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The treatment of Type 2 Diabetes Mellitus (T2DM) consists primarily of oral antidiabetic
drugs (OADs) that stimulate insulin secretion, such as sulfonylureas (SUs) and reduce
hepatic glucose production (e.g., biguanides), among others. The marked inter-
individual differences among T2DM patients’ response to these drugs have become
an issue on prescribing and dosing efficiently. In this study, fourteen polymorphisms
selected from Genome-wide association studies (GWAS) were screened in 495 T2DM
Mexican patients previously treated with OADs to find the relationship between the
presence of these polymorphisms and response to the OADs. Then, a novel association
screening method, based on global probabilities, was used to globally characterize
important relationships between the drug response to OADs and genetic and clinical
parameters, including polymorphisms, patient information, and type of treatment.
Two polymorphisms, ABCC8-Ala1369Ser and KCNJ11-Glu23Lys, showed a significant
impact on response to SUs. Heterozygous ABCC8-Ala1369Ser variant (A/C) carriers
exhibited a higher response to SUs compared to homozygous ABCC8-Ala1369Ser
variant (A/A) carriers (p-value = 0.029) and to homozygous wild-type genotypes (C/C)
(p-value = 0.012). The homozygous KCNJ11-Glu23Lys variant (C/C) and wild-type (T/T)
genotypes had a lower response to SUs compared to heterozygous (C/T) carriers (p-
value = 0.039). The screening of OADs response related genetic and clinical factors
could help improve the prescribing and dosing of OADs for T2DM patients and thus
contribute to the design of personalized treatments.

Keywords: pharmacogenetics, pharmacogenomics, diabetes, sulfonylureas, biguanides, Mexican, direct
coupling analysis, direct information
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INTRODUCTION

Type 2 Diabetes Mellitus (T2DM) is the most common
form of diabetes in adults. T2DM is associated with multiple
complications, such as blindness, lower limb amputation, and
premature death (Marchetti et al., 2009; Barquera et al., 2013).
According to the International Diabetes Federation (IDF),
China, India, United States, Brazil, Russia, and Mexico are the
countries with the highest incidence. It is estimated that life
expectancy is reduced in diabetic individuals by 5–10 years,
mainly due to lack of early treatment. In Mexico, the average
age for death by diabetes or its complications was 66.7 in
2010, compared with the lifespan of 76 years of non-diabetic
individuals (Agudelo-Botero and Davila-Cervantes, 2015). The
average annual economic cost from 2006 to 2010 of T2DM
patients in Mexico was $941,345,886 USD of direct cost,
$177,220,390 USD of indirect cost, and $27,969,427 USD from
its complications. This immense cost, coupled with the issues
of inequity and access to healthcare in Mexico, where 51%
of the cost comes from household income, represents a huge
social burden (Arredondo and De Icaza, 2011; Barquera et al.,
2013).

Several classes of oral antidiabetic drugs (OADs) are currently
available and primarily include agents that stimulate insulin
secretion (sulfonylureas), reduce hepatic glucose production
(biguanides), delay the digestion and absorption of intestinal
carbohydrate (alpha-glucosidase inhibitors), or improve insulin
function (thiazolidinediones) (Krentz and Bailey, 2005; Nathan
et al., 2009). Additionally, OADs include other classes of drugs
such as meglitinides, glucagon-like peptide-1 (GLP-1) agonists,
dipeptidylpeptidase-4 (DPP-4) inhibitors, dopamine-2 agonists,
and amylin analogs (Inzucchi et al., 2012). There is a wide
variability in adverse events and glucose-lowering response to
OADs among different patients, which may be attributed to
factors like age, sex, and body weight, but also to genetic variation
related to pharmacokinetic and pharmacodynamic properties
of the OADs (Becker et al., 2013; Emami-Riedmaier et al.,
2015).

Biguanide, especially metformin, which is the only one
available OAD in some countries, is recommended as
the first-choice therapy for T2DM (Inzucchi et al., 2012).
Metformin inhibits the activity of mitochondrial respiratory-
chain complex I, resulting in decreased ATP synthesis and an
accumulation of AMP leading to the activation of AMP-activated
protein kinase (AMPK) and the subsequent suppression of
hepatic gluconeogenesis (Foretz et al., 2010). Pharmacokinetic
studies suggest that metformin is actively absorbed from
the gut and is excreted unchanged in the urine (Zhou et al.,
2009). The organic cation transporter 1 (OCT1), encoded
by SLC22A1 gene, is expressed in the basolateral membrane
of hepatocytes and mediates the metformin uptake, while
OCT2 (encoded by SCL22A2), expressed in the basolateral
membrane of kidney tubular cells, facilitates almost 80% of
metformin excretion (Pearson, 2009; Pernicova and Korbonits,
2014). Associations of intronic variants in SLC22A1 and
SLC22A2 with glucose-lowering response to metformin
in T2DM patients have been previously reported (Tkac

et al., 2013). SLC22A1 gene is highly polymorphic, with
common function-reducing polymorphisms such as Arg61Cys
(rs12208357), Gly401Ser (rs34130495), and Gly465Arg
(rs34059508), which having been associated with decreased
transportation and therefore the reduced therapeutic effect of
metformin (Distefano and Watanabe, 2010). In vitro studies have
shown that all three polymorphisms might be associated with
reduced metformin uptake (van Dam et al., 2005). However,
in vivo studies show controversial results (Tzvetkov et al.,
2009).

