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ABSTRACT
Background: Altered DNA methylation may be an intermediate phenotype between breast 
cancer risk factors and disease. Mammographic density is a strong risk factor for breast cancer. 
However, no studies to date have identified an epigenetic signature of mammographic density. 
We performed an epigenome-wide association study of mammographic density.
Methods: White blood cell DNA methylation was measured for 385 postmenopausal women 
using the Illumina Infinium MethylationEPIC BeadChip array. Differential methylation was assessed 
using genome-wide, probe-level, and regional analyses. We implemented a resampling-based 
approach to improve the stability of our findings.
Results: On average, women with elevated mammographic density exhibited DNA hypermethyla
tion within CpG islands and gene promoters compared to women with lower mammographic 
density. We identified 250 CpG sites for which DNA methylation was significantly associated with 
mammographic density. The top sites were located within genes associated with cancer, including 
HDLBP, TGFB2, CCT4, and PAX8, and were more likely to be located in regulatory regions of the 
genome. We also identified differential DNA methylation in 37 regions, including within the 
promoters of PAX8 and PF4, a gene involved in the regulation of angiogenesis. Overall, our results 
paint a picture of epigenetic dysregulation associated with mammographic density.
Conclusion: Mammographic density is associated with differential DNA methylation throughout 
the genome, including within genes associated with cancer. Our results suggest the potential 
involvement of several genes in the biological mechanisms behind differences in breast density 
between women. Further studies are warranted to explore these potential mechanisms and 
potential links to breast cancer risk.
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Introduction

Breast cancer is the most common cancer among 
women in the United States, with 266,120 new 
cases estimated in 2018 [1]. The extent of radiolo
gically dense fibroglandular tissue appearing on 
a mammogram, known as mammographic density, 
varies between women and is largely heritable 
[2,3], but also influenced by an individual’s life
style [4–6] and exposure to exogenous hormones 
or other drugs [7,8]. Increased mammographic 
density is a strong risk factor for breast cancer, 
with women in the highest density category exhi
biting more than a four-fold increase in breast 
cancer risk compared to women in the lowest 
density category [9–11]. A number of studies 
have shown that mammographic density mediates 
the associations between breast cancer risk factors, 

such as history of breast biopsy, nulliparity, age at 
first birth, and hormone therapy, and breast can
cer risk [12–14]. However, the molecular mechan
isms underlying mammographic density and how 
density influences cancer risk are largely unknown.

Epigenetic changes, such as DNA methylation, 
may serve as an intermediate phenotype for risk 
factors and their associated diseases [15–17]. As 
such, DNA methylation may provide a powerful 
tool for understanding the aetiology of breast can
cer. It is well established that tumour tissue fre
quently exhibits changes in DNA methylation 
compared to normal tissue, such as global hypo
methylation and hypermethylation of the promo
ters of tumour suppressor genes [18–22]. 
A developing avenue of research involves examin
ing DNA methylation in surrogate tissues, such as 
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blood. A number of studies have shown that epi
genome-wide DNA methylation in white blood 
cells, especially at non-promoter regions, is asso
ciated with decreased breast cancer risk (reviewed 
in [23]).

Epigenetic signatures associated with specific 
cancer risk factors may provide a better under
standing of how these risk factors promote the 
development of breast cancer. White blood cell 
DNA methylation has provided epigenetic signa
tures for risk factors, such as ageing [24,25], life
time oestrogen exposure [17], body mass index 
(BMI) [26,27], alcohol [28,29], and smoking 
[30,31]. The goal of this study was to identify 
DNA methylation loci associated with mammo
graphic density in postmenopausal women. 
Discovering and validating such loci may advance 
our understanding of the biological mechanism 
linking mammographic density and breast cancer 
risk.

Methods

Study recruitment

Study participants were postmenopausal women 
between the ages of 45–66 with no personal his
tory of breast cancer or mastectomy and for whom 
a mammogram report indicating mammographic 
density was available within the last 3 years 
(N = 385). Recruitment, questionnaires, and speci
men collection and processing were described pre
viously [32]. Women were considered 
postmenopausal if they had not had a menstrual 
cycle for 1 year or more. Participants answered 
questionnaires about their breast health history 
and provided a blood sample for DNA methyla
tion analysis. The study was approved by the 
University of California, Irvine (UCI) 
Institutional Review Board, HS #2016-3127.

