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Abstract

Diabetic retinopathy (DR) is a leading cause of blindness among working-age adults. Early

diagnosis through effective screening programs is likely to improve vision outcomes. The

ETDRS seven-standard-field 35-mm stereoscopic color retinal imaging (ETDRS) of the

dilated eye is elaborate and requires mydriasis, and is unsuitable for screening. We evalu-

ated an image analysis application for the automated diagnosis of DR from non-mydriatic

single-field images. Patients suffering from diabetes for at least 5 years were included if they

were 18 years or older. Patients already diagnosed with DR were excluded. Physiologic

mydriasis was achieved by placing the subjects in a dark room. Images were captured using

a Bosch Mobile Eye Care fundus camera. The images were analyzed by the Retinal Imaging

Bosch DR Algorithm for the diagnosis of DR. All subjects also subsequently underwent

pharmacological mydriasis and ETDRS imaging. Non-mydriatic and mydriatic images were

read by ophthalmologists. The ETDRS readings were used as the gold standard for calculat-

ing the sensitivity and specificity for the software. 564 consecutive subjects (1128 eyes)

were recruited from six centers in India. Each subject was evaluated at a single outpatient

visit. Forty-four of 1128 images (3.9%) could not be read by the algorithm, and were catego-

rized as inconclusive. In four subjects, neither eye provided an acceptable image: these four

subjects were excluded from the analysis. This left 560 subjects for analysis (1084 eyes).

The algorithm correctly diagnosed 531 of 560 cases. The sensitivity, specificity, and positive

and negative predictive values were 91%, 97%, 94%, and 95% respectively. The Bosch DR

Algorithm shows favorable sensitivity and specificity in diagnosing DR from non-mydriatic
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images, and can greatly simplify screening for DR. This also has major implications for tele-

medicine in the use of screening for retinopathy in patients with diabetes mellitus.

Introduction

Diabetic retinopathy (DR) in time affects nearly all individuals with type I,[1] and most

patients with type II diabetes melllitus.[2] DR may progress to blindness; in fact, DR is the

leading cause of new blindness among working-age adults[3]. About 4% of persons with early-

onset diabetes are blind, and nearly all blindness in this age group is related to the complica-

tions of DR.[3] About 2–3% of late-onset diabetics are blind.[4]–in this group about a third of

blindness is caused by diabetes.[3]

The risk of DR can be reduced by careful control of blood sugar levels and blood pressure.

[5, 6] Early diagnosis of DR through effective screening programs, should, therefore, be

expected to improve vision outcomes. DR has a long latent phase, and screening and timely

intervention for DR has been shown to be cost-effective when compared with the disability

loss of blindness.[7, 8] Indeed, Ferris[9] estimated that blindness would be reduced ten-fold

with appropriate early intervention.

Fundus photography is a simple and cost-effective method of making a diagnosis in sus-

pected retinopathy. One of the major advantages is that the photograph can be examined by

others, at various locations, much as an X-ray can.[10] The first photographs of the retina were

published in 1886, but commercial fundus cameras appeared only forty years later.[11]

The gold standard for grading DR is the expert interpretation of the ETDRS seven-stan-

dard-field 35-mm stereoscopic color retinal image (ETDRS) of the dilated eye.[12, 13] Tradi-

tional fundus cameras provide excellent pictures, but are typically large, bulky, difficult to use.

They are also expensive, and require time-consuming and uncomfortable mydriasis, and are

therefore clearly not designed for screening. Since screening for DR is often inadequate, there

is a need for easily-available, inexpensive methods for diagnosing the condition.[14] Over the

years, progress has been directed towards non-mydriatic photography, simplifying cameras,

diagnosis by general practitioners, and automated diagnosis. Non-mydriatic image acquisition

methods take less than half the time[15] and, when interpreted by ophthalmologists, show

good correlation with the gold standard.[15, 16] Telemedicine has also helped overcome the

shortage of qualified ophthalmologists.[17],[18]

Despite these endeavors, screening still may be inadequate.[19, 20] A screening method

that does not require trained persons would be expected to significantly improve availability

and reduce costs.[21]

We have been working on a medical image analysis application for ophthalmology profes-

sionals. This application can capture retinal images and transfer them to a computer (and to a

cloud database), and can classify images as healthy, inconclusive, or DR affected. In the last

year, we have prospectively evaluated this system for the diagnosis of DR. The objective of the

paper is to present the sensitivity, specificity, positive predictive value (PPV), and negative pre-

dictive value (NPV) of this instrument, with respect to 7-field ETDRS imaging.