Sulfonylureas (SUs) target an ATP-dependent potassium
(K-ATP) channel present in pancreatic β-cells. K-ATP channels
are hetero-octamers composed of Kir6.2 pore subunit encoded
by the gene KCNJ11, and the SUR1 receptor subunit encoded
by the gene ABCC8. SUs lower glycemia by enhancing insulin
secretion from pancreatic β-cells by inducing K-ATP channel
closure (Tkac, 2015). SUs, such as tolbutamide, glimepiride, and
glipizide, are mainly metabolized by the enzyme cytochrome
P450 encoded by the CYP2C9 isoform gene. Several SNPs
have been related to their effect on insulin secretion enhancing
(Holstein et al., 2005). Reduced drug-metabolizing activity
has been reported in individuals carrying two allelic variants
namely CYP2C9∗2 (rs1799853) leading to a missense amino
acid polymorphism Arg144Cys, and CYP2C9∗3 (rs1057910)
leading to the missense amino acid polymorphism Ile359Leu
(Huang and Florez, 2011). The Ile359Leu polymorphism has
a more profound effect (Ragia et al., 2014). These alleles
encode proteins with a diminished enzymatic activity and
are correlated with elevated serum levels of SUs (Ragia
et al., 2009). However, CYP2C9-Arg144Cys polymorphism
is not associated with diabetes susceptibility (Semiz et al.,
2010).

Regarding SUs target (K-ATP channels), most studies
researched two linked non-synonymous common variants in
both ABCC8 and KCNJ11 genes. KCNJ11 variants are implicated
in glycemic progression to either prediabetes or T2DM. One
of the most common KCNJ11 polymorphisms is Glu23Lys
(rs5219). The functional effects of the Glu23Lys variant on
insulin secretion and sensitivity yield controversial results,
even though recent larger studies demonstrate a significantly
reduced insulin secretion, lower insulin levels, and improved
insulin sensitivity, consistent with the enhanced K-ATP channels
activity in pancreatic β-cells (Villareal et al., 2009). More
recently, the associations of the Glu23Lys variant and a different
KCNJ11 variant, Ile1337Val (rs5215), with T2DM have been
confirmed in several genome-wide association studies (GWAS),
rekindling the interest in its potential role as a genetic marker for
T2DM development (Cheung et al., 2011). On the other hand,
the ABCC8-Ala1369Ser (rs757110) polymorphism has been
associated with a reduction of glycated hemoglobin (HbA1c) in
the Chinese population with SUs treatment (Feng et al., 2008;
Sokolova et al., 2015).

In addition to pharmacogenetic factors, the response to OADs
is conditional on different phenotypic or clinical aspects. With
the accessibility of cohorts of this T2DM patient information,
various statistical approaches can be used to determine the
contributing factors affecting response to OADs. Traditional
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statistical tools are used to measure the co-occurrence of factor
variable and treatment response at a time (Turner et al.,
2009; Stransky et al., 2015). However, the human trait factors
may internally relate or function together to affect the drug
response. Although these tests provide real statistical connections
among variables in patient data, these relationships tend to be
composed with both strong and weak correlations making it
difficult to disentangle direct effects that explain the influence
of some variables over a factor of interest. Therefore, important
efforts have been dedicated to the development of statistical
models to better describe relationship networks related to
human disease. In the field of pharmacogenomics, a variety of
statistical models have been built, such as Bayesian networks
and Elastic net regression (Barretina et al., 2012), which have
exhibited great performance on finding genes highly connected
to drug response. Recently, a global statistical model, direct
coupling analysis (DCA), also has been demonstrated to be
applicable in pharmacogenetic data (Jiang et al., 2017). DCA
efficiently computes estimates of a joint probability distribution
of multivariate patient profiles constructed with clinical data.
The parameters of such distribution estimated by DCA are
used to quantify with high success the degree of connectivity
of variables in the model. The ability to disentangle direct
couplings from indirect couplings has been successful in the
field of structural biology where directly coupled residue pairs
have been used to predict co-evolution of amino acids (dos
Santos et al., 2015), predict the structure of proteins (Sulkowska
et al., 2012) with an accuracy not seen before as well as
predict the molecular plasticity and complexes (Morcos et al.,
2013; dos Santos et al., 2015). Recently, we have used this
framework to study protein expression level–based protein–
protein interactions and in a pharmacogenomics approach
to infer gene–drug interactions in cancer tissues and cell
lines where information on drug sensitivity is available (Jiang
et al., 2017). This is the first time that direct information
(DI) is used as a metric of correlation in high throughput
profiling data. It not only captures the connections between
well-known drug response predictors, including some drug
targets for certain anti-cancer agents, but also predicts some
potential biomarkers and generates gene–drug networks. DCA
is used in this study to find highly coupled factors for
response to OADs and to construct a network for the patient
cohort data. A metric called DI is computed to evaluate the
association intensity of two variables, including the connections
between two potential factors and between factors and drug
response.