Assessment of mammographic density and 
covariates

Each participant completed questionnaires that 
provided age at menarche, age at menopause, par
ity, age at first birth, use of hormone replacement 
therapy (HRT), height, weight, smoking status, 
and alcohol intake. The number of years since 

menopause was calculated by subtracting the age 
at menopause from the age at blood draw. HRT 
use was categorized as current user, former user, 
and never user. BMI was calculated from self- 
reported height and weight by dividing the weight 
in kilograms by the height in metres squared. 
Participants who smoked cigarettes regularly at 
the time of blood draw were categorized as current 
smokers, those who had smoked regularly for 
6 months or more but did not currently smoke 
were categorized as former smokers, and all others 
were categorized as never smokers. Alcohol use 
was assessed with two questions: the frequency of 
alcohol consumption (never, once per month or 
less, 2–4 times per month, 2–3 times per week, and 
4 times or more per week) and the number of 
drinks per occasion (1–2, 3–4, 5 or more). The 
responses were categorized as zero, 1 or fewer, 
2–6, and 7 or more drinks per week.

Mammographic breast density was obtained 
from participants’ most recent mammogram 
report. Mammographic density was classified 
according to the Breast Imaging Reporting and 
Data System (BI-RADS), with possible categories: 
A, almost entirely fatty; B, scattered fibroglandular 
densities; C, heterogeneously dense; and D, extre
mely dense [33]. For all data analyses, density was 
treated as an ordinal variable, with category 
A being the lowest and category D being the 
highest.

DNA extraction and methylation profiling

Peripheral blood samples were obtained from each 
study participant and stored at 4°C until proces
sing. Within 6 hours of collection, samples were 
centrifuged at 2000 rpm for 10 minutes, and DNA 
was extracted from the buffy coat using the 
QIAamp DNA Blood Maxi Kit (QIAGEN, 
Hilden, Germany). Extracted DNA was quanti
tated by Synergy HT microplate reader (BioTek, 
Winooski, VT, USA) using the Qubit™ dsDNA HS 
Assay Kit (Thermo Fisher Scientific, Waltham, 
MA, USA) and stored at −80°C.

1.5 µg of DNA was sent to the University of 
Southern California Molecular Genomics Core in 
three batches for methylation profiling. Genomic 
DNA was bisulphite converted using the Zymo EZ 
DNA methylation kit (Zymo Research, Irvine, CA, 
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USA) and then DNA methylation at over 850,000 
CpG sites was measured using the Illumina 
Infinium MethylationEPIC BeadChip (Illumina, 
San Diego, CA, USA). Laboratory staff were 
blinded to the mammographic density status of 
the samples. All samples passed internal controls 
and were included in the final data analysis.

Methylation data pre-processing

First, the raw intensities were background cor
rected and adjusted for dye bias using the noob 
normalization procedure within the minfi pack
age, version 1.28.3 [36]. Probes with a detection 
p-value >0.05 in a sample were considered miss
ing for that sample. Low-quality probes were 
filtered and removed from further analysis for 
all samples, including probes that: 1) were miss
ing in at least 20% of the samples (n = 648); 2) 
had SNPs with global minor allele frequency >1% 
within 5 base pairs of the target sequence or 
mapping problems with the probe sequence 
(n = 99,109) [37]; 3) hybridize to multiple loca
tions (n = 15) [38]; or 4) were located on the sex 
chromosomes (n = 16,927). Beta mixture quantile 
normalization (BMIQ) was applied to correct for 
type II probe bias [39]. Previous empirical data 
suggest that the combined noob and BMIQ meth
ods are the most effective for methylation array 
normalization [40]. Except for noob normaliza
tion, filtering and normalization were completed 
using the ChAMP package, version 2.10.2 [41]. 
To address batch effects, the ComBat procedure 
was applied using sva, version 3.30.1, adjusting 
for batch and position on chip [42,43].

Finally, the proportions of white blood cell 
types (monocytes, CD8T, CD4T, B cells, natural 
killer cells, and neutrophils) were estimated 
with minfi, which implements the reference- 
based method described by Houseman [44] 
(Table S1). Methylation was quantified using 
β values, representing the percent methylation 
at the site, and M values, the logit transforma
tion of the β value. Because of its more desir
able statistical properties, the M value was used 
for differential methylation analysis [45], but β 
values were used for reporting of results to 
simplify interpretation.

Epigenome-wide analysis

(i) Genome-wide average methylation and epi
genetic age acceleration

First, genome-wide DNA methylation was esti
mated by averaging the methylation levels (β 
values) of all probes on the array. Linear regression 
was used to examine associations between gen
ome-wide average methylation and mammo
graphic density. The model was adjusted for age, 
race/ethnicity, BMI, HRT use, parity, time since 
menopause, alcohol use, smoking status, batch, 
position on chip, and estimated white blood cell 
proportions. These covariates were selected 
a priori based on known relationships with either 
DNA methylation, mammographic density, or 
both. Analyses were repeated for genome-wide 
average methylation stratified by genomic context 
as described below.

Epigenetic age was calculated using Horvath’s 
epigenetic clock [24]. Epigenetic age acceleration, 
or the difference between chronological age and 
epigenetic age, was compared for women with 
varying mammographic densities. Linear regres
sion was used to determine whether there was 
a statistically significant relationship between epi
genetic age acceleration and mammographic 
density.