Methods

The study was a prospective, open-label trial. Non-mydriatic images were captured using the

Bosch camera and were evaluated by the Bosch DR Algorithm software for the diagnosis of
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DR. The results were compared with those obtained by 7-field ETDRS images in the same

subjects.

Patients

The study was conducted on patients recruited at one of 6 centers in India (Table 1).

The study was approved by the ethics committees of each of the participating hospitals and

medical centers. For the center at Jaipur, the approval was provided by the ethics committee of

the SEAROC Cancer Center, Jaipur. The study was registered on the Clinical Trials Registry–

India (CTRI), with the registration number CTRI/2017/01/007709 (the trial protocol can be

viewed at the following url: http://ctri.nic.in/Clinicaltrials/showallp.php?mid1=

16105&EncHid=&userName=thinki). Informed written consent was taken, and Good Clinical

Practice norms were followed at all times.

Male and female patients suffering from type I or type II diabetes mellitus for at least 5

years were included if they were 18 years or older. We excluded patients who were already

diagnosed to have DR, and those who had associated intraocular disorders (Table 2).

Diagnosis of DR

The algorithm diagnosed the eyes as “healthy”, “DR affected” or “inconclusive”.

The investigators who read the images diagnosed the eyes as “DR present” or “DR absent”.

They used the American Academy of Ophthalmology guidelines[22] as the standard for mak-

ing the diagnosis. Any findings falling under the nonproliferative DR or proliferative DR cate-

gory of ETDRS[12] were categorized as “DR present”.

Fundus image collection

Once subjects were enrolled, a medical history was obtained and a clinical examination carried

out. The subjects were placed in a dark room for at least two minutes to achieve physiological

mydriasis before they underwent retinal imaging.

Table 1. Participating centers in India.

1 Padmashree Dr. DY Patil Medical College Hospital and Research Centre, Mumbai, Maharashtra.

2 JN Medical College, KLE University, Belgavi, Karnataka.

3 Dr. Virendra Laser, Phaco Surgery Centre Pvt. Ltd., Jaipur, Rajasthan (SEAROC Ethics Committee,

Jaipur, Rajasthan).

4 Sri Sankaradeva Nethralaya, Guwahati, Assam.

5 Deenanath Mangeshkar Hospital and Research Centre, Pune, Maharashtra.

6 NKP Salve Institute of Medical Sciences and Lata Mangeshkar Hospital, Nagpur, Maharashtra.

https://doi.org/10.1371/journal.pone.0189854.t001

Table 2. Exclusion criteria.

Inability or unwillingness to provide an informed consent

History of known retinal disease

History of intraocular surgery (other than cataract surgery), or of ocular laser or injection treatment for any

retinal disease

Extremely small pupil that affected image capture, or an opacity or other condition in either eye that

precluded good bilateral retinal photography

Conjunctivitis, red eye, or any other inflammatory condition with photophobia

Gestational diabetes mellitus

Inability or unwillingness to provide an informed consent

https://doi.org/10.1371/journal.pone.0189854.t002
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A single external fundus image of each eye was acquired using the Bosch nonmydriatic fun-

dus camera. This camera is a physical hand-held device that offers both non-mydriatic and

mydriatic modes for faster and accurate detection. We captured non-mydriatic single-field

color fundus images with effective spatial resolutions equal or more than 2.6 MP. Images were

uploaded to the cloud using the telemedicine software, Medibilder Lite. There were first pre-

processed by cropping (to get approximately square images), re-scaled to a lower resolution of

512�512, and then normalized and transferred to the Bosch algorithm for DR evaluation. The

results from the algorithm were documented. Investigators were kept blinded from the results.