In addition to genetic variations traits containing
pharmacogenetic data, the phenotypic traits of patients,
such as age, sex, health status, have been suggested to have
influences on the outcome of OADs treatment for T2DM. Thus,
a T2DM patient database including genetic data and patient
phenotypic data is advantageous. This study collects 495 T2DM
patients with information about age, origin, sex, body index,
health status, history of OADs treatment, polymorphisms,
and results of glycated hemoglobin (HbA1c) tests. HbA1c is
a recognized target for diabetes control used in international
guidelines and is the most suitable parameter to be studied in

pharmacogenetic studies (Lo et al., 2012). Here, we propose a new
structure-learning approach for Bayesian network construction
by using direct information and Chow-Liu trees. Chow-Liu
algorithm is commonly used to learn Bayesian network structure
(Almudevar, 2010), and mutual information is used by this
algorithm to estimate the dependence of two variables (Chen
et al., 2008). Due to the better performance of DI on measuring
direct associations when compared to mutual information, we
integrated DI and the Chow-Liu algorithm to recover global
connections between clinical factors for T2DM patients.

Genetic variations or patient phenotypic data affecting the
drug responses to T2DM treatments often lead to the necessity
of treatment changes and adjustments, resulting in higher
expenses for the patients. The aim of this study was to
establish an association between patient clinical data, such as
habits, treatment history, polymorphisms, and variability in the
response to OAD treatments in a Mexican population. Therefore,
biomarkers could help prescribe the right drug and its dosage,
for better control of the disease and its consequences, including
treatment savings and reduced impact in productivity.

MATERIALS AND METHODS

Design
A cross-sectional and retrospective study with convenience
sampling was carried out in T2DM patients treated with OADs,
in monotherapy or in combination for at least 6 months,
to determine possible association between patient data, gene
variants, and drug response assessed by HbA1c values. This study
was conducted according to Good Clinical Practice standards
and guidelines of the Declarations of Helsinki and Tokyo.
Furthermore, the protocol was approved by the Ethics and
Research Committee from the Medical School of the Universidad
Autonoma de Nuevo León (IRB00005579).

Patients
We recruited male and female patients with T2DM from
northeastern Mexico who attended the Clinic of Diabetes of
the Endocrinology Service at the Dr. José Eleuterio González
Hospital in Monterrey, Mexico. The recruitment period lasted
12 months. The inclusion criteria were: patients over 18 years
old with T2DM and treated with oral antihyperglycemic agents or
OADs, in monotherapy or in combination for at least 6 months.
The exclusion criteria were: diabetes type 1, gestational diabetes,
other non-T2DM types of diabetes, active cancer, heart failure,
co-treatment with corticosteroids or estrogens, conditions that
can cause hyperglycemia, addiction to alcohol or illegal drugs,
and dementia or severe psychiatric disorders. The co-treatments
with corticosteroids and estrogens were excluded. The disease
status was confirmed using the American Diabetes Association
criteria and a physical examination. Blood pressure, body height,
and body weight measurement were done. The body mass index
(BMI) was calculated from anthropometric measurements.

All patients were apprised about the aims of the study,
and a written informed consent was obtained. In addition,
information on the history of diabetes and the presence of
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arterial hypertension, hyperlipidemia, and chronic-degenerative
diseases, smoking status, and other medications was obtained
from the medical records and from the interview for inclusion
in the study.

Definition of Response
A fasting blood sample was drawn for the determination of
HbA1c. HbA1c was measured at least 3 months after drug
prescription and determined using Tina-quant R© HbA1C Gen. 3
(Cobas-Mira Roche). The approach taken for the treatment of the
patients was “treat to target,” defined as failure to reach levels of
HbA1c ≤ 7%. The initial HbA1c of each patient was at least 7%.

DNA Isolation
Peripheral blood from patients was extracted in a tube with EDTA
and genomic DNA was isolated with Wizard Genomic DNA
Purification Kit (Promega, Madison, WI, United States). Protocol
was followed according to manufacturer’s instructions. Genomic
DNA was quantified by UV absorbance using Nanodrop
(Thermo Scientific, Wilmington, DE, United States). The quality
of DNA was measured with the A260/280 ratio, a value of 1.8–2
was considered of good quality. Samples were kept at −20◦C in
small working aliquots until analysis to avoid recurrent cycles of
freezing and thawing to minimize degradation.

Pharmacogenetic Tests (Genotyping)
A total of 14 single nucleotide polymorphisms distributed
in 5 different genes associated with response to anti-diabetic
treatments were genotyped by Real-Time PCR system using
validated Genotyping Assays (Applied Biosystems, Foster City,
CA, United States) according to the manufacturer’s instructions.
Two additional polymorphisms in SLC22A1 gene (Met61Val
and Met420Del) were included in the study and analyzed in
50 responders and 50 non-responder patients. These additional
polymorphisms were determined by nucleotide sequencing
method in a Genetic Analyzer 3100 (Applied Biosystems). As
a quality control measure, genotyping for the polymorphisms
were required to pass three tests for inclusion in subsequent
association studies: the genotype call rate (> 0.90 completeness
to obtain 99.8% accuracy), the Hardy-Weinberg equilibrium
(HWE) test (p-value > 0.05), and the minor allele frequency
(MAF) criterion (> 0.01).

