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In brief

In lymphoma diagnostics, artificial

intelligence (AI) can save time and cost by

improving the accuracy in disease

subtyping with multi-parameter flow

cytometry (MFC) data. So far, AI has been

limited to theMFC protocol that was used

to train the models. We present a

framework to extend AI to multiple MFC

protocols using transfer learning (TL). We

demonstrate that TL in combination with

MFC data merging achieves higher

performance for smaller training sizes.
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THE BIGGER PICTURE Multi-parameter flow cytometry (MFC) is a critical tool in leukemia and lym-
phoma diagnostics. Advances in cytometry technology and diagnostic standardization efforts have
led to an ever-increasing volume of data, presenting an opportunity to use artificial intelligence (AI)
in diagnostics. However, the MFC protocol is prone to changes depending on the diagnostic work-
flow and the available cytometer. The changes to the MFC protocol limit the deployment of AI in
routine diagnostics settings. We present a workflow that allows existing AI to adapt to multiple
MFC protocols. We combine transfer learning (TL) with MFC data merging to increase the robustness
of AI. Our results show that TL improves the performance of AI and allows models to achieve higher
performance with less training data. This gain in performance for smaller training data allows for an
already deployed AI to adapt to changes without the need for retraining a new model that requires
more training data.

Development/Pre-production: Data science output has been
rolled out/validated across multiple domains/problems
SUMMARY
Multi-parameter flow cytometry (MFC) is a cornerstone in clinical decision making for leukemia and
lymphoma. MFC data analysis requires manual gating of cell populations, which is time-consuming,
subjective, and often limited to a two-dimensional space. In recent years, deep learning models
have been successfully used to analyze data in high-dimensional space and are highly accurate. How-
ever, AI models used for disease classification with MFC data are limited to the panel they were
trained on. Thus, a key challenge in deploying AI into routine diagnostics is the robustness and adapt-
ability of such models. This study demonstrates how transfer learning can be applied to boost the per-
formance of models with smaller datasets acquired with different MFC panels. We trained models for
four additional datasets by transferring the features learned from our base model. Our workflow
increased the model’s overall performance and, more prominently, improved the learning rate for small
training sizes.
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INTRODUCTION

Multi-parameter flow cytometry (MFC) is a powerful and high-

throughput technique that allows for rapid quantification of

markers on cells in suspension.1 Today, it is a critical step in

both research and clinical decision making for leukemia2,3 and

other hematological diseases. The increasing number of param-

eters that can bemeasured with modern devices, a widely adop-

ted flow cytometry standard (FCS) for data by all manufacturers,

and the possibility of data anonymization makes MFC ideal for

deep learning on shared data. Despite all this, most data are still

analyzedmanually, including gating cell populations of interest in

a two-dimensional scatterplot, which is time-consuming and

subjective.4,5 In recent years, more advanced computational

methods involving deep learning have become available that

can accurately classify disease subtypes based on cell type

identification from cytological images6 and perform automated

classification of MFC data into diagnosis labels.7,8 However,

such models used for MFC analysis are limited to the MFC panel

they are trained on and do not produce the same performance on

a different MFC panel.

The flow cytometry panel design across various laboratories

varies depending on the markers to be analyzed and the cytom-

eter available. In many cases, the number of markers needed to

be analyzed exceeds the number that the cytometer can mea-

sure in a single run. Standard practice is to aliquot a sample

into multiple tubes, each of which often includes a set of shared

or backbone markers.9 This process is standard for modern clin-

ical diagnostic of MFC data, especially when immunophenotyp-

ing leukemia and lymphoma. Furthermore, the choice of markers

depends on the diagnostic workflow and is not standardized.

These differences result in different antibody (MFC) panels being

used in different laboratories. Thus, artificial intelligence (AI)

models must be robust and adapt to different MFC panels

across laboratories and within the same laboratory when the

diagnostic panel is modified due to transition to a new

cytometer.

This study extends our previous model,8 where we trained an

AI model to classify seven B cell neoplasm subtypes plus healthy

controls for a nine-color panel to work with multiple MFC panels

by employing transfer learning (TL). TL is a technique to improve

the performance of a new task by transferring knowledge from a

related task that has already been learned.10 The new task

(target task) to be learned usually has a smaller dataset than

the base data with which the related task (base task) was

learned. However, the target and base data do not generally

change in composition. In our case, while both the base and

target tasks to be learned are the same (classifying B cell neo-

plasms into diagnosis labels), the MFC protocol with which a

sample is acquired is subject to inter-laboratory variability and

changes over time in terms of the number of tubes per sample,

markers measured, marker-fluorochrome conjugates, and other

protocol parameters.