(i) Probe- and region-level analyses

For probe-level analyses, linear models with the 
M value at each site as the dependent variable 
and mammographic density as the predictor were 
implemented using the limma package, version 
3.38.3 [46]. Models were adjusted for the same 
covariates as the genome-wide average methyla
tion analysis above. The threshold for genome- 
wide significance was set at a false discovery rate 
(FDR) of q < 0.05.

Regional analysis was conducted using 
DMRcate [47], version 1.18.0, using the same 
model as for the probe-level analysis. This 
approach identifies regions of differential methyla
tion in adjacent probes using a kernel smoothing 
method. We used a threshold of FDR q < 0.05 for 
genome-wide significance and the package devel
oper-suggested values of 1000 bases for λ and 2 for 
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the scaling factor C. To rank the relative signifi
cance of the regions, q-values for the probes con
tained in the region were combined using 
Stouffer’s method.

For both probe- and region-level analysis, 
a resampling-based approach was applied in 
order to improve the reproducibility and stability 
of the list of differentially methylated loci (Figure 
1). Because of the high dimensionality of micro
array data, the results from a single experiment are 
highly sensitive to small differences in the sample 
[48–51]. By aggregating results from a large num
ber of subsamples of the main study sample, we 

can identify methylation differences that are stably 
associated with our outcome of interest. This 
approach has only recently been applied to DNA 
methylation microarray data [52,53].

The study cohort was randomly sampled without 
replacement 1000 times to select subsamples con
sisting of 90% of the study participants. Each sub
sample was used to perform probe- and region-level 
analysis as described above using the UCI High 
Performance Computing Cluster. Results were 
aggregated to identify probes and regions that were 
consistently associated with mammographic den
sity. Probes that were called as differentially 

Figure 1. Summarizes the data pre-processing and analysis pipeline. Methylation array data were pre-processed according to 
recommended steps for Illumina methylation BeadChip data [34]. All data processing and analysis was performed in R, version 3.5.1 
[35]
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methylated in ≥90% of the subsamples were selected 
as differentially methylated probes (DMPs). After 
combining overlapping regions, regions that were 
associated with mammographic density in ≥90% of 
the subsamples were selected as differentially methy
lated regions (DMRs).

Internal validation

To demonstrate the validity of our approach, we 
used the same method to identify DMPs associated 
with smoking status in our study cohort. We then 
compared our list of DMPs to results from pre
vious epigenome-wide association studies of 
smoking.

Biological and functional analyses

DMPs were annotated using the Illumina manifest 
(version B4) to identify associated genes and geno
mic context. Probes were also mapped to 
ChromHMM data from ENCODE [54] to deter
mine the predicted chromatin state; data from the 
GM12878 lymphoblastic cell line was used as it is 
the tissue most similar to leukocytes. Chromatin 
states from the 15-state ChromHMM model were 
pooled into six categories as follows: promoter 
(active, weak, or poised promoters), enhancer 
(strong or weak enhancers), transcribed (transcrip
tional transition, transcriptional elongation, or 
weak transcribed), repressed, inactive (heterochro
matin and repetitive regions), and insulators. 
DMPs were examined for enrichment of certain 
genomic locations, location relative to CpG 
islands, or chromatin states, compared to the 
background of all non-DMP probes included on 
the array. Proportions were compared using a chi- 
squared test. We used DAVID [55] to examine the 
enrichment of Kyoto Encyclopaedia of Genes and 
Genomes (KEGG) pathways and gene ontology 
terms in genes associated with DMPs, and assessed 
enrichment of pathways using Ingenuity Pathway 
Analysis software, version 57,662,101 (Release 
Date: 2020–09-15).

Correlation with breast tissue

To determine the correlation of methylation at 
DMPs and DMRs between blood cells and breast 

tissue, we used DNA methylation data from paired 
samples from the Susan G. Komen Tissue Bank 
[56]. Details of the study cohort and specimen 
processing were described previously [57]. Briefly, 
40 women provided blood and breast tissue speci
mens at two time points spaced at least a year 
apart, for a total of 160 specimens. DNA methyla
tion for these specimens was characterized using 
the Illumina Infinium HumanMethylation450 
BeadChip array [57]. We calculated Pearson cor
relations to determine the relationship between 
methylation in paired blood and breast tissue at 
each time point at each DMP and all CpG sites 
located within DMRs.

Results

Cohort characteristics

Cohort characteristics are presented in Table 1. 
Race/ethnicity was associated with density, with 
a higher proportion of Asian women in the het
erogeneously dense or extremely dense category. 
BMI was inversely associated with density 
(p < 0.0001), consistent with previous literature 
[5]. A higher proportion of current HRT users 
had extremely dense breasts, also consistent with 
previous literature [7]. Other variables of interest, 
including age, smoking status, alcohol use, and 
reproductive history, were not associated with 
mammographic density.