Analysis of Statistical Significance
Standard descriptive and comparative analyses were performed.
The responder’s phenotypes classification was made using Hb1Ac
parameter applied a cut-off ≤ 7 for responder’s and > 7
for non-responder’s [including first-line therapy (FLT), second-
line therapy (SLT), third-line therapy (TLT), monotherapy,
and combination therapy]. The HWE was determined by
comparing the genotype frequencies with the expected values
using the maximum likelihood method. To detect significant
differences between two groups, Student’s t-test or the Mann–
Whitney U-test were used for parametric or non-parametric
distributions, respectively. Differences between more than two
groups were assessed by one-way ANOVA and the Kruskal–
Wallis H-test for parametric or non-parametric distributions,

respectively. Post hoc tests (LSD and Tamhane’s T2) were used for
pairwise comparisons. Possible associations between genotypes
and phenotypes were assessed using contingency tables X2

statistics and Fisher’s exact tests. The association was evaluated
under four different models (dominant, over dominant, recessive,
and additive). Odds ratios were estimated with 95% confidence
intervals. Aforementioned analyses were performed with SPSS
for Windows, V.20 (IBM Corp., Armonk, NY, United States).
All p-values were two-tailed. The corrected P (Pc)-values were
adjusted by using Bonferroni’s correction. A p-value ≤ 0.05 was
considered statistically significant.

Computational Modeling: Direct
Coupling Analysis
To study the association between diabetes-related SNPs, patient
data and antidiabetic drug response, we have developed a metric
called DI, which is derived from the inference framework DCA
(Morcos et al., 2011). DCA is a statistical method that infers
efficiently the parameters of probability distributions with a
large set of variables. DCA can be computed efficiently and is
able to capture and evaluate direct pairwise correlations among
potentially thousands of variable connections. The probability
distribution of large sets of data is modeled with the following
Boltzmann-like distribution:

P(dat) =
1
Z

exp{
∑

eij +
∑

hi}

where dat represents a profile with L variables that are indexed
by i and j and Z is a normalization constant. The parameters
of this distribution are all possible eij and hi for i, j ≤ L and
contain information about pairwise direct connectivity (eij) of the
variables in the dataset. They are typically hard to be calculated
exactly, but can be estimated using DCA. Once the parameters
have been estimated, we can use them to compute pairwise
probabilities. The following expression shows the form of DI
based on the probabilities computed using the parameters, eij and
hi.

DIij =
∑
xi,xj

Pij(xi, xj)log
Pij(xi, xj)
fi(xi)fj(xj)

Here xi is the quantized value of the clinical variable in the profile.
The values of theDIij pairs tell us how connected are two variables
in the distribution.

Analysis on T2DM Patient Data
The DCA was applied to the complete cohort of data as described
in Figure 1. The responder’s phenotypes classification was made
at a cut-off 7 as defined before. Patient’s body indexes, such as
weight, height, BMI, age, duration of diabetes, systolic pressure,
diastolic pressure, are classified based on decade spans. To find
the influential factors for response to OADs, a matrix containing
all patient phenotypic informatics, 14 polymorphisms, HbA1c
test result is generated as the input for DCA algorithm (Morcos
et al., 2011). The T2DM database consists of patient profiles from
495 patients, including basic information, first, second, third line
therapy information, 14 polymorphisms, health conditions, and
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FIGURE 1 | Workflow of global probabilistic modeling on T2DM patient data. Strategy of using T2DM patient datasets to compute the direct information metric
between patient genetic or clinical factors and the drug response of OAD treatments. After DI values were calculated, they were used in the Chow-Liu tree for a
structural learning for Bayesian network.

the HbA1c test result estimating the glucose-lowering effect of
OADs. The patient profile columns also include the 21 OADs
separately, representing the usage and doses of a specific OAD
for certain patients. All of those profiles data are classified and
organized in an input matrix for DCA. DI is computed from DCA
as a metric of connectivity strength for pairwise variables. The
higher DI values, the stronger the correlation between these two
variables. DI has been successfully applied to model molecular
interactions in protein folds (Morcos et al., 2011, 2014; dos Santos
et al., 2015; Boyd et al., 2016) as well as to identify drug-gene
connections in cancer datasets (Jiang et al., 2017). Then, DI
values for each variable pair is computed by DCA algorithm and
then is used to find a complete network by using a minimum
spanning tree approach and then a Bayesian network is built with
undirected edges.

Predictive Model for OAD Treatment
Response
The direct connectivity (eij) estimates the strength of couplings
between two variables at certain states. The summation of eij over
all of patient profile factors with drug response provides a score
to evaluate each patient’s glucose lowering response after taking
OADs under his specific genetic and clinical profiles.

When summing all the eij with the j defined as the HbA1c
level ≤ 7%, the Score represents how likely the patient is
responding to the current OAD treatment based on his/her body
indexes, treatment strategy, polymorphisms, health condition.