After the nonmydriatic images were taken, the patients underwent 7-Standard Field stereo-

scopic Digital Colour Fundus (EDTRS) imaging[12] after mydriasis with tropicamide. These

images were evaluated by the investigators.

Deep learning algorithm for DR classification

The fundus images captured from the patients were analyzed by the Bosch DR Algorithm,

which performs classification. The image data acquired was processed and the output gener-

ated using MediBilder as a user-interface. Medibilder is a DICOM compliant client software

for picture archiving and communication systems, capable of image operations such as mark-

ing, annotation, and layering. (DICOM is an acronym for Digital Imaging and Communica-

tions in Medicine standard for handling, storing, printing, and transmitting information in

medical imaging.) This algorithm classifies each fundus image as DR affected, healthy, or

inconclusive. The data were recorded into electronic case record forms (CRFs). Fig 1 describes

the process flow.

The Bosch DR Algorithm uses deep convolutional neural network to automatically detect

whether a fundus image has DR. Deep learning is an artificial intelligence method in which the

input image passes through many types of filters in order to automatically extract the best fea-

tures.[23] The computational models involve numerous convolutional layers, and the auto-

matically generated features have markedly improved the state-of-the-art in visual object

recognition.[24] Our deep learning architecture configuration consists of 13 convolutional lay-

ers. The optimal number of layers was based on experimental analysis, and we found that

increasing the layers did not raise the performance significantly. We have used cross-entropy

as the cost function to be minimized. The output layer consists of a single output neuron (for

specifying the result of binary classification).

The Bosch algorithm differs from one developed by the Google team[25] in two main ways.

One, the Google network uses a more complex architecture that consists of 11 blocks, and,

totally, there are more than 80 convolutional layers. They had used an ensemble of 10 such net-

works. We have used a different scheme of a single network, which consists of 13 convolu-

tional layers, and yet it provides sufficient accuracy.

Two, in our network, to avoid the problem of vanishing gradients (wherein the gradient

update tends to zero), we adopted the technique of adding random noise to the gradients

Fig 1. Process flow of subjects. *ETDRS: ETDRS seven-standard-field 35-mm stereoscopic color retinal

imaging.

https://doi.org/10.1371/journal.pone.0189854.g001
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during optimization, as described by Neelakantan et al.[26] This approach also helps to avoid

overfitting, and results in lower training loss. On the other hand, this addition of random

noise was not found in Google’s paper.

Inconclusive cases: The proportion of inconclusive cases is constrained to be around 10%-

20% of the test data by optimizing the thresholds (which is ensured during training).

Training database: For the training phase, we have used a large dataset of nearly 80,000

images. These consist of challenging cases from (i) Open-source data EyePACS-1, that com-

prises mydriatic and non-mydriatic fundus images, and (ii) About 5000 Bosch Eye Camera

images collected from various camps across India, verified by 3 ophthalmologists. The training

set was derived from completely different patients, sites, and operators, when compared to the

testing images of the actual study. This ensures external validity of the algorithm, as the test set

is different.

Sample size calculations and statistics

We calculated the sample size as follows:

N = (Z2 � Sn � (1-Sn))/ (L2 � prevalence), where Z was 1.96 for alpha = 0.05, Sn = sensitivity,

set at 0.9 from previous studies, L = margin of error, set at 0.05, and prevalence (of DR in dia-

betes) set at 0.25 from earlier studies.[27–29] This provided a requirement of 533 subjects,

which we rounded off to 550.

Data analysis was carried out using SPSS1 version 22. The sensitivity, specificity, PPV, and

NPV were calculated for the algorithm using the investigators’ diagnoses on the 7 field ETDRS

images as the gold standard. We excluded the cases classified as inconclusive by the algorithm.

