscular
delivery of VEGF in engineered zinc finger transcription fac-
tor preserved ipsilateral hindlimb grip strength and rotarod
improved performance when compared to controls. Once the
therapy was directed only to a single muscle, the investigators
observed no change relative to the weight and the onset of
disease of the mice [258].
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Using a mouse NSC34 motor neuron-like cell culture
system, following administration of an adenovirus vector
in cultures containing mutant SOD1G93A, VEGF increased
neuronal survival. However, the pretreated cells with VEGF
displayed a dose-dependent resistance to oxidative damage,
with the activation of both MAPK and PI3K pathways. The
protective effects were mediated via VEGF PI3K activity
[215].

The role of receptors as therapeutic targets requires
further investigation. In an experimental study, antisense
oligodeoxynucleotides against the VEGFR-2 were admin-
istrated in mice subjected to hypoxia, which resulted in
the loss of nearly 50% of the motor neurons. This study
demonstrates the direct neuroprotective activity ofVEGFR-2.
Motor neurons are more susceptible to degeneration when
inhibiting the activation of AKT and ERK pathways, under
conditions of hypoxia [259].

5.2. Role of VEGF: Use of Stem Cell Therapy in ALS

5.2.1. Animal and Human Neural Stem Cells (NSCs). Neural
stem cells (NSCs) have an intrinsic ability to “rescue” dys-
functional neurons and to stimulate preservation, remod-
eling, and/or regeneration of host-derived neural circuitry
[260]. In a meta-analysis, Teng and colleagues evaluated the
effects of therapy of mouse and human NSCs transplantation
in mSOD1 mice. Only one injection resulted in an extensive
and robust integration of donor cells in the lumbar cord.
NSCs promoted an increase in the secretion of trophic factors
that contributed to the survival motor neuron, by reducing
inflammation and astrogliosis, related to trophic factors
production. It was observed, in the mice model, improved
motor performance and respiratory function, slower disease
progression, and delayed-onset disease [260, 261].

After intrathecal administration of the NCSs engineered
to overexpressing human VEGF gene (HB1.F3.VEGF) in
SOD1G93A mouse model, there was a delay in disease onset
and the survival was prolonged without significant adverse
effects when compared to control animals. Transplanted cells
were found in the anterior horn and differentiated into
motor neurons. The neuroprotective effect was achieved by
the production of antiapoptotic proteins (Bcl-2and Bcl-XL)
and molecules promoting cell survival and downregulating
proapoptotic proteins (Caspase-3 and BAX) [262].

5.2.2. Human Mesenchymal Stem Cells (hMSCs). A study
with single humanmesenchymal stem cells (hMSCs) showed
that transplantation of hMSCs had no beneficial effect in
mSOD1 mice. However, multiple transplantations allowed
decreased motor neuron loss, enhanced motor performance,
and increased survival in mSOD1 mice, although only a
restricted number of cells migrated into the lumbar spinal
cord parenchyma [263].

In 2013, Krakora et al. used hMSCs expressing both
GDNF (hMSC-GDNF) and VEGF (hMSC-VEGF) that were
injected into SOD1G93A rats, which slowed motor function
loss, protected neuromuscular junctions (NMJs), and pro-
longed lifespan. A synergistic effect was found when using

combined delivery of these factors, compared to the single
administration of each of these neurotrophic factors [264].

5.2.3. Human Adipose-Derived MSCs Stem Cells. It was
demonstrated that the soluble growth factors (VEGF, HGF,
and IGF-1) released by human adipose-derived stem cells
(hADSCs) on primary astrocytes cultured from SOD1G93A
mice significantly upregulate the expression of astrocytes
GLT1 [265]. Marconi et al. demonstrated that the systemic
injection of ADSCs in mSOD1 mice delayed disease onset
and slowed deterioration of motor performance. This and
other studies reinforce the idea that ADSCs can produce a
number of neurotrophic factors (VEGF and IGF-1) capable
of supporting neuronal survival [266–268].

5.2.4. Bone Marrow Stem Cells. Corti and colleagues evalu-
ated the effect of cell therapy using intravascular injection
of C-kit (+) stem/progenitor cells in the spinal cord of
SOD1G93A mice. The transplanted stem cells caused a delay
in disease progression, prolonged lifespan, promoted survival
of motor neurons, and improved neuromuscular function.
Neuroprotection resulted partially from the preservation of
glutamate transporter GLT-1 levels, reduction ofmicrogliosis,
and increase of VEGF and angiopoietin 2 [269, 270].