To handle the differences across MFC panels and achieve

maximum knowledge transfer, we merge FCS data from indi-

vidual tubes of a sample into a single combined FCS file using

the nearest neighbor (NN) method. This method assumes that a

cell in one tube is identical to its NN in another tube in terms of

the shared markers and can thus be used to impute missing
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marker values.11,12 The expression vectors of all the NNs

across tubes are merged, creating a single, high-dimension

matrix of cellular expression across all tubes. NN merging

has proven effective as part of classification pipelines,9,13 while

other merging methods are better suited for deep profiling.14

We use NN merge in conjunction with TL to generalize our

model and achieve a higher learning rate with fewer training

samples.

RESULTS

Overview
An overview of the TL process is shown in Figure 1. Before

knowledge transfer, we merge multiple aliquots (tubes) per sam-

ple into a single FCS data file using the NN merge approach. In

our previously published model,8 we processed individual tubes

of each sample separately, resulting in a convolution neural

network (CNN) architecture that depends on the number of tubes

per sample. Without the initial merge step, such a network’s

transferability between datasets with a different number of tubes

per sample is very low—we can only transfer knowledge from the

dense layers (Figure S1). Merging multiple aliquots allows for

maximum transfer between the networks—weights from all

layers can now be transferred. Next, a self-organizing map

(SOM) is generated for each merged sample. The generated

SOM node weights, which are n-dimensional vectors of the orig-

inal FCS data arranged on a two-dimensional grid, are used as

input to the CNN that generates class predictions. We use

SOMs to process FCS data and convert it into a suitable input

for CNN. While SOMs are appropriate for our workflow, there

are alternatives to SOM, such as UMAP, that can be used to pro-

cess FCS data7.

The base dataset used in this analysis is the nine-color B-NHL

panel published in our previous work.8 Four additional MFC da-

tasets were obtained that are used as the target datasets (see

Flow cytometry data in theMethods for details). Themodel setup

for TL is also detailed in the Methods.

Comparing merged and original datasets
To evaluate the quality of the merged dataset, we use Jensen-

Shannon distance (JSD) to quantify the similarity between the

distributions of markers in the original and merged datasets, re-

sulting in values between 0 (identical distributions) and 1 (totally

disjoint distributions). If p and q are the probability distributions

of a marker in the original and merged data, then the JSD is

calculated as the square root of Jensen-Shannon divergence15:

JSD =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DðpjjmÞ+DðqjjmÞ

2

r
;

wherem is the pointwise mean of p and q, and D is the Kullback-

Leibler divergence.16

We compute the JSD for each non-sharedmarker between the

original andmerged sample for all datasets.We obtained amean

JSD score of less than 0.1 for all the datasets, indicating good

agreement between the merged and original datasets in terms

of marker distribution. The individual JSD score for each

non-shared marker and the average JSD for each dataset are

reported in Figures S2 and S3. Although JSD scores do not



Figure 1. Overview of the knowledge transfer pipeline

For each dataset, FCS files from different tubes for each sample are merged using the NN merge. Next, individual SOMs are generated for each of the merged

FCS samples. The SOMnodes are arranged in a 323 32 grid where each node is associated with an n-dimensional weight vector, where n is equal to the number

of channels in the original FCS events. The SOMnodeweights are then used as input to the CNN. Theweights from the basemodel trained on the base dataset are

transferred to each of the target networks. The target networks are then retrained on the respective target dataset to generate class predictions
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evaluate the extent to which a cell population (based on

co-expression of markers) is preserved in the merged data, the

scores provide a way of assessing how the imputation affected

individual marker distribution. Furthermore, the original and

merged models’ performance for the base data were compared

to evaluate the effect of NNmerge on the CNN classification. The

merged base model achieved an overall weighted F1 score of

0.94 and an average F1 score of 0.74. In comparison, the

original model trained with the unmerged FCS data from tubes

1 and 2 achieved an overall weighted F1 score of 0.94 and an

average F1 score of 0.75, indicating that the NN merge did not

introduce significant artifacts that negatively impact the CNN

classification.