Results

Subjects were recruited between October 2016 and January 2017. The study included 564 sub-

jects, each of whom were evaluated at a single outpatient visit. Of the 1128 eyes studied, 44

images (3.9%) were categorized inconclusive by the algorithm. Eight of these were from the

same four subjects, who were excluded because the algorithm categorized both eyes as incon-

clusive. This left 1084 eyes, from 560 subjects, for analysis (Fig 2). The subjects included 351

males and 209 females, with ages ranging from 20 to 85 years (median 58). They all had diabe-

tes for at least five years.

Bosch DR Algorithm

The algorithm correctly diagnosed 531 of 560 cases (Table 3). The sensitivity, specificity, PPV,

and NPV were 91.18%, 96.9%, 94.4%, and 95.0% respectively.

Discussion

Non-mydriatic fundus photography became available in the 1980s.[30] It was, naturally, well-

tolerated by patients, but the images sometimes lacked clarity, with 5–25% of pictures being

unusable. Early studies showed that though the specificity rates were high, sensitivity rates for

the diagnosis of DR were low, missing nearly half of cases.[14] Improvement in cameras was

driven by the frequent occurrence of unusable images. An excellent review was published by

Panwar et al,[11] detailing the technical specifications of fundus cameras for mydriatic and

non-mydriatic photography. More recently, cameras have become smaller: indeed, some

mobile phones are able to take pictures without the need for mydriasis.[11]
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Image quality

In 1084 of 1128 cases the images were of acceptable quality for evaluation (96.1%). This com-

pares favorably with the rates reported in earlier publications, where about 70–95% of non-

mydriatic photographs were acceptable.[14, 31–34]

Our software has advantages over previously described work, for example that published

recently by Google’s Gulshan and coworkers.[25] Unlike the California-based team, which

used an ensemble of 10 networks, we have used a much simpler network and yet obtained

comparable performance. Fewer layers require lesser memory and processing power. An addi-

tional novelty of our architecture is that we have added noise to the gradients (during optimi-

zation). This modification, which is included in the training model, helps us in providing

robust results even for lower quality images, with variations such as color and visibility of

lesion-affected regions.

Fig 2. Flow chart showing recruitment, inclusion, and exclusion of subjects.

https://doi.org/10.1371/journal.pone.0189854.g002

Table 3. Sensitivity and specificity of the Bosch Dr Algorithm.

Bosch DR Algorithm 7-field ETDRS imaging Result Cases

(total: 560)

Positive Positive True positive 186

Negative Positive False negative 18

Negative Negative True negative 345

Positive Negative False positive 11

Sensitivity 91.18% (86.41–94.69), Specificity 96.91% (94.54–98.45), PPV 94.4% (90.42–96.81), NPV

95.0% (92.5–96.75), positive likelihood ratio value 29.51 (16.47; 52.88), negative likelihood ratio value 0.09

(0.06; 0.14). Figures in parentheses represent 95% confidence limits.

https://doi.org/10.1371/journal.pone.0189854.t003
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The Kaggle diabetic retinopathy challenge[35] released a huge publicly available dataset,

wherein several deep learning-based approaches wee proposed to classify different grades of

retinopathy. In our work, we only focus on referral/no referral classification for DR versus

healthy images. The diagnostic accuracy of computer detection of DR was reported by Abram-

off and coworkers,[36] who also provided a detailed clinical study.[37] A detailed survey of DR

detection algorithms from fundus images was presented in a review by Mookiah et al,[38] but

these dealt with lesion detection-based approaches and considered only much smaller public

databases such as DIARETDB1.[39]

Sensitivity and specificity

Non-mydriatic photography is convenient, but sensitivity and specificity have always been a

concern.

The best results are obtained when an ophthalmologist reads the images. Reports show sen-

sitivity rates varying from 78%[40] to 96%[41]. Specificity is typically higher, ranging from

86%[40] to 98%[41]. In a small study of 55 subjects, Vujosevic et al[42] reported a sensitivity of

99%, and a specificity of 100%.