Genome-wide average methylation

Genome-wide average DNA methylation was calcu
lated by taking the average of all probes on the 
array after filtering out low-quality probes and 
probes on the sex chromosomes (mean 62.15%, 
range 61.10–63.25%). Average methylation was 
higher in women with higher mammographic den
sity (Figure 2), increasing 0.034% per density cate
gory (95% CI 0.001–0.067, p = 0.043) (Table 2). 
The adjusted R2 of 0.40 suggests that the variables 
included in the model explain a moderate amount 
of the overall variance in genome-wide average 
DNA methylation. To further characterize this rela
tionship, analyses were repeated after stratifying 
probes based on their relationship to CpG islands 
and chromatin state (Table 2). The association 
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Table 1. Cohort characteristics by BI-RADs mammographic density category. Values are frequency (percentage) for categorical 
variables and median (interquartile range) for continuous variables. P-values are from Fisher’s exact test (categorical variables) and 
Kruskal–Wallis test (continuous variables). Missing data: 6 for race/ethnicity, 1 for smoking status, 1 for alcohol use, 1 for age at 
menarche, 3 for age at menopause. BMI: body mass index; HRT: hormone replacement therapy.

BI-RADs Mammographic Density

A: Almost entirely 
fatty

B: Scattered fibroglandular 
densities

C: Heterogeneously 
dense

D: Extremely 
dense Total p

Total 42 (10.9%) 107 (27.8%) 160 (41.6%) 76 (19.7%) 385
Age 58.0 (54.0, 60.0) 56.0 (53.5, 60.0) 58.0 (55.0, 61.0) 56.0 (54.0, 60.0) 385 0.25
Race/ethnicity 0.044
White 31 (77.5%) 70 (65.4%) 99 (63.5%) 50 (65.8%) 250
Asian 1 (2.5%) 7 (6.5%) 19 (12.2%) 15 (19.7%) 42
Hispanic 5 (12.5%) 22 (20.6%) 31 (19.9%) 10 (13.2%) 68
Other 3 (7.5%) 8 (7.5%) 7 (4.5%) 1 (1.3%) 19
BMI 33.6 (27.3, 38.8) 27.4 (24.4, 31.8) 24.4 (22.1, 28.2) 22.1 (20.3, 24.6) 385 <0.0001
Smoking status 0.13
Never 26 (63.4%) 76 (71.0%) 115 (71.9%) 63 (82.9%) 280
Former 13 (31.7%) 24 (22.4%) 37 (23.1%) 13 (17.1%) 87
Current 2 (4.9%) 7 (6.5%) 8 (5.0%) 0 (0.0%) 17
Alcohol use (drinks per 

week)
0.81

None 13 (31.7%) 26 (24.3%) 45 (28.1%) 21 (27.6%) 105
1 or fewer 18 (43.9%) 47 (43.9%) 66 (41.3%) 27 (35.5%) 158
2–6 8 (19.5%) 19 (17.8%) 26 (16.3%) 17 (22.4%) 70
7 or more 2 (4.9%) 15 (14.0%) 23 (14.4%) 11 (14.5%) 51
Age at menarche 12.0 (12.0, 13.0) 13.0 (12.0, 13.0) 13.0 (12.0, 14.0) 13.0 (12.0, 14.0) 384 0.54
Parity 0.21
0 7 (16.7%) 18 (16.8%) 37 (23.1%) 22 (28.9%) 84
≥1 35 (83.3%) 89 (83.2%) 123 (76.9%) 54 (71.0%) 301
Age at first birth
(for parous women) 28.0 (21.0, 31.0) 28.0 (23.0, 32.0) 27.0 (23.0, 31.0) 29.0 (27.0, 31.0) 301 0.18
Age at menopause 48.0 (42.3, 52.0) 50.0 (47.0, 53.0) 50.0 (46.0, 53.0) 50.5 (48.0, 52.3) 382 0.11
HRT use 0.0028
Never 29 (69.0%) 78 (72.9%) 99 (61.9%) 37 (48.7%) 243
Former 5 (11.9%) 17 (15.9%) 28 (17.5%) 10 (13.2%) 60
Current 8 (19.0%) 12 (11.2%) 33 (20.6%) 29 (38.2%) 82

Figure 2. Relationship between mammographic density and genome-wide average methylation, for all probes on 
HumanMethylationEPIC BeadChip (Figure 2a), for probes in CpG Islands (Figure 2b) and CpG shores (Figure 2c), and for probes 
by chromatin state predicted by ChromHMM from ENCODE data for the GM12878 cell line: promoters (Figure 2d), enhancers (Figure 
2e), transcribed (figure 2f), repressed (Figure 2g) and insulators (Figure 2h). Dashed lines show 95% confidence intervals.
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between mammographic density and genome-wide 
DNA methylation was present in probes located on 
CpG islands and shores (Figure 2), but not those 
on CpG shelves or distal to CpG islands. 
Mammographic density was also associated with 
hypermethylation at predicted promoters, enhan
cers, transcribed regions, repressed regions and 
insulators (Figure 2), but not in inactive/hetero
chromatin regions, gene bodies, or intergenic 
regions.