Evaluation of knowledge transfer
To evaluate knowledge transfer, we compared the performance

of the target models with and without TL. A 10-fold validation

was performed on both the standalone and TL models for

each target dataset. For each model, weighted and average

F1 scores were calculated. The models with TL showed a sig-

nificant improvement in F1 scores, especially the average F1

scores for all the datasets (Figure 2). The delta in the perfor-

mance between the datasets may be attributed to the size of

the dataset, the quality of the original data, and the quality of

the merged data with imputed marker values. The effect of

the quality of merged data on the classification score is dis-

cussed in Figure S3B. The overall scores obtained by averaging

the F1 scores over the 10-fold validation and the 95% CI values

for the four datasets are reported in Table 1. The ROC curves

and mean AUC for standalone and TL models are shown in

Figure S5.

Furthermore, we show that the TL models converge with the

standalone models with the chosen parameters (Figure S7).

The TL models have a lower initial validation loss and reach the

asymptote faster than the standalone models. While the TL

loss for the Erlangen panel does not converge with the stand-
alone model, the classification performance is still improved

with TL (Figure 2). The lack of convergence in terms of model

loss could be a result of the different diagnostic setup in Erlan-

gen, resulting in a small, highly imbalanced dataset that greatly

diverges from the base data.

Learning curve analysis
Here, we describe two use cases that change the MFC diag-

nostic panel and require an AI model to be adapted. We use

our current workflow to adapt the base model for both cases

and analyze the model’s learning curves for each case. A

learning curve shows the model’s score for varying numbers of

training samples and can be used to compare different settings

or algorithms and determine the amount of data used for

training.17 We demonstrate that TL with merge increases the

models’ overall performance and the models have a higher start

on the learning curve for smaller sample sizes.

Case 1: Transition to a new cytometer within the same

laboratory

In MFC diagnostics, switching to a device that supports more

fluorochromes per measurement is a common transition in a

diagnostic laboratory that optimizes its workflows by updating

its equipment. Usually, this process involves a fewweeks, during

which samples are measured with both protocols, the old one

validating the new one. However, this means that only a few

samples from the new protocol are available to train a new clas-

sifier. Using knowledge transfer, we show that transition can be

handled quickly by adapting an existing AI model. We set up a

transition scenario from a five-color cytometer to nine-color us-

ing our MLL5F andMLL9F datasets. We trained amodel with the

MLL5F panel and used this as the base network to train a new

model for the MLL9F panel. We used an increasing number of

samples in the training set for each iteration of the learning curve,

while the validation set for each iteration was kept the same. We

started with 5 random samples per class and iteratively

increased the number of training samples by 5 in each class until
Patterns 2, 100351, October 8, 2021 3



Figure 2. Performance for standalone versus

transfer learning

The boxplots show F1 scores obtained: on the left,

weighted_F1_scores are plotted for each dataset

and, on the right, the average_F1_scores are

shown. The blue dotted line across the plots rep-

resents the previously reported base model’s

performance, which is considered expert-level ac-

curacy for this work. The transfer learning models

perform better in all four datasets. These models

achieve a higher F1 score, especially the average f1

score. A significant increase in average_F1 score is

seen for MLL5F (p = 1.8053 10�3) and Erlangen (p =

3.194 3 10�2) panels. For Bonn and Berlin panels,

we achieved a p value of 6.8383 10�1 and 1.6593

10�1, respectively. All p values were computed us-

ing an independent t test with Bonferroni correction.
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50 random samples per class. F1 scores were recorded for each

iteration. The learning curve (Figure 3A) with TL shows a higher

start and asymptote for the target network; the confusion matrix

obtained with five training samples per class (Figure S6A) shows

a significant improvement in classification, especially for the

smaller classes.

Case 2a: Model adaptability across laboratories

MFC diagnostic workflows are relatively similar across labora-

tories. However, the MFC panel used for diagnosis varies de-

pending on the cytometer and antibodies measured. For an AI

model, the reported performance is valid for the given MFC

panel. When the model is used to interpret different MFC data,

the performance drops significantly without changes to the un-

derlying architecture and parameters. Training a new model re-

quires a longer training time and large datasets. Here, we

demonstrate that our workflow can extend a model trained on

a specific MFC panel with an extensive training dataset to

different MFC panels with lesser data (Table 2).

We used our merged base model (MLL9F_base) to train new

models for Bonn and Berlin panels. Both target models showed

a significant increase in overall performance with TL. As with

the previous experiment, the learning curves were obtained

for an increasing number of training samples in each class.

The target models were trained with 5 random samples per

class, which were gradually increased to 50 samples per class.

The F1 scores showed a significantly higher start and overall

performance in inter-laboratory adaptation with our workflow

(Figures 3B and 3C).