ScoreRes =
∑
i

eij(xi,Res)

where i denotes a genetic or clinical factor of patient, and xi
represents the class of the factor belongs to. Additionally, the
score for a patient’s inert responses to the OAD is calculated based

on the eij with j representing HbA1c level> 7%.

ScoreNonRes =
∑
i

eij(xi,NonRes)

The two scores for each patient are compared and the treatment
response is predicted based on which score is larger. The leave one
out cross-validation is conducted to evaluate the performance of
this predictive model.

RESULTS

Descriptive Statistics and Phenotype
Classification
A total of 495 patients treated with hypoglycemic drugs were
included in this study. The subjects were Mexican, mainly
from northeastern of Mexico. The average age of patients was
56.30 ± 12.16 for males and 56.41 ± 11.45 for females. No
significant differences were found for the age of diagnosis,
diabetes duration, and HbA1c values between males and females.
However, the BMI was statistically higher in females (Table 1).
Regarding to co-morbidities, the most frequent co-morbidity was
hypertension with 24.4%, followed by hypertension-dyslipidemia
with 13.1%, only dyslipidemia (7.5%), hypothyroidism (6.3%),
and hypertension-hypothyroidism (4.6%).

The phenotype classification based on HbA1c values (Table 1)
was significantly different between the responder’s and non-
responder’s (p = 6.29 × 10−68). More than half of the
patients (353) did not respond to any type of therapy
(HbA1c> 7%), failing in 71.3% of the cases, and the treatment
was effective (HbA1c ≤ 7%) in 142 individuals. The average
diagnosis age of non-responders showed significant lower
values (p = 4.25 × 10−4) compared to responder’s, but
showed statistically significant higher values of diabetes duration
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TABLE 1 | Demographic and clinical data of patients.

Patients N Age Diagnosis age Diabetes duration BMI HbA1c

Males 156 (31.5%) 56.30 ± 12.16 45.12 ± 12.013 11.45 ± 8.03 28.90 ± 4.46£ 8.69 ± 2.24

Females 339 (68.5%) 56.41 ± 11.45 45.32 ± 10.705 10.95 ± 8.63 30.66 ± 6.78 8.45 ± 2.10

Non-responders 353 (71.3%) 56.30 ± 11.51 44.14 ± 11.001,U 12.14 ± 8.25¶ 29.83 ± 5.95 9.40 ± 1.92£,§

MT non-responders 332(67.1%) 56.47 ± 11.48 44.39 ± 10.95 11.00 ± 8.26 30.00 ± 6.07 9.33 ± 1.94

CT non-responders 30 (6.1%) 55.27 ± 11.51 42.53 ± 11.23 13.07 ± 8.28 28.50 ± 4.80 9.6 ± 1.81

Responders (any type) 142 (28.7%) 56.56 ± 12.09 48.02 ± 10.98 8.54 ± 8.39 30.79 ± 6.72 6.34 ± 0.47

MT responders 127 (25.7%) 55.88 ± 12.08 47.92 ± 11.36 8.06 ± 7.88 30.91 ± 6.72 6.32 ± 0.43

CT responders 7 (1.4%) 65.29 ± 13.16 49.29 ± 6.90 15.43 ± 14.26 25.83 ± 3.78 5.97 ± 0.79

FLT responders 93 (18.8%) 56.61 ± 11.11 49.68 ± 10.83i 6.92 ± 6.89 31.46 ± 6.85 6.30 ± 0.50

SLT responders 39 (7.9%) 56.77 ± 12.98 46.62 ± 10.33 10.19 ± 8.79 30.13 ± 6.15 6.43 ± 0.41

TLT Responders 10 (2.0%) 55.20 ± 17.69 38.10 ± 9.67 17.10 ± 13.07 27.13 ± 6.88 6.40 ± 0.44

Data presented as mean ± SD. BMI: body mass index; HbA1c: hemoglobin A1c; MT: monotherapy; CT: combined therapy; FLT: first-line therapy; SLT: second-line
therapy; TLT: third-line therapy. εp = 0.025 (male vs. female), 1P = 4.25 × 10−4 (non-responders vs. responders), ¶p = 2.5 × 10−7 (non-responders vs. responders),
£p = 6.29 × 10−68 (non-responders vs. responders), Up = 1.41 × 10−4 (non-responders vs. FLT), ÞP = 0.025 (FLT vs. TLT), p ≤ 0.049 (FLT vs. non-responders, SLT,
and TLT), and §p ≤ 6.84 × 10−8 (non-responders vs. FLT, SLT, TLT).

(p = 2.5 × 10−7). A total of 93 patients (18.8%) responded to
FLT, and they showed higher values of diagnosis age (p = 0.025),
although for lower values of diabetes duration (p ≤ 0.049),
compared to responder’s to TLT. None other therapies had a
significant difference.

The drug most commonly used for the FLT was metformin
in monotherapy (46.7%). The second most used drug in FLT
was a SU in combination with metformin (34.6%). For SLT and
TLT, metformin was also very commonly used (16.7 and 8.0%,
respectively). For FLT, SLT, and TLT, the third most common
option was SU in monotherapy (9.3, 13.3, and 5.3%, respectively).
Insulin was the most common treatment choice in SLT and TLT
(55.2 and 69.3%, respectively), although it was the fifth option in
FLT (2.2%) (Table 2).