Epigenetic age acceleration

Chronologic age was moderately correlated with 
epigenetic age in the study cohort (r = 0.64, 
p < 0.0001, Figure S1). The mean epigenetic age 
acceleration was −2.9 years (95% CI −3.3, −2.5), 
indicating a trend of epigenetic age deceleration. 
There was no association between mammographic 
density and epigenetic age acceleration, both in the 
crude model (p = 0.77) and when adjusted for age, 
race/ethnicity, BMI, HRT use, parity, time since 
menopause, alcohol use, smoking status, batch, 
position on chip, and estimated white blood cell 
proportions (p = 0.71).

Internal validation of resampling methodology

We sought to test the validity of our resampling- 
based methodology by identifying probes associated 
with cigarette smoking in our dataset. Since the 

relationships between DNA methylation at specific 
sites and smoking exposure have been well charac
terized across many studies [30,31,58–61], this 
exposure serves as a useful positive control.

We identified 40 probes associated with smoking 
status (current/former/never) in ≥90% of the sub
samples (Table S2). The majority have been pre
viously associated with smoking, either for the 
specific probe itself (N = 21, 53%) or for other probes 
within the same gene (N = 14, 35%). Only 5 (13%) of 
our smoking-associated probes had never been pre
viously associated with smoking. All but one of these 
probes were exclusive to the Illumina EPIC array, 
which was used in just one of the previous studies of 
smoking and DNA methylation [60].

Probe-specific analyses

We identified 250 DMPs significantly asso
ciated with mammographic density in ≥90% of 
the subsamples after adjustment for age, race/ 
ethnicity, BMI, HRT use, parity, time since 
menopause, alcohol use, smoking status, batch, 
position on chip, and estimated cell-type pro
portions (Table S3). The majority (N = 192, 
77%) were hypermethylated in women with 
higher mammographic density (Figure 3). 
Probes with the smallest median p-values were 
located within the HDLBP, TGFB2, CCT4, 
PAX8/PAX8-AS1, and TACC2 genes. The lar
gest effect sizes (delta-β) were observed in 

Table 2. Association of mammographic density with genome-wide average methylation, stratified by genomic context. Model 
adjusted for age, race/ethnicity, BMI, HRT use, parity, time since menopause, alcohol use, smoking status, batch, position on chip, and 
cell-type proportions. Chromatin states are predicted by ChromHMM from ENCODE data for the GM12878 cell line. BMI: body mass 
index; HRT: hormone replacement therapy.

Estimate (95% CI) p Adjusted R2

All Probes 0.034 (0.001, 0.067) 0.043 0.40
CpG Island
Island 0.050 (0.021, 0.080) 0.00089 0.54
Shore 0.054 (0.009, 0.099) 0.020 0.45
Shelf 0.021 (−0.015, 0.057) 0.26 0.40
None 0.023 (−0.017, 0.064) 0.26 0.42
Relationship to Gene
Gene Body 0.031 (−0.001, 0.063) 0.060 0.43
Intergenic 0.030 (−0.015, 0.074) 0.19 0.35
Chromatin State
Promoter 0.040 (0.016, 0.065) 0.0014 0.49
Enhancer 0.055 (0.012, 0.098) 0.014 0.51
Transcribed 0.033 (0.003, 0.063) 0.034 0.62
Repressed 0.069 (0.015, 0.124) 0.013 0.41
Inactive 0.013 (−0.033, 0.060) 0.58 0.39
Insulator 0.073 (0.011, 0.135) 0.021 0.34
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probes within the HLA-DRB1, HLA-DRB5, 
PCDHA1/PCDHA2/PCDHA3, TMEM176A/ 
TMEM176B, and PDGFD genes. Boxplots for 
the top 4 intragenic DMPs by p-value are pre
sented in Figure 4 and for the top 4 intragenic 
DMPs by delta-β in Figure S2.

Hypermethylated probes were more likely to be 
located within CpG islands and less likely to be in 
the open sea, while the opposite was true for 
hypomethylated probes (Figure 5). Furthermore, 
hypermethylated probes were more likely to be 
located within predicted promoters and actively 
repressed regions and less likely to be located in 
the transcribed and inactive regions. 
Hypomethylated probes were more often located 

in actively transcribed regions and less often in 
promoter regions.