Case 2b: Cross-laboratory adaptation with different

diagnostic setting

A screening panel was used for the Erlangen dataset to diagnose

B cell neoplasms with a separate classification panel for further

subtype determination. We trained a model with the same archi-

tecture and parameters as our MLL9F_base model for the

screening panel to obtain a ‘‘normal’’ versus ‘‘pathological’’ bi-

nary classification. The resulting model could classify 86% of

pathological samples and 96% of normal samples correctly.

Furthermore, we used our current workflow for the 247 samples

(see Table 2) with both screening and the classification panel (B1

and B2). We employed knowledge transfer as described and

saw an overall gain in the average F1 score from 0.33 to 0.52.

The learning curve (Figure 3D) showed a higher start and asymp-

tote, similar to the other three datasets.
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DISCUSSION

The use of AI models in the diagnosis of hematological malig-

nancies is steadily increasing over time.18,19 Several AI algo-

rithms have been developed to improve accuracy in lymphoma

subtyping using high-throughput data such as MFC. While

MFC data are ideal for deep learning applications, the protocol

is not uniform between laboratories or within the same laboratory

over time, leading to changes in the data. Thus, a model trained

on a specific MFC protocol cannot be applied to a dataset with a

different protocol.

This study presents a workflow to extend AI models trained on

a specific MFC panel to multiple MFC panels and data sizes. Our

workflow allows an existing model to adapt quickly to any

changes in the data making it possible to be deployed in a

routine diagnostic setting across different laboratories.

With our work, we demonstrate the application of TL to

improve the performance and adaptability of AI to multiple data-

sets. We use knowledge from the base model trained on a spe-

cific MFC panel to train target models for newMFC data. Ideally,

TL is applied in cases where the base and the target tasks are

related yet different, whereas the datasets do not change in

terms of composition. Our work shows that TL can be used suc-

cessfully when the base and target datasets change, while both

the base and target tasks remain the same.

Our proposed workflow combines knowledge transfer with

FCS data merging (Figure 4). Merging multiple aliquots is a

known approach for increasing computational depth for deep

phenotyping and FCS analysis.20 In the context of a CNN, it in-

creases the network’s feature space by combining markers

measured in different tubes. It also allows us to maximize our

networks’ transferability, which is essential for a successful

knowledge transfer.

We extend our base model to four additional datasets with a

varying number of tubes per sample and markers with no

changes to the model architecture and training parameters.

Here, we show that knowledge transfer in conjunction with

FCS data merging enhances the overall performance for target

models by allowing for already learned features from a large da-

taset to be transferred to smaller and different datasets.

With our workflow, the targetmodels achieve an overall perfor-

mance close to the previously reported expert-level accuracy.8

For the Berlin panel, the TL model achieved a median weighted



Table 1. Performance metrics

Protocol Scores MLL 5F Berlin Bonn Erlangen

With_TL f1_weighted (95% CI) 0.93 (0.92, 0.93) 0.93 (0.91, 0.95) 0.85 (0.81, 0.88) 0.80 (0.73, 0.87)

f1_avg (95% CI) 0.64 (0.61, 0.66) 0.62 (0.54, 0.71) 0.50 (0.41, 0.59) 0.52 (0.40, 0.64)

Precision 0.91 0.93 0.82 0.71

Recall 0.92 0.93 0.83 0.76

Standalone f1_weighted (95% CI) 0.92 (0.91, 0.93) 0.92 (0.90, 0.93) 0.76 (0.69, 0.83) 0.69 (0.63, 0.74)

f1_avg (95% CI) 0.57 (0.54, 0.59) 0.52 (0.45, 0.59) 0.40 (0.26, 0.53) 0.35 (0.31, 0.40)

Precision 0.90 0.92 0.75 0.58

Recall 0.91 0.92 0.82 0.73

Weighted and average F1 score along with 95% confidence interval (CI) values for the four target datasets for models with knowledge transfer and

standalone models without transfer learning are reported here. The F scores were calculated as an average of the 10-fold validation for each dataset.

Precision and recall are calculated as the weighted average of the per class scores for each fold and then averaged.
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F1 score of 0.94, the same as expert-level performance. This

enhancement could only be achieved by combining FCS data

merging with TL. While TL allows for features already learned

to be transferred between models to enhance the overall perfor-

mance of target models, merging multiple FCS tubes makes it

possible to apply maximum TL between different MFC datasets.