Pharmacogenetic Findings by Standard
Statistical Methods
The polymorphisms M165I and R400C in SLC22A2 gene were
not in HWE equilibrium. The SNPs G401S and R465G in
SLC22A1 gene, and K432Q in SLC22A2 gene, had a Minor Allele
Frequency (MAF) < 0.01. The polymorphisms were excluded
from subsequent analyses. As a result a total of 9 SNPs remained
for statistical analysis. Two polymorphisms, Ala1369Ser in gene
ABCC8 and Glu23Lys in gene KCNJ11, showed a significant
impact on response to SUs.

The effect of ABCC8-Ala1369Ser polymorphism on Hb1Ac
under SU treatment was statistically significant. Heterozygous
variant (C/T) carriers had lower HbA1c values compared to
homozygous wild-type (A/A) carriers (p = 0.029) and compared
to homozygous wild-type and variant (A/A+C/C) carriers
(p = 0.012). The genotypes resulting from the KCNJ11-Glu23Lys
polymorphism also had a significant impact on HbA1c under
SU treatment. First, the homozygous wild-type and variant
(C/C+T/T) carriers had higher HbA1c values (p = 0.039) as
compared to heterozygous carrier (C/T). None of the other
7 polymorphisms tested had a significant impact on clinical
parameters (Table 3).

The association was evaluated under genetic models for only
nine polymorphisms that had passed a quality control. We found
that two of the nine polymorphisms were associated with the
responder phenotype. The A/C genotype of ABCC8-Ala1369Ser
and the C/T genotype of KCNJ11-Glu23Lys were significantly
associated with responder phenotype using over dominant
model. This association remained statistically significant after
adjusting using Bonferroni’s correction (p< 0.05) (Table 4).

Pharmacogenetic and Clinical
Parametric Findings From T2DM Patient
Profiles by Direct Coupling Analysis
The DCA finds factor-drug response connections from a global
statistical model computed from an estimate of the joint
probability distribution of all clinical variables in the study.
Figure 1 shows the classification process that the patient clinical
and genetic data undergoes to form the input discrete matrix
for DCA algorithm. The outcome is a set of pairs with DI
values. To uncover the minimal set of relevant connections
between those factors, a Bayesian network is constructed by
using the Chow-Liu algorithm as shown in Figure 1. However,
this study refines Chow-Liu algorithm by replacing the typical
use of mutual information with DI from DCA to calculate the
Kullback–Leibler distance. This is a novel approach to generate
the Bayesian network. Some factors cluster together and are
connected showing previously known relationships, such as the
connections between weight, height, BMI, and gender. These
known associations of factors can be seen as validation of the links
found by the algorithm. The time lengths of treatment (first line
and second line), age, age of diagnosis, and diabetes diagnosis
span are clustered; however, the treatment history for the third
line therapy is more likely to be associated with weight.

In agreement with the pharmacogenomics finding that
KCNJ11 Glu23Lys affects the response to SUs, while KCNJ11
Glu23Lys is generally connected to response to OADs. However,
the ABCC8 Ala1369Ser variant is not connected to any drug
in this network and is linked to KCNJ11 Ile1337Val variant.
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TABLE 2 | Scheme for the treatment of T2DM.

First-line therapy Second-line therapy Third-line therapy

Drug N Percent N Percent N Percent

Metformin 231 46.7 45 16.7 6 8

Metformin/Sulfonylurea 171 34.6 3 1.1 1 1.3

Sulfonylurea 46 9.3 40 14.8 5 6.8

Other 36 7.2 33 12.2 11 14.6

Insulin 11 2.2 149 55.2 52 69.3

Total 495 100 270 100 75 100

TABLE 3 | Association values between gene polymorphisms and clinical parameters.