One hundred and forty of the 250 DMPs are 
also on the 450-k array and could thus be exam
ined for consistency of DNA methylation between 
paired blood cells and breast tissue. For 13 of the 
140 DMPs with data available (9%), methylation in 
blood samples was statistically significantly corre
lated with methylation in paired breast tissue after 
strict Bonferroni correction (p < 3.6 × 10−[4], 
r ≥ 0.39). DMPs with the greatest correlation 
between blood and breast tissue included 
cg17416722 and cg13910785 in HLA-DRB1 
(r ≥ 0.98), two intergenic probes on chromosomes 
4 and 5 (cg01815292 and cg14964336), and 

Figure 3. Volcano plot of results from probe-level differential methylation analysis. Top 10 probes by methylation difference (delta- 
β) and p-value are labelled with the gene or Illumina identifier (if intergenic).
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cg21610815 in PAX8/PAX8-AS1 (r = 0.54) 
(Table S3).

Regional analyses

There were 37 DMRs significantly associated 
with the mammographic density in ≥90% of 
the subsamples (Table S4). Thirty-six (97%) of 
these regions were hypermethylated in women 
with higher mammographic density. The smal
lest FDRs were for regions within the PAX8/ 
PAX8-AS1 genes, intergenic regions at 
chr5p15.33 and chr1q21.3, and the HLA-DRB1 
gene; these same regions and another region 

within the PF4 promoter had the largest effect 
sizes. Probes in these five regions also exhibited 
the strongest correlation between blood and 
breast tissue (r ≥ 0.5) among the DMRs. 
Methylation in seven DMRs (19%) was signifi
cantly correlated between blood and breast tis
sue after Bonferroni correction (r ≥ 0.36).

Gene ontology/pathway analysis

Enriched gene ontology (GO) terms, KEGG path
ways, and Ingenuity canonical pathways with 
a significance level of p < 0.05 and a minimum 
of three genes were identified (Table S5). For 

Figure 4. Boxplot of methylation (β) value by mammographic density category for top 4 intragenic probes by p-value. A: 
cg01837485 in HDLBP (p = 1.7 x 10−[8]), B: cg06899755 in TGFB2 (p = 2.0 x 10−[8]), C: cg27631039 in CCT4 (p = 2.9 x 10−[8]), D: 
cg21610815 in PAX8/PAX8-AS1 (p = 5.4 x 10−[8]).
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genes mapping to DMPs, 24 GO terms were 
enriched, including several relating to regulation 
of transcription or DNA binding. Twelve KEGG 
pathways were enriched, including pathways in 
cancer, the Ras signalling pathway, non-small cell 
lung cancer, and thyroid cancer. A further 24 
Ingenuity canonical pathways were enriched, 
including several cancer-related pathways (non- 
small cell lung cancer signalling, molecular 
mechanisms of cancer, and glioma signalling) 
and oestrogen receptor signalling. For genes asso
ciated with DMRs, six GO terms were enriched, 
again including transcription- and DNA-binding- 
related terms.

Discussion

We performed an epigenome-wide association 
study of mammographic density using the 
Illumina Infinium MethylationEPIC BeadChip 
array. First, we identified a pattern of hypermethy
lation in CpG islands and gene promoters in 
women with elevated mammographic density. 
Second, we identified 250 CpG sites for which 
DNA methylation was significantly associated 
with mammographic density using a resampling- 
based method. The top sites were located within 
genes associated with cancer, including HDLBP, 
TGFB2, CCT4, and PAX8, and were more likely 
to be located in regulatory regions of the genome. 
Finally, we identified 37 regions in which DNA 
methylation was associated with mammographic 
density, including within the promoters of PAX8 

and PF4, a gene involved in the regulation of 
angiogenesis. Overall, our results paint a picture 
of epigenetic dysregulation associated with mam
mographic density, which may impact transcrip
tion of cancer-related genes.

There was increased genome-wide DNA methy
lation associated with mammographic density, 
particularly among probes within CpG islands 
and predicted promoters. This pattern was robust 
to sensitivity analysis. This is consistent with the 
pattern of promoter hypermethylation that is com
monly associated with cancer [62], including 
breast cancer [63]. Some previous studies have 
associated genome-wide hypomethylation mea
sured with the 450 K array with the risk of breast 
cancer [63,64], but other studies [65] and meta- 
analyses [66,67] do not support those findings, and 
a study directly examining the impact of mammo
graphic density on genome-wide methylation did 
not find a relationship [68]. Epigenetic age accel
eration has been associated with breast cancer risk 
[69,70]; however, consistent with a previous study 
[68], we did not observe an increase in epigenetic 
age acceleration with mammographic density.