Furthermore, the learning rate of targetmodels with TL ismuch

higher than the standalone models, as demonstrated by our

learning curve analysis. The TL models achieve significantly

higher performance for very small training sizes. In the context

of transition to a new cytometer, this would allow an already de-

ployed AI model to be quickly adapted to the new protocol

without having to wait for a considerable time for enough sam-

ples to become available for the new protocol.

While the proposed workflow successfully allows the AI model

to be adapted to different MFC data, it does not entirely address

the inherent differences between various datasets. Each labora-

tory has a different diagnostic goal and expertise, leading to

different panel designs and different data distribution among

the classes for each dataset. The class imbalance within a given

dataset can be accounted for in the CNN using appropriate class

weights during training. However, these class weights are not

transferrable, and thus the non-uniform imbalance between the

various datasets cannot be addressed within the CNN.

Advanced data augmentation strategies to artificially create

more samples for the rare classes could allow for a uniform

data distribution among the datasets and are currently being

explored.

The choice of marker combinations used for each MFC panel

depends on the diagnostic workflow and preferences of the lab-

oratories. While some markers are standard markers for B cell

neoplasm assessment, others are specific to certain subtypes,

and different laboratories may use alternate markers for such

cases. The differences in the marker combinations between

the panels are addressed using NN merge and SOM training in

our workflow. While marker alignment in SOM calculation ac-

counts for overlapping CDmarkers between the base and target

MFC panels, missing markers in the target datasets are handled

by setting these values to zero in SOMweight calculation. These

markers may be necessary for specific subtype identification in

base data and could impact the classification of these subtypes

in the target models. For instance, IgM, a marker that Munich

chose to improve LPL (lymphoplasmacytic lymphoma) classifi-
cation in the MLL9F panel, is missing in the Bonn and Erlangen

panels. While these panels use other known markers, such as

CD38 for LPL identification, the information contained in IgM

might be lost during knowledge transfer and thus can impact

the classification performance for this class. This might also

explain the decline in performance for LPL, which can be seen

in confusion matrices for the Erlangen panel (Figure S6D).

Despite these inherent biases that can confound the classifica-

tion performance, we see an overall performance enhancement

for all four target sets with the proposed workflow.

While TL helps adapt and improve model performance, the

result must be carefully evaluated for each case. Especially,

evaluation on small and highly imbalanced datasets often

encountered in the routine laboratory setting can cause

misleading results without a thorough assessment of different

performance aspects.

In conclusion, we present a workflow to extend deep learning

models to multiple MFC panels and achieve high accuracy for

multi-label classification across datasets. Here, we address

some of the previous challenges for automated flow cytometry

classification by allowing models to be trained with smaller

training sizes and generalizing models to work with multiple

MFC panels. Our workflow is a step toward making deep

learning models robust so that AI for diagnostic MFC can

move from the ‘‘proof of concept’’ stage into routine diagnostics.

Limitations of the study
This section discusses the limitation of our work in terms of

known shortcomings of the merging approach, technical vari-

ance between datasets, and potential improvements. Although

NN is a well-known method for data imputation, for merging

FCS events, NN merging is known to sometimes introduce a

spurious combination of markers into the imputation results.21

However, this did not lead to a reduced performance of our clas-

sification model. Both merged and unmerged models produced

nearly identical F1 scores for the base dataset. Furthermore, we

also looked at the impact of the number of sharedmarkers on the

imputation quality and did not find any differences (see experi-

mental procedures, SE1). While TL accounts for some of the vari-

ability between the datasets, the technical variation arising from

sample preparation, equipment calibration cannot be

completely ruled out and could potentially affect the classifica-

tion performance. A standardized normalization approach
Patterns 2, 100351, October 8, 2021 5



Figure 3. Learning curves

The learning curve for average f1 scores with various training sizes for all the four target datasets is shown here. The curves were obtained with randomly sampled

training examples. We start with five training samples in each class and iteratively increase up to 50 samples per class. In cases where 50 samples are not

available for a given class, existing samples are randomly resampled to create up to 50 samples for the learning curve analysis. The curve for the transition

experiment is shown in (A), while the curves for cross-laboratory experiments with Berlin, Bonn, and Erlangen panels are shown in (B), (C), and (D), respectively.