Polymorphism N BMI Diagnosis age HbA1c

ABCC8-Ala1369Ser

A/A 180 30.74 ± 6.84 46.23 ± 11.37 8.69 ± 2.071

A/C 241 29.84 ± 5.93 45.16 ± 11.34 8.34 ± 2.21

C/C 74 29.44 ± 5.26 43.20 ± 9.52 8.74 ± 2.09

A/A+C/C 254 30.36 ± 6.44 45.35 ± 10.93 8.70 ± 2.07¶

CYP2C9-Arg144Cys

C/C 423 30.07 ± 6.26 45.41 ± 11.03 8.49 ± 2.17

C/T 67 30.30 ± 6.04 44.69 ± 11.40 8.67 ± 2.00

T/T 5 30.17 ± 2.09 40.00 ± 16.33 9.60 ± 2.13

CYP2C9-Ile359Leu

A/A 460 30.06 ± 6.01 45.35 ± 10.96 8.52 ± 2.13

C/A 35 30.67 ± 8.28 44.06 ± 13.24 8.55 ± 2.34

KCNJ11-Glu23Lys

C/C 179 30.70 ± 6.87 46.26 ± 11.56 8.64 ± 2.08

C/T 246 29.91 ± 5.96 44.95 ± 11.25 8.37 ± 2.19

T/T 70 29.26 ± 5.01 43.79 ± 9.28 8.75 ± 2.13

C/C+T/T 249 30.29 ± 6.42 45.56 ± 11.00 8.67 ± 2.09£

KCNJ11-Ile1337Val

C/C 71 29.36 ± 5.05 43.75 ± 9.22 8.74 ± 2.12

C/T 247 29.97 ± 6.17 44.91 ± 11.34 8.38 ± 2.20

T/T 177 30.59 ± 6.62 46.34 ± 11.46 8.64 ± 2.07

SLC22A1-Arg61Cys

C/C 475 30.05 ± 6.21 45.40 ± 11.03 8.53 ± 2.16

C/T 20 31.43 ± 5.83 41.90 ± 13.02 8.51 ± 1.77

SLC22A1-Met61Val

G/G 92 30.77 ± 6.22 46.41 ± 9.96 8.18 ± 2.04

A/G 26 29.74 ± 4.45 45.58 ± 14.77 8.14 ± 1.74

A/A 6 28.66 ± 4.03 43.67 ± 10.65 8.15 ± 1.83

SLC22A2-Ala270Ser

A/C 58 30.04 ± 6.35 46.03 ± 11.17 8.04 ± 1.56

C/C 437 30.11 ± 6.18 45.15 ± 11.12 8.59 ± 2.20

SLC22A2-Met420Del

ATG/ATG 52 30.56 ± 6.30 44.65 ± 9.87 8.35 ± 2.09

ATG/delTGA 49 30.72 ± 5.77 48.10 ± 12.73 8.05 ± 2.00

delGAT/delGAT 23 29.61 ± 4.78 45.13 ± 9.59 8.02 ± 1.56

Data presented as mean ± SD. BMI: body mass index; HbA1c: hemoglobin A1c. 1P = 0.029 (A/A vs. A/C), ¶p = 0.012 (A/A+C/C vs. A/C), and £p = 0.039 (C/C+T/T vs.
C/T).

Polymorphisms in the SLC22A2 gene have been identified and
shown to cause inter-patient variability in the pharmacokinetic
and pharmacodynamic profile of metformin. Three gene
variants, M165I (rs8177507), Ala270Ser (rs316019), and R400C

(rs8177516), of the SLC22A2 gene were reported with reduced
uptake of OCT2 substrate, whereas a fourth one, K432Q
(rs8177517), showed an increased uptake activity compared to
the wild-type allele. However, attempts to translate those findings
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TABLE 4 | Association values between genotypes and response using dominant, over-dominant, and additive models.

Gene Polymorphism Model OR (95% CI) p-value Pc-value

ABCC8 Ala1369Ser Over-dominant
(A/A+C/C vs. A/C)

A/A+C/C = 1.33
(1.11–1.59)

0.03 0.04∗

A/C = 0.736
(0.59–0.92)

KCNJ11 Glu23Lys Over-dominant
(C/C+T/T vs. C/T)

C/C+T/T = 1.27
(1.06–1.51)

0.013 0.018∗

C/T = 0.77
(0.62–0.96)

OR: odds ratio; CI: confidence interval; Pc: P-values adjusted by using Bonferroni’s correction for multiple comparisons; ∗p ≤ 0.05.

FIGURE 2 | Bayesian network of OADs and factors built from direct information. Hexagonal shapes indicate OADs and ovals denote clinical parameters or
polymorphisms.

into altered response to metformin of diabetic patients in several
populations have not been successful (Meyer zu Schwabedissen
et al., 2010). As shown in Figure 2, 3 out of 4 polymorphisms
in SLC22A2 have connections to metformin in combination
with other drugs. The genetic variants of SLC22A2 identified
in a Korean population appear to have a significant impact on
the disposition of metformin. As expected from the primary
distribution of OCT2 in the kidney, the tubular excretion
was influenced mainly by the M165I, Ala270Ser, and R400C
variants of SLC22A2, leading to an increase in plasma metformin
concentrations in subjects with these variants (Song et al., 2008).
MET is connected to FLT cluster and SLT cluster, being consistent
with the fact that MET is the most commonly used drug in FLT
and the second common drug in SLT. Two SU drugs, GLIB and
GLIM, are connected together.

To systematically investigate the connection between blood
glucose lowering outcome and other factors, we studied the
couplings between those factors and the drug response HbA1c
test results. In the input matrix, the values in columns for
each drug identify their presence or absence in the treatment.
The overall ranking of each drug response connection is shown
in the heatmap of Figure 3A. Treatment time and doses are
highly associated with HbA1c results. Age and place of origin
appear to be strongly influential. The administration of GLIB
or MET in monotherapy is also highly connected to HbA1c
results, partially corresponding with the fact that Metformin
is the most commonly used treatment for T2DM. Among
the body indexes parameter, weight and BMI still have high
rankings, which suggests that in prediction of treatment outcome
those two factors are worthy of consideration. The rankings of
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FIGURE 3 | (A) Heat map for the ranking of each factors and HbA1c test result among all the pairwise pool. The lower value of the ranking indicates stronger
connectivity. (B) A predictive model for patient’s drug response to OAD treatments.

polymorphisms have the highest influence at KCNJ11 Glu23Lys,
which is observed to be correlated with drug response to SUs in
both the statistical significance study and the DI-based Bayesian
network.