The top intragenic DMPs by p-value were 
located within the HDLBP, TGFB2, CCT4, and 
PAX8 genes. HDLBP codes for the protein vigilin, 
which is strongly expressed in normal breast 
epithelium [71] and is a candidate tumour sup
pressor [72] that has been shown to impair pro
liferation of breast cancer cells in vitro [73]. 
TGFB2 encodes an isoform of TGF-β, a key reg
ulator of cell development and proliferation with 

Figure 5. Enrichment analysis for genomic context of differentially methylated probes (DMPs). P-values are from Χ2 test. *** 
indicates p < 0.001, ** indicates p < 0.01, * indicates p < 0.05.
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both tumour-suppressor and oncogenic functions 
[74], including in breast cancer [75]. Epigenetic 
dysregulation of TGF- β signalling is a feature of 
breast cancer cells [76] and suppression (although 
not by DNA methylation) of TGF-β2 expression 
has been previously described in breast cancer cells 
and tumour samples [77]. Hypermethylation of 
TGFB2 has been associated with poorer survival 
in pancreatic cancer [78] and with prostate cancer 
progression [79]. CCT4 encodes a subunit of cha
peronin-containing TCP-1 or CCT, which super
vises the folding of proteins, including those 
critical for the development of cancer [80]. Little 
data are available regarding the role of CCT4 in 
carcinogenesis, although one study found 
a relationship between CCT4 expression and over
all survival in breast cancer [81]. Other CCT sub
units, particularly CCT2 and CCT3, are 
overexpressed in a significant proportion of breast 
cancers and their expression is associated with 
increased invasiveness [82], proliferation [83], 
and poor overall survival [81,84] in breast cancer. 
PAX8 is commonly expressed in tumours of 
Mullerian origin [85], and some studies have iden
tified PAX8 expression in a significant proportion 
of metastatic breast cancers [86] and breast cancer 
cell lines [87]. Another found evidence that 
reduced expression of an isoform of the PAX8 
antisense RNA PAX8-AS1 was associated with 
poor survival in breast cancer [88]. Interestingly, 
a CpG site in the closely related and breast-cancer 
associated [89,90] PAX6 gene was also hyper
methylated in women with high mammographic 
density.

In addition to the hypermethylation in the 
PAX8 promoter, our regional analysis identified 
a hypermethylated region at the PF4 promoter 
associated with the mammographic density. PF4 
encodes a chemokine, CXCL4, which can inhibit 
the proliferation and migration of endothelial cells 
[91] and suppress angiogenesis [92]. Its expression 
is dysregulated in many cancers [91], including 
breast cancer [93]. One study found silencing of 
PF4 associated with promoter hypermethylation in 
multiple myeloma patients [94]. Since it is often 
assumed that regional analysis identifies differen
tial methylation with a greater likelihood of 
impacting gene expression [95], our results suggest 
that PF4 and PAX8 expression may be associated 

with elevated mammographic density, a question 
that should be studied further.

Overall, the top DMPs and DMRs point to 
epigenetic dysregulation in genes associated with 
breast carcinogenesis. It is important to note that 
none of these genes has clear mechanistic links to 
mammographic density, but rather to breast can
cer risk. This may suggest that the differential 
methylation described in this study is part of the 
biological mechanism linking mammographic 
density and breast cancer development. Without 
follow-up data on breast cancer outcomes, it is 
impossible to state if methylation at these sites is 
a prelude to or mediator of breast cancer develop
ment, but methylation at 9 of the 206 genes 
located near the 250 DMPs and one of the 37 
regions has been associated with breast cancer 
risk in previous studies (TACC296, PDGFD [65], 
ZFAND465, HSCB [96], MAD1L [97], PRDM1665, 
C6orf14165, SLITRK565, NCOR265). Further studies 
are warranted to understand the role of DNA 
methylation in the relationship between mammo
graphic density and breast cancer.

A recent epigenome-wide association study of 
mammographic density using the Illumina 
Infinium HumanMethylation450 BeadChip array 
did not show any loci associated with mammo
graphic density after adjusting for multiple testing 
[98]. Several factors may explain these disparate 
results. First, we used the updated 
MethylationEPIC array, which covers an addi
tional 400,000 CpG sites compared to the 450k 
array used in the previous study. Also, we used 
the qualitative BI-RADs density categorization, 
rather than the quantitative measures used in the 
previous study (percentage density, dense area, 
and non-dense area). These measures are generally 
correlated [99,100], but nonetheless reflect differ
ent approaches to measuring mammographic den
sity. Finally, we used the false discovery rate 
adjustment for multiple comparisons, while the 
previous study used the stricter Bonferroni correc
tion. If we had used the same statistical approach, 
we would have identified just seven DMPs, includ
ing those near the HDLBP, TGFB2, CCT4, PAX8, 
and TACC2 genes, and two intergenic probes at 
chr6p22.3 and chr20q11.23.