The learning curves for all panels show a higher start and asymptote with transfer learning and an overall performance enhancement.
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across datasets could improve the classification performance

further. Although, this would add considerable computational

overhead and may require a reference sample to be analyzed

across various locations that can be used to remove all the tech-

nical variation. Finally, we align FCS channels by matching CD

markers while ignoring the fluorochromes for our knowledge

transfer. While any missing markers are handled within the up-

dated SOM training, the current workflow will ignore new

markers. The information lost because of the marker alignment

could impact the classification of specific subtypes and the over-

all performance. The performance may be improved further with

partial knowledge transfer techniques, where features from ex-

isting channels are transferred while the model is trained to learn

the new channels present in the new protocol.22 All five of the da-

tasets used in this study are from Navios cytometers. Although

the workflow presented here is not limited to datasets acquired
6 Patterns 2, 100351, October 8, 2021
on a specific device, our models could have a potential vendor

bias that should be considered when data are acquired on a de-

vice from a different vendor.
EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Further information and requests for resources should be directed to and will

be fulfilled by the lead contact, Peter Krawitz (pkrawitz@uni-bonn.de).

Materials availability

There are no physical materials associated with this study.

Data and code availability

d All five FCS datasets are available at Harvard Dataverse: https://doi.org/10.

7910/DVN/CQHHEH.

d The source code for merging FCS files, model generation, and transfer

learning is available under an open-source license on git repositories.

mailto:pkrawitz@uni-bonn.de
https://doi.org/10.7910/DVN/CQHHEH
https://doi.org/10.7910/DVN/CQHHEH
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Table 2. B cell lymphoma cohorts in target datasets

MLL 5F Berlin Bonn Erlangen

CLL 1,886 420 96 72
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ccess details for data and code can be found here: https://flowcat.gene-

alk.de.

ny additional information required to reanalyze the data reported in this pa-

er is available from the lead contact upon request.
MBL 221 – – 16

MCL 102 50 12 21

PL 151 – – –

LPL 121 3 6 9

MZL 40 15 5 10

FL 120 49 20 10

HCL 259 54 13 2

Normal 5,836 2,182 404 107

Data distribution among the different cohorts for each dataset is shown

here. Only data samples with precise diagnoses were included. For the

Erlangen panel, only samples with both B1 and B2 panels are shown.

CLL and MBL are merged into a single class for classification. CLL,

chronic lymphocytic leukemia; HCL, hairy cell leukemia; FL, follicular lym-

phoma; LPL, lymphoplasmacytic lymphoma; MBL, monoclonal B cell

lymphocytosis; MCL, mantle cell lymphoma; MZL, marginal zone lym-

phoma; PL, prolymphocytic leukemia.
Ethics approval

IRB or ethics approval does not apply as the studywas conducted on fully ano-

nymized retrospective patient data. A waiver was granted by the University of

Bonn Medical Faculty Ethics Committee.

Methods

Flow cytometry data

The base dataset consists of around 18,000 training samples acquired using a

9-color MFC panel at Munich Leukemia Laboratory (MLL) between 2017 and

2018. Four additional MFC target datasets were obtained with different MFC

panel compositions. The number of samples per cohort in each of the four

target datasets are summarized in Table 2.

Munich five-color panel. A 5-color panel consisting of 10,079 samples was

acquired at MLL between January 1, 2011, and December 31, 2012. For the

assessment of B cell neoplasms (B-NHL), a panel consisting of seven 5-color

combinations of monoclonal antibodies was used in all samples to analyze the

surface expression of 20 antigens. A detailed antibody-color combination is

given in Table S1A. We refer to this panel as the MLL5F panel.

Bonn nine-color panel. The second dataset was obtained from the University

Hospital Bonn, consisting of 525 samplesmeasured between January 1, 2018,

and December 31, 2018. A panel composed of two 9-color combinations of

monoclonal antibodies was used to analyze 16 antigens’ surface expression

for B-NHL assessment. Detailed MFC panel information is given in Table

S1B. We refer to this panel as the Bonn panel in this work.

Berlin eight-color panel. For the third dataset, an 8-color panel consisting of

2,773 routine diagnostic samples from patients with suspected B cell neo-

plasms analyzed between January 1, 2016, and December 31, 2018, was ob-

tained from the Berlin Hematology laboratory. The B-NHL assessment panel

consisted of four 8-color combinations of monoclonal antibodies. Table S1C

details theMFC panel used. In the following, we refer to this panel as the Berlin

panel.