A study was performed using genetically modified
blood mononuclear cells from human umbilical cord blood
(HUCB). They were transiently transfected by electropo-
ration with VEGF-A in SOD1G93A mice. These cells were
retroorbitally administered via injection in presymptomatic
phase (22–25 weeks). The results showed a differentiation of
transplanted cells HUCB in vascular ECs and an increased
survival of motor neuron in these mice [271].

6. Use of VEGF in ALS Patients

Trials testing VEGF for the treatment of neurodegenerative
diseases, including ALS, have been considered after some
positive experimental studies in animal models. Regarding
human studies, it is crucial to evaluate safety. Particular
care should be taken regarding complex VEGF effects on
angiogenesis, inflammation, and capillary permeability [167,
221, 272, 273]. A critical problem is to define a treatment
window of VEGF in humans, taking into account that in
SOD1G93A mice ICV administration at a dosage of 0.2 𝜇g
VEGF⋅kg−1 ⋅ day−1 a day conferred neuroprotection, without
undesirable inflammatory or angiogenic effects [90, 211].
Another therapeutic pathway to explore is VEGF-B, a factor
with few angiogenic potential. Some studies have reported
that it has a neuroprotective effect with higher potential
security when compared to VEGF-A [220].

Another issue that deserves to be addressed is the
emerging need for standardization of analytical procedures
in various biological samples, when it becomes necessary
to determine VEGF levels. Further technological advances
for determining other VEGF isoforms and their receptors
(namely VEGF-B) are necessary, with greater sensitivity than
the conventional ELISA.
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The company NeuroNova AB has been sponsoring clin-
ical tests to develop a therapy based on direct intracere-
broventricular administration of VEGF165 in ALS patients
(by means of an FDA-approved and CE-marked pump and a
specialized catheter for protein drug delivery directly into the
brain by ICV infusion, sNN0029). Following the phase-1 trial
(NCT00800501, a double-blind, randomised, parallel group
safety and tolerability study), there is an open label safety and
tolerability continuation study to further evaluate safety and
tolerability, as well as motor function and survival in patients
who participated in the previous study (NCT01384162).

A phase-2 trial in ALS patients is sponsored by Sangamo
BioSciences (NCT00748501)—Clinical Trial of SB-509 in
Subjects with Amyotrophic Lateral Sclerosis (ALS). Sangamo’s
drug, SB-509, is an injectable formulation of a plasmid encod-
ing a zinc finger DNA-binding protein transcription factor
(ZFP TF(TM)-Sangamo BioSciences) designed to upregulate
the expression of the gene encoding VEGF-A. It was designed
as a randomized repeat-dosing, open-label, multicenter trial
to evaluate the effect of intramuscular administration of SB-
509 on the progression of the disease, asmeasured by the ALS
Functional Rating Scale-Revised (ALSFRS-R). ALSFRS-R is a
validated rating instrument for monitoring the progression
of disability in patients with ALS. In addition to gathering
data on safety and tolerability of SB-509 in ALS patients, data
will be collected to evaluate the effect of SB-509 on additional
clinical measures, forced vital capacity, neurophysiologic
index [274], manual muscle test, and survival. The study is
completed but no results have been released.

A randomized, blinded trial of intramuscular gene trans-
fer using plasmid VEGF to treat diabetic polyneuropathy was
done [275]. Thirty-nine diabetic patients with polyneuropa-
thy were randomized to receive a VEGF-to-placebo ratio of
3 : 1. Three sets of injections were given at eight standardized
sites adjacent to the sciatic, peroneal, and tibial nerves of one
leg. Primary outcomes were changes in symptom score at 6
months and a prespecified overall clinical and electrophys-
iological improvement score. Intramuscular plasmid VEGF
gene transfer tended to improve primary outcome, without
major safety issues. The possibility to translate this approach
to ALS patients is an open issue.

Further studies should be considered to test the use of
stem cells combined with neurotrophic factors, as it seems
to be a potential therapy for ALS. Those studies should be
carried out under strictmonitoring, thereby ensuring that the
therapy is safe in humans.

Although VEGF is a very promising compound, there is
a major challenge ahead that is to translate the basic science
breakthroughs into clinical practice.

7. Concluding Remarks

No effective treatment able to stop disease progression is
available for ALS. A large number of conventional trials have
been negative, involving drugswith quite different properties.
More challenging steps are necessary, testing breakthrough
compounds and using more advanced methods for drug
delivery.

The history of VEGF in medicine is not long but is rich
and complex. The emerging evidence regarding the roles of
this neurotrophic factor provides a strong rational for testing
VEGF in neurodegenerative disorders.The future has started
already and preliminary tests on the potential therapeutic
efficacy of VEGF have been tested in patients with ALS. The
future will show the right track, or at least the wrong ones.
Anyway, it is relevant for the ALS community to know more
on VEGF.
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