We undertook several important steps to 
improve the validity of our results. We 
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implemented a resampling-based method to 
improve the stability of results from epigenome- 
wide association studies. In 1000 subsamples of 
our study cohort, we identified 33,015 unique 
CpG sites associated with mammographic density; 
however, the vast majority of these sites (79%) 
were found in ≤5% of subsamples. The number 
of sites significant at FDR <0.05 varied greatly for 
each subsample, from a minimum of 123 to 
a maximum of 17,209. These results highlight the 
sensitivity of EWAS methods to even small differ
ences in the study cohort, and emphasize the 
importance of screening lists of DMPs for false 
positives.

The sample size of 385 women should be suffi
cient to identify DMPs and DMRs associated with 
mammographic density; epigenome-wide studies 
of other disease risk factors have used cohorts of 
a similar size [17,25,27,28,30,31]. Our resampling 
method is designed to improve the specificity of 
the results and reduce the number of false posi
tives identified, which are a major hurdle to repli
cation of epigenome-wide association results. The 
results of the positive control (identifying loci 
associated with cigarette smoking) suggest that 
the method can efficiently identify true positive 
associations while limiting the number of spur
ious findings. Using our method versus 
a ‘traditional’ epigenome-wide association 
approach with the entire study cohort, we com
pared the proportion of DMPs with previously 
established relationships with smoking in other, 
larger cohort studies. Our study was not designed 
or powered to examine relationships between 
smoking and DNA methylation, so it is 
a reasonable assumption that most results incon
sistent with previous literature are false positives. 
35/40 (87.5%) DMPs from the resampling method 
and 164/297 (55.2%) from the traditional method 
had been previously associated with smoking. 
These results suggest that resampling-based meth
ods can facilitate identification of differential 
methylation signals with a high degree of sensi
tivity and specificity, even in the absence of an 
external validation dataset.

Blood is a convenient tissue to use to measure 
DNA methylation and develop biomarkers; how
ever, the extent to which it can be used as 
a surrogate tissue for breast tissue is unknown. 

To examine this question, we leveraged a dataset 
from a previous study [57] which measured DNA 
methylation in both white blood cells and breast 
tissue from 40 women. We calculated the correla
tion between paired blood and breast tissue DNA 
methylation among our DMPs and DMRs and 
found that, where data were available, about 9% 
of DMPs were significantly correlated between 
blood and breast tissue after multiple testing cor
rection. Similarly, 19% of DMRs overall were sta
tistically significantly correlated between blood 
and breast tissue, including regions located in the 
PF4 and PAX8 promoters. These data show that, at 
least for some loci associated with mammographic 
density, differences in DNA methylation in blood 
may reflect similar differences in the breast tissue. 
In particular, blood DNA methylation at regions 
associated with mammographic density was more 
likely to be well correlated with breast tissue DNA 
methylation, which supports the common assump
tion that DMRs have greater functional signifi
cance than individual probes [95].

There are several important limitations of this 
study. First, this is a cross-sectional study and 
cannot determine the temporal relationship 
between the differential methylation observed 
and mammographic density. Although we 
observed differential methylation in active regula
tory regions and near genes with possible connec
tions to breast cancer development, we did not 
examine differences in gene expression to deter
mine whether these differences had a functional 
impact. This is an important consideration, espe
cially given the small effect sizes observed for some 
DMPs and DMRs, which are unlikely to have 
biological impact. In addition, because our study 
population consisted entirely of postmenopausal 
women aged 45–66, our results may not be gen
eralizable to all women, for example, premenopau
sal women or women substantially older. We used 
a qualitative measure of mammographic density 
rather than the quantitative percentage density. 
We chose to use the qualitative BI-RADs density 
category because it is the most commonly used 
clinical measurement of mammographic density 
in the United States, but it may suffer from 
decreased interobserver reliability, especially for 
the middle two categories [101–103], which could 
have reduced our power to detect differential DNA 
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methylation. However, a sensitivity analysis with 
the cohort limited to women with category A or 
category D BI-RADs density (n = 118) yielded 
similar results to the main analysis, suggesting 
that this limitation did not majorly impact our 
results. Lastly, we did not validate our results in 
an independent cohort; however, our identifica
tion of previously established smoking-associated 
probes suggests that the resampling-based method 
we used yields results that are stable and 
replicable.

Our study identifies differential DNA methylation 
associated with mammographic density, an impor
tant risk factor for breast cancer. We leveraged 
a well-characterized cohort and a novel resampling- 
based method to improve the stability and reprodu
cibility of our findings. Our results suggest the 
potential involvement of several genes, including 
PAX8, PF4, HDLBP, TGFB2, and CCT4, in the bio
logical mechanisms behind differences in mammo
graphic density between women. Further studies are 
warranted to explore these potential mechanisms 
and potential links to breast cancer risk.
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