Erlangen panel. A fourth target dataset was obtained from the University

Hospital Erlangen. The dataset consisted of 1,626 routine diagnostic samples

from patients with suspected B-NHL analyzed between January 1, 2014, and

July 31, 2020. The assessment panel consisted of a screening panel (B1), with

one ten-color combination of monoclonal antibodies used to analyze the sur-

face expression of nine antigens. Next, a secondary panel (B2) to identify the

B-NHL subtype was used where necessary. Finally, for the identification of

HCL (hairy cell leukemia), a third panel (B3) was used. All three panels are

described in detail in Table S1D. For this study, we only consider the 247 sam-

ples with both B1 and B2 panels.

All samples were analyzed on Navios cytometers (Beckman Coulter, Miami,

FL). Information on the number of events acquired for each panel is described

in Table S2. All diagnoseswere verifiedwith additional tests from histology, cy-

tomorphology, and in situ fluorescence hybridization, and only cases with un-

ambiguous labels were used to train the models. Furthermore, only samples

obtained from peripheral blood or bone marrow aspirate were included in

the analysis. Flow cytometry data are stored in the FCS 2.0 format.23 The

compensated FCS 2.0 data segment has been used in the analysis.

Merge overview

The merge process is depicted in Figure 4. The steps for matching events be-

tween different data files are as follows.

Step1: determine the shared markers for each of the datasets (Table S3).

The shared markers are used as the vector to calculate the distance between

events in different data files.

Step2: take tube i (start with the first tube; i = 1), and iterate over all of the

remaining tubes j.

Step3: for each event in tube i, calculate the NN in tubes j.

Step4: copy the tube-specific marker (non-shared marker) values from the

computed NNs in tube j to the events in tube i.

Step5: increment i, repeat the above steps. Events in each tube will now

have imputed values for markers that were measured in a different tube.
Step6: merge all the events across all tubes into a single large matrix.

The resulting data file obtained after merging the original data files and

calculating each event’s values was a file containing information about all pa-

rameters measured in all multicolor staining for each of the events recorded.

For the MLL5F panel, we merge tubes 2, 3, 4, 5, and 7. Thus, each merged/

calculated data file contained all 18 parameters measured for each of the

R2.5 3 105 events analyzed per sample (5 aliquots/sample 3 R5 3 104

events/aliquot). The tubes merged for the different datasets and themerge pa-

rameters are described in Table S3. We implement the merge using scikit-

learn API.24

SOM

A SOM is a network of interconnected nodes, ordered in a two-dimensional to-

pology, which can be used for unsupervised clustering of high-dimensional

data.25 SOMs were used as a method to reduce the dimensionality of the

data while preserving its spatial structure. We first generate individual SOMs

for each of the merged FCS samples. Each node in the SOM is associated

with a ‘‘weight’’ vector representing the n-dimensional FCS data. Individual

SOM transformation uses pre-initialized node weights from a reference

SOM. A reference SOM from the base model is used as the pre-initialized

weights for the target datasets to ensure the same initial tree structure.

Markers are aligned to the base dataset by matching FS, SS, and as many

CD markers as possible by disregarding the associated fluorochromes. In

the case of missing markers in the target set, they are set to ‘‘n/a’’; any new

CD markers in the target set that are not found in the base set are ignored.

The SOM implementation was adapted to account for missing data values

by modifying the training process.26 We introduce a masking matrix with

values in {0, 1} for each value in the original data: ‘‘1’’ indicates that the data

value is valid and ‘‘0’’ indicates that the data value is invalid, and the data point

should be ignored for any calculations. The SOM training is then adjusted to

use the mask values to ignore invalid data points for the best-matching unit

calculation and weight updates.

CNN

System requirements. The SOM generation and classification both require

Tensorflow.27 An NVIDIA GPU is preferable for running all computations. We

used a Tesla P40 GPUwith 24 GBGDDR5Xmemory on an Ubuntu 16.04 Linux

machine with TensorFlow 1.12. In addition, at least 500 GB HDD storage for

the entire dataset is necessary. The computation time required for analysis de-

pends on the size of the dataset. For our largest dataset, the SOM generation

for merged files took approximately 30 h, and the CNN training required an

hour. If video RAM is a limitation, reducing the batch size for the SOM gener-

ation might be beneficial.