In order to predict the glucose-lowering efficacy of each OADs
and determine a better therapy strategy based on a given profile
of patient, we develop a predictive model on DI (Figure 3B). DI
is a metric of direct coupling among variables but it does not
reveal the directionality of this connection. It is possible to use the
parameters of the global joint distribution, to quantify how a large
number of factors account for a possible outcome, i.e., responsive
or non-responsive treatment. This additive model uses the
eij(xi,xj) estimates connecting factors to response with the aims
to distinguish between the responder and non-responder group.
We conducted a leave one out cross-validation on the 495 T2DM
patients dataset, and reached an average of prediction rate at 0.70,
with the maximum response vs. non-response prediction rate
at 0.76.

DISCUSSION

Association Between Gene
Polymorphisms and Clinical Parameters
From the nine analyzed pharamcogentic polymorphisms seeking
to explain the relationship between diverse genotypes of
diabetic patients and their response to different OADs, only
two polymorphisms, ABCC8-Ala1369Ser and KCNJ11-Glu23Lys,
showed a significant impact on response on the reduction
of Hb1Ac with SU treatment. None of the other seven
polymorphisms tested had a significant impact on clinical
parameters. These results confirm the association of ABCC8-
Ala1369Ser polymorphism and reduction of HbA1c level in

the Chinese population with SU treatment (Feng et al., 2008).
Nevertheless, studies in Caucasian populations showed no
association of KCNJ11-Glu23Lys with Hb1Ac reduction in
response to SUs (Ragia et al., 2012).

The CYP2C9 polymorphisms included in this study,
Arg144Cys and I1359L, showed no significant differences in
response to SUs in comparison with studies carried on Caucasian
population in which they described a higher sensitivity to SUs
for Ile359Leu and Arg144Cys variant carriers (Becker et al.,
2008; Ragia et al., 2014). The KCNJ11-I337 polymorphism
showed no evidence of being related in the response to SUs as
a study carried on Chinese population suggests (Cheung et al.,
2011). The SLC22A1 polymorphisms, Arg61Cys and Met61Val,
showed no significant evidence of being related in the response
to metformin in comparison with a study carried in Caucasian
population in which they found a significant reduction of Hb1Ac
after 6 months of metformin treatment (Tkac et al., 2013). The
SLC22A2 polymorphisms showed no evidence of being related in
the response to metformin, contrary of what has been suggested
(Avery et al., 2009).

Association Between Genotypes and
Phenotypes
Only the A/C nucleotide change from polymorphism
Ala1369Ser (gene ABCC8) and the C/T nucleotide change
from polymorphism Glu23Lys (gene KCNJ1) were significantly
associated with responder phenotype using an over dominant
model. KCNJ11 and ABCC8 encode for the subunits KIR6.2 and
SUR1, respectively, of the heteroctomer KATP channel (Emami-
Riedmaier et al., 2015). KATP channels regulate membrane K+
flux for various cell types including pancreatic β-cells, where
increased glucose metabolism results in the closure of the KATP
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channels leading to calcium influx and subsequent insulin
secretion (Nathan et al., 2009). Notably, KCNJ11 and ABCC8
genes lie close to each other on chromosome 11, with
strong linkage disequilibrium. In a Caucasian population study,
Ala1369Ser was correlated with Glu23Lys, where for every K
allele of KCNJ11 gene found there was A allele of ABCC8, thus
constituting a possible haplotype (Florez et al., 2004), whereas
several studies and meta-analyses showed the association of
KCNJ11, but not of ABCC8 polymorphisms, with susceptibility
to type 2 diabetes (van Dam et al., 2005; Gong et al., 2012).

We showed that it is possible to use patient data in
this comprehensive study to generate a model of the
global distribution of patient profiles. This model includes
phenotypic factors, health conditions, treatment information,
and polymorphisms with clinical treatment outcome variable.
Although we found agreement between the standard statistical
tests and the global pairwise DCA model about how KCNJ11-
Glu23Lys affects the efficacy of SUs drug, we also found novel
relationships when modeling the dataset with global techniques.
We uncover a network connecting OADs, gene polymorphisms,
and patient information. Connections with the HbA1c test and
metrics for the association between each pairwise variables can
inform better how a large set of factors interact during disease
progression.

A predictive model for OAD drug response is proposed
based on direct coupling parameters eij in this study and its
predictive performance has been validated by cross validation.
The overall prediction rate both for predicting as responding
or non-responding can be as high as 0.76. This model has the
potential to be used as a guide to modify factors to predict
higher response scores. This is a topic of further research
that can have applications in personalized therapies. With
increasing well-phenotyped cohorts and new methods, such
as Next Generation Sequencing and global statistical analyses,

the next few years promise a renewed interest in the use of
pharmacogenetics to unravel drug and disease mechanisms,
as well as the possibility to individualize T2DM therapy by
genotype.
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