Recognizing that an ophthalmologist is not always available in rural areas,[43] healthcare

personnel have used trained general practitioners to interpret the images. Castro and cowork-

ers[44] reported sensitivity rates of 67% for non-mydriatic examination, but more recent

reports indicate that the sensitivity for diagnosis is between 83–97% when carried out by gen-

eral practitioners, with most publications reporting rates close to 95%.[45, 46]

Over the years, progress has also been made in identifying retinal lesions using algorithms

to diagnose changes in digitized images.[10, 47–49] Abramoff and coworkers[50] evaluated an

algorithm-based system for automated detection of DR in retinal photographs. They achieved

a sensitivity of 0.84, but a low specificity, and concluded that automated detection showed

promise, even if it was not immediately suitable for clinical use. Recently, Besenczi et al,[10]

Schuster et al,[51] and Rahim et al[52] have described the components of automated detection

programs. The software is able to localize the optic disc and the macula, and distinguish the

arteries from the veins.[53] It can detect retinal lesions such as microaneurysms, exudates, and

others. Changes such as papilledema,[54, 55] hemorrhages,[56] neovascularization,[57] and

exudates[58] can be identified, typically with sensitivity rates approaching 80% and overall

accuracy rates greater than 90%.

Putting these programs together, attempts have been made for the automated diagnosis DR

from images. Tufail et al[59] stated that the sensitivity of EyeArt, their automated DR image

assessment systems (ARIAS) was 94.7%, when compared to manual graders. Unfortunately

their program setting appeared to achieve this high sensitivity at the cost of specificity, and the

false-positive rate approached 80%. It was also not clear from their papers[59, 60] whether the

images were consistently non-mydriatic. Bhaskaranand et al[61] reported similar, but slightly

less accurate, results, also using EyeArt. Using mydriasis, Hansen et al,[62] in Kenya, used the

Iowa Detection Program and set an optimum balance between sensitivity and specificity,

achieving rates of 91% and 70% respectively.

There are few studies that have specifically evaluated the role of automated image analysis

of non-mydriatic photography using mydriatic photographs as a standard. Hansen et al,[63]

from Denmark, reported a sensitivity of 90% and a specificity of 85.7% in a small group of 83

subjects, and recommended that automated systems could be used effectively for screening. In

the present study, using the ophthalmologist’s diagnosis from 7-field ETDRS images as the

gold standard, the Bosch DR Algorithm achieved sensitivity, specificity, PPV, and NPV rates

of 91%, 96%, 94%, and 95% respectively. The British Diabetic Association recommends that
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screening programs for DR should reach sensitivity and specificity levels of 80% of higher,[64]

and the Bosch DR Algorithm comfortably surpasses this requirement. Our results compare

favorably with those obtained by other workers, and we consider that this algorithm can be an

effective instrument for screening for DR.

Telemedicine benefits

Despite well-established guidelines for screening, patients often present with DR-related blindness.

The cause is probably inadequate screening,[65] and telemedicine with remote interpretation may

be an important strategy for tackling this problem. Fortunately, DR is a condition that lends itself

easily to the benefits of telemedicine.[66, 67] Studies have repeatedly confirmed the importance of

telemedicine as an important screening tool in different parts of the world,[68–70] and it is more

effective than traditional surveillance.[71] In a country like India, where a third of the rural popu-

lation of the needs to travel over 30 kilometers for access to basic medical treatment,[72] “tele-oph-

thalmology” can be particularly valuable.[73] Non-mydriatic imaging is highly acceptable to

patients.[74] The main problems are those of image inconsistency,[75] which highlights the

importance of any system that can provide quality images with a low rate of unreadable pictures.

Strengths and weaknesses

This study compares non-mydriatic imaging with an acceptable gold standard. We consider

that our other strength is in the large number of subjects, which should provide valid measures

of accuracy using this technology.

In our study, a subject was considered for analysis if even one eye had yielded an adequately

clear image. In some of the eyes diagnosed as normal, the other eye may well have had evi-

dence of early DR. Further, while the study notes the findings of DR, it would be useful to

know how accurate this software is for individual lesions, such as exudates, microaneurysms,

and macular edema.
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