Datasets. We used the nine-color panel dataset from our previous model as

the base dataset, referred to as the MLL9F panel. The four additional panels
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Figure 4. Merge overview

Overview of NN merge is shown here for two tubes with three shared markers. Each tube has three tube-specific markers: CD10, FMC7, and CD5 are tube 1-

specific markers, while tube 2-specific markers are Kappa, Lambda, and CD103. Events are shown in a two-dimensional space with one shared marker (FS) and

one tube-specific marker (CD5 for tube 1 and Lambda for tube 2). For each event ‘‘i’’ in tube 1, the NN in tube 2, ‘‘j,’’ is computed in terms of the shared markers

(FS, SS, and CD19). Next, tube 2-specific markers from ‘‘j’’ are copied over to ‘‘i’’; tube 1-specific markers from ‘‘i’’ are copied over to ‘‘j.’’ The process is repeated

for all the events in tubes 1 and 2. All the tube 1 events will have imputed values for tube 2-specific markers (Kappa, Lambda, and CD103) and tube 2 events will

have imputed tube 1-specific markers (CD5, CD10, and FMC7); these events can now be analyzed for the imputed markers that were previously missing. Finally,

the expression vectors of all events across tubes are merged, resulting in a combined FCS file consisting of events from both tubes with all the measured

parameters.
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described above: MLL5F, Bonn, Berlin, and Erlangen panels, are the target da-

tasets on which TL is applied and evaluated.

Model setup. Themodified CNN architecture for the merged data is shown in

Figure S4. The model generates predictions using SOM node weights for a

number of classes. The weights are first processed with three convolution

layers with decreasing filter sizes, followed by a global max-pooling layer

that summarizes filters across the SOM map’s spatial dimension. Next, two

dense layers combine information, and a final softmax layer generates class

predictions. Models are trained using Adam optimizer28 with a learning rate

of 0.001. A global weight decay of 53 10�6 was applied to all layers. Themodel

is implemented in Keras.29
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We trained a base model for the merged base dataset with the modified

CNN architecture, referred to as MLL9F_base. Two models were trained for

each target dataset: a standalone model without knowledge transfer and a

second model with knowledge from the base model (MLL9F_base). The

weights for each layer in the target model with TL are initialized with trained

weights from the base model’s corresponding layer, while for the standalone

models these are randomly initialized. The standalone models’ hyperpara-

meters are kept identical to the base model—20 epochs, a learning rate of

0.001, and a global decay of 5 3 10�6. For the second set of models with

TL, we used the same learning rate and global decay while the number of

epochs was reduced to 15. Furthermore, the two dense layers are frozen by
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setting the ‘‘trainable’’ hyperparameter as false. When using TL, the norm is to

freeze the convolution layers and retrain only the dense layers to avoid overfit-

ting. However, in our case, the MFC panel composition is different from the

base data. Therefore, to account for changes in the panel, we keep the convo-

lution layers unfrozen and retrain them to learn the filters for the target MFC

panel. Instead, we freeze the two dense layers that combine information for

generating class prediction since the classes to be predicted are the same

as in the base task.

We perform 10-fold validation for all the target datasets to avoid any bias

resulting from a single random train-validation split, especially for the smaller

datasets. Each target model is trained on the training split, and performance

metrics are calculated for the validation split of the respective target dataset.

The average scores across the 10-fold validation are reported as the final per-

formance measure.

Performance metrics. Precision and recall per class were defined on the true

label of each case. Prediction performance was evaluated using F1 scores.

The F1 score is the harmonic mean between recall and precision and places

equal importance on both measures. We use the F1 score as a performance

metric to reflect the real-world diagnostic scenario where precision and recall

are equally important. The average per class F1 scores was calculated as

avg f1 =
1

jCj
X
c˛C

fc; with

fc = 2
Precisionc,Recallc
Precisionc +Recallc

where C is the set of all classes:

The weighted F1 score was calculated as the class-size-weighted average

of the per class F1 scores

weighted f1 =
1P

c˛Csc

X
c˛C

scfc with sc as the number of cases in class c:

For each model, we calculate top 1 accuracy rate of the classifier for the

eight classes: chronic lymphocytic leukemia and its predecessor monoclonal

B-cell lymphocytosis (CLL/MBL), marginal zone lymphoma (MZL), mantle cell

lymphoma (MCL), prolymphocytic leukemia (PL), follicular lymphoma (FL),

hairy cell leukemia (HCL), and lymphoplasmacytic lymphoma (LPL) and

healthy controls. MBL is a diagnostic finding that is regarded as a potential

preneoplasia and precursor of CLL in most cases.30 BothMBL and CLL, there-

fore, share a similar immunophenotype (CD5+/CD19+/CD20 low/CD23+/Ig

low). Therefore, we combine MBL and CLL into a single class for classification.

However, we list MBL as a separate class in the learning and ROC curves for a

fine-grained analysis of classification sensitivity.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100